1
|
Yao H, Huang R, Fu H, Lin R, Zhang Y, Feng Y, Wang Y, Chen T, Wang X, Zhu L, Liu J, Liu Y, Zhao L, Wang L, Kong P, Wen Q, Zhang C, Gao L, Gao L, Liu Q, Zhang X, Huang X, Zhang X. Sequential Infusion of Mesenchymal Stem Cell for Graft-Versus-Host Disease Prevention in Haploidentical Hematopoietic Stem Cell Transplantation: An Open-Label, Multicenter, Randomized Controlled Clinical Trial. J Clin Oncol 2025:JCO2402119. [PMID: 40233291 DOI: 10.1200/jco-24-02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 04/17/2025] Open
Abstract
PURPOSE The aim of this open-label, multicenter, randomized controlled trial was to determine the efficacy and safety of sequential umbilical cord-derived mesenchymal stem cell (UC-MSC) infusion for graft-versus-host disease (GVHD) prevention within 3 months of haploidentical hematopoietic stem cell transplantation (haplo-HSCT). METHODS This open-label study evaluated UC-MSC infusion (administer 1 × 106/kg 4 hours before the commencement of day 0, once weekly for the first month after transplantation, once every 2 weeks for the second month, and once during the third month, totaling eight doses). The primary end point was the 2-year cumulative incidence of severe chronic GVHD (cGVHD). RESULTS In the primary analysis, 192 qualified participants between age 18 and 60 years with haplo-HSCT in three transplant centers in China were enrolled and randomly assigned to the MSC and control groups. In the primary analysis, the estimated 2-year cumulative incidence of severe cGVHD and all grades of cGVHD was lower in the MSC group than in the control group (P = .033 and P = .022). The cumulative incidence of grade 1 to 4, 2 to 4, and 3 to 4 acute GVHD (aGVHD) in patients in the MSC group significantly decreased (all P < .001). The 3-year GVHD-free and relapse-free survival (GRFS) rate in the MSC group was 62.4%, which was significantly higher than that in the control group (32.0%, hazard ratio [HR], 0.34, P < .001). MSC infusion did not influence the cumulative incidence of relapse (P = .34) and nonrelapse mortality (P = .45). CONCLUSION Our findings suggest that sequential infusion of MSCs within 3 months after haplo-HSCT significantly reduced both the incidence and severity of cGVHD and aGVHD, manifesting as a better GRFS rate for patients.
Collapse
Affiliation(s)
- Han Yao
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Haixia Fu
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqi Zhang
- Department of Health Statistics, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Yimei Feng
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Yu Wang
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ting Chen
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lidan Zhu
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jia Liu
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Yuqing Liu
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lu Zhao
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lu Wang
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Peiyan Kong
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Qin Wen
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Cheng Zhang
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Li Gao
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohui Zhang
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiaojun Huang
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xi Zhang
- Medical Center of Hematology, Institute of Science Innovation for Blood Ecology and Intelligent Cells, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
AlOraibi S, Taurin S, Alshammary S. Advancements in Umbilical Cord Biobanking: A Comprehensive Review of Current Trends and Future Prospects. Stem Cells Cloning 2024; 17:41-58. [PMID: 39655226 PMCID: PMC11626973 DOI: 10.2147/sccaa.s481072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Biobanking has emerged as a transformative concept in advancing the medical field, particularly with the exponential growth of umbilical cord (UC) biobanking in recent decades. UC blood and tissue provide a rich source of primitive hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) for clinical transplantation, offering distinct advantages over alternative adult stem cell sources. However, to fully realize the therapeutic potential of UC-derived stem cells and establish a comprehensive global UC-biobanking network, it is imperative to optimize and standardize UC processing, cryopreservation methods, quality control protocols, and regulatory frameworks, alongside developing effective consent provisions. This review aims to comprehensively explore recent advancements in UC biobanking, focusing on the establishment of rigorous safety and quality control procedures, the standardization of biobanking operations, and the optimization and automation of UC processing and cryopreservation techniques. Additionally, the review examines the expanded clinical applications of UC stem cells, addresses the challenges associated with umbilical cord biobanking and UC-derived stem cell therapies, and discusses the promising role of artificial intelligence (AI) in enhancing various operational aspects of biobanking, streamlining data processing, and improving data analysis accuracy while ensuring compliance with safety and quality standards. By addressing these critical areas, this review seeks to provide insights into the future direction of UC biobanking and its potential to significantly impact regenerative medicine.
Collapse
Affiliation(s)
- Sahar AlOraibi
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sebastien Taurin
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Sfoug Alshammary
- Molecular Medicine Department, Princess Al Jawhara Center for Molecular Medicine, Genetics, and Hereditary Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
3
|
Sharma P, Maurya DK. Wharton's jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury. World J Stem Cells 2024; 16:742-759. [PMID: 39086560 PMCID: PMC11287430 DOI: 10.4252/wjsc.v16.i7.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries. WJ-MSCs are more naïve and have a better safety profile, making them suitable for both autologous and allogeneic transplantations. This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries. In this review, we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses. Finally, the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.
Collapse
Affiliation(s)
- Prashasti Sharma
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Dharmendra Kumar Maurya
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
4
|
Shen R, Lu Y, Cai C, Wang Z, Zhao J, Wu Y, Zhang Y, Yang Y. Research progress and prospects of benefit-risk assessment methods for umbilical cord mesenchymal stem cell transplantation in the clinical treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:196. [PMID: 38956734 PMCID: PMC11218107 DOI: 10.1186/s13287-024-03797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past decade, we have witnessed the development of cell transplantation as a new strategy for repairing spinal cord injury (SCI). However, due to the complexity of the central nervous system (CNS), achieving successful clinical translation remains a significant challenge. Human umbilical cord mesenchymal stem cells (hUMSCs) possess distinct advantages, such as easy collection, lack of ethical concerns, high self-renewal ability, multilineage differentiation potential, and immunomodulatory properties. hUMSCs are promising for regenerating the injured spinal cord to a significant extent. At the same time, for advancing SCI treatment, the appropriate benefit and risk evaluation methods play a pivotal role in determining the clinical applicability of treatment plans. Hence, this study discusses the advantages and risks of hUMSCs in SCI treatment across four dimensions-comprehensive evaluation of motor and sensory function, imaging, electrophysiology, and autonomic nervous system (ANS) function-aiming to improve the rationality of relevant clinical research and the feasibility of clinical translation.
Collapse
Affiliation(s)
- Ruoqi Shen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Chaoyang Cai
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Ziming Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jiayu Zhao
- Department of Neuro-Oncological Surgery, Neurosurgery Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yingjie Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yinian Zhang
- Department of Neuro-Oncological Surgery, Neurosurgery Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China.
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- National Medical Products Administration (NMPA) Key Laboratory for Quality Research and Evaluation of Cell Products, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Lee HJ, Oh JY. Mesenchymal Stem/Stromal Cells Induce Myeloid-Derived Suppressor Cells in the Bone Marrow via the Activation of the c-Jun N-Terminal Kinase Signaling Pathway. Int J Mol Sci 2024; 25:1119. [PMID: 38256195 PMCID: PMC10816501 DOI: 10.3390/ijms25021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Our previous study demonstrated that mesenchymal stem/stromal cells (MSCs) induce the differentiation of myeloid-derived suppressor cells (MDSCs) in the bone marrow (BM) under inflammatory conditions. In this study, we aimed to investigate the signaling pathway involved. RNA-seq revealed that the mitogen-activated protein kinase (MAPK) pathway exhibited the highest number of upregulated genes in MSC-induced MDSCs. Western blot analysis confirmed the strong phosphorylation of c-Jun N-terminal kinase (JNK) in BM cells cocultured with MSCs under granulocyte-macrophage colony-stimulating factor stimulation, whereas p38 kinase activation remained unchanged in MSC-cocultured BM cells. JNK inhibition by SP600125 abolished the expression of Arg1 and Nos2, hallmark genes of MDSCs, as well as Hif1a, a molecule mediating monocyte functional reprogramming toward a suppressive phenotype, in MSC-cocultured BM cells. JNK inhibition also abrogated the effects of MSCs on the production of TGF-β1, TGF-β2 and IL-10 in BM cells. Furthermore, JNK inhibition increased Tnfa expression, while suppressing IL-10 production, in MSC-cocultured BM cells in response to lipopolysaccharides. Collectively, our results suggest that MSCs induce MDSC differentiation and promote immunoregulatory cytokine production in BM cells during inflammation, at least in part, through the activation of the JNK-MAPK signaling pathway.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea;
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea;
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
6
|
Yu S, Lu J. The potential of mesenchymal stem cells to induce immune tolerance to allogeneic transplants. Transpl Immunol 2023; 81:101939. [PMID: 37866668 DOI: 10.1016/j.trim.2023.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Organ allograft transplantation is an effective treatment plan for patients with organ failure. Although the application of continuous immunosuppressants makes successful allograft survival possible, the patients' long-term survival rate and quality of life are not ideal. Therefore, it is necessary to find a new strategy to alleviate transplant rejection by developing therapies for permanent allograft acceptance. One promising approach is the application of tolerogenic mesenchymal stem cells (MSCs). Extensive research on MSCs has revealed that MSCs have potent differentiation potential and immunomodulatory properties. This review describes the molecular markers and functional properties of MSCs as well as the immunomodulatory mechanisms of MSCs in transplantation, focuses on the research progress in clinical trials of MSCs, and expounds on the future development prospects and possible limitations.
Collapse
Affiliation(s)
- Shaochen Yu
- Department of Emergency and Critical Care Medicine, Guangdong Second Provincial General Hospital, No. 466, Xingang Middle Road, Haizhu District, Guangzhou, Guangdong 510317, China.
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| |
Collapse
|
7
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
8
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
9
|
Liu Y, Huang W, Wang H, Lu W, Guo J, Yu L, Wang L. Influence of SPIO labelling on the function of BMSCs in chemokine receptors expression and chemotaxis. PeerJ 2023; 11:e15388. [PMID: 37283891 PMCID: PMC10241165 DOI: 10.7717/peerj.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are increasingly being used in bone marrow transplantation (BMT) to enable homing of the allogeneic hematopoietic stem cells and suppress acute graft versus host disease (aGVHD). The aim of this study was to optimize the labelling of BMSCs with superparamagnetic iron oxide particles (SPIOs), and evaluate the impact of the SPIOs on the biological characteristics, gene expression profile and chemotaxis function of the BMSCs. The viability and proliferation rates of the SPIO-labeled BMSCs were analyzed by trypan blue staining and CCK-8 assay respectively, and the chemotaxis function was evaluated by the transwell assay. The expression levels of chemokine receptors were measured by RT-PCR and flow cytometry. The SPIOs had no effect on the viability of the BMSCs regardless of the labelling concentration and culture duration. The labelling rate of the cells was higher when cultured for 48 h with the SPIOs. Furthermore, cells labeled with 25 µg/ml SPIOs for 48 h had the highest proliferation rates, along with increased expression of chemokine receptor genes and proteins. However, there was no significant difference between the chemotaxis function of the labeled and unlabeled BMSCs. To summarize, labelling BMSCs with 25 µg/ml SPIOs for 48h did not affect their biological characteristics and chemotaxis function, which can be of significance for in vivo applications.
Collapse
Affiliation(s)
- Yuanchun Liu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanyi Huang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiyang Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wei Lu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiayu Guo
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lina Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Kadri N, Amu S, Iacobaeus E, Boberg E, Le Blanc K. Current perspectives on mesenchymal stromal cell therapy for graft versus host disease. Cell Mol Immunol 2023; 20:613-625. [PMID: 37165014 DOI: 10.1038/s41423-023-01022-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023] Open
Abstract
Graft versus host disease (GvHD) is the clinical condition in which bone marrow-derived mesenchymal stromal cells (MSCs) have been most frequently studied. In this review, we summarize the experience from clinical trials that have paved the way to translation. While MSC-based therapy has shown an exceptional safety profile, identifying potency assays and disease biomarkers that reliably predict the capacity of a specific MSC batch to alleviate GvHD has been difficult. As GvHD diagnosis and staging are based solely on clinical criteria, individual patients recruited in the same clinical trial may have vastly different underlying biology, obscuring trial outcomes and making it difficult to determine the benefit of MSCs in subgroups of patients. An accumulating body of evidence indicates the importance of considering not only the cell product but also patient-specific biomarkers and/or immune characteristics in determining MSC responsiveness. A mode of action where intravascular MSC destruction is followed by monocyte-efferocytosis-mediated skewing of the immune repertoire in a permissive inflammatory environment would both explain why cell engraftment is irrelevant for MSC efficacy and stress the importance of biologic differences between responding and nonresponding patients. We recommend a combined analysis of clinical outcomes and both biomarkers of disease activity and MSC potency assays to identify patients with GvHD who are likely to benefit from MSC therapy.
Collapse
Affiliation(s)
- Nadir Kadri
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvie Amu
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ellen Iacobaeus
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Erik Boberg
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Haematology, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Cell Therapies and Allogeneic Stem Cell Transplantation Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Nitahara-Kasahara Y, Nakayama S, Kimura K, Yamaguchi S, Kakiuchi Y, Nito C, Hayashi M, Nakaishi T, Ueda Y, Okada T. Immunomodulatory amnion-derived mesenchymal stromal cells preserve muscle function in a mouse model of Duchenne muscular dystrophy. Stem Cell Res Ther 2023; 14:108. [PMID: 37106393 PMCID: PMC10142496 DOI: 10.1186/s13287-023-03337-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an incurable genetic disease characterized by degeneration and necrosis of myofibers, chronic inflammation, and progressive muscle weakness resulting in premature mortality. Immunosuppressive multipotent mesenchymal stromal cell (MSC) therapy could be an option for DMD patients. We focused on amnion-derived mesenchymal stromal cells (AMSCs), a clinically viable cell source owing to their unique characteristics, such as non-invasive isolation, mitotic stability, ethical acceptability, and minimal risk of immune reaction and cancer. We aimed to identify novel immunomodulatory effects of AMSCs on macrophage polarization and their transplantation strategies for the functional recovery of skeletal and cardiac muscles. METHODS We used flow cytometry to analyze the expression of anti-inflammatory M2 macrophage markers on peripheral blood mononuclear cells (PBMCs) co-cultured with human AMSCs (hAMSCs). hAMSCs were intravenously injected into DMD model mice (mdx mice) to assess the safety and efficacy of therapeutic interventions. hAMSC-treated and untreated mdx mice were monitored using blood tests, histological examinations, spontaneous wheel-running activities, grip strength, and echocardiography. RESULTS hAMSCs induced M2 macrophage polarization in PBMCs via prostaglandin E2 production. After repeated systemic hAMSC injections, mdx mice exhibited a transient downregulation of serum creatin kinase. Limited mononuclear cell infiltration and a decreased number of centrally nucleated fibers were indicative of regenerated myofibers following degeneration, suggesting an improved histological appearance of the skeletal muscle of hAMSC-treated mdx mice. Upregulated M2 macrophages and altered cytokine/chemokine expressions were observed in the muscles of hAMSC-treated mdx mice. During long-term experiments, a significant decrease in the grip strength in control mdx mice significantly improved in the hAMSC-treated mdx mice. hAMSC-treated mdx mice maintained running activity and enhanced daily running distance. Notably, the treated mice could run longer distances per minute, indicating high running endurance. Left ventricular function in DMD mice improved in hAMSC-treated mdx mice. CONCLUSIONS Early systemic hAMSC administration in mdx mice ameliorated progressive phenotypes, including pathological inflammation and motor dysfunction, resulting in the long-term improvement of skeletal and cardiac muscle function. The therapeutic effects might be associated with the immunosuppressive properties of hAMSCs via M2 macrophage polarization. This treatment strategy could provide therapeutic benefits to DMD patients.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| | - Soya Nakayama
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Koichi Kimura
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Yuko Kakiuchi
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Chikako Nito
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Masahiro Hayashi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Yasuyoshi Ueda
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
12
|
Bhardwaj V, Ansell SM. Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Front Cell Dev Biol 2023; 11:1129343. [PMID: 37091970 PMCID: PMC10113446 DOI: 10.3389/fcell.2023.1129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes that negatively regulate the immune response to cancer and chronic infections. Abnormal myelopoiesis and pathological activation of myeloid cells generate this heterogeneous population of myeloid-derived suppressor cells. They are characterized by their distinct transcription, phenotypic, biochemical, and functional features. In the tumor microenvironment (TME), myeloid-derived suppressor cells represent an important class of immunosuppressive cells that correlate with tumor burden, stage, and a poor prognosis. Myeloid-derived suppressor cells exert a strong immunosuppressive effect on T-cells (and a broad range of other immune cells), by blocking lymphocyte homing, increasing production of reactive oxygen and nitrogen species, promoting secretion of various cytokines, chemokines, and immune regulatory molecules, stimulation of other immunosuppressive cells, depletion of various metabolites, and upregulation of immune checkpoint molecules. Additionally, the heterogeneity of myeloid-derived suppressor cells in cancer makes their identification challenging. Overall, they serve as a major obstacle for many cancer immunotherapies and targeting them could be a favorable strategy to improve the effectiveness of immunotherapeutic interventions. However, in hematological malignancies, particularly B-cell malignancies, the clinical outcomes of targeting these myeloid-derived suppressor cells is a field that is still to be explored. This review summarizes the complex biology of myeloid-derived suppressor cells with an emphasis on the immunosuppressive pathways used by myeloid-derived suppressor cells to modulate T-cell function in hematological malignancies. In addition, we describe the challenges, therapeutic strategies, and clinical relevance of targeting myeloid-derived suppressor cells in these diseases.
Collapse
|
13
|
Hess NJ, Kink JA, Hematti P. Exosomes, MDSCs and Tregs: A new frontier for GVHD prevention and treatment. Front Immunol 2023; 14:1143381. [PMID: 37063900 PMCID: PMC10090348 DOI: 10.3389/fimmu.2023.1143381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The development of graft versus host disease (GVHD) represents a long-standing complication of allogeneic hematopoietic cell transplantation (allo-HCT). Different approaches have been used to control the development of GVHD with most relying on variations of chemotherapy drugs to eliminate allo-reactive T cells. While these approaches have proven effective, it is generally accepted that safer, and less toxic GVHD prophylaxis drugs are required to reduce the health burden placed on allo-HCT recipients. In this review, we will summarize the emerging concepts revolving around three biologic-based therapies for GVHD using T regulatory cells (Tregs), myeloid-derived-suppressor-cells (MDSCs) and mesenchymal stromal cell (MSC) exosomes. This review will highlight how each specific modality is unique in its mechanism of action, but also share a common theme in their ability to preferentially activate and expand Treg populations in vivo. As these three GVHD prevention/treatment modalities continue their path toward clinical application, it is imperative the field understand both the biological advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - John A. Kink
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
14
|
Hong T, Wang R, Yang G, Wang X, Zeng L, Yang S, Wei J, Gao Q, Zhang X. Human umbilical cord mesenchymal stem cells ameliorate acute graft versus host disease by elevating phytosphingosine. Exp Hematol 2023:S0301-472X(23)00070-X. [PMID: 36931619 DOI: 10.1016/j.exphem.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (allo-HSCT) and even leads to death after HSCT. Human umbilical cord mesenchymal stem cells (HUCMSCs) are effective in aGVHD treatment and have mild side effects, but the underlying mechanisms remain unclear. Phytosphingosine (PHS) is known to prevent loss of moisture from the skin; regulate epidermal cell growth, differentiation, and apoptosis; and exert bactericidal and anti-inflammatory effects. In this study, our results revealed the efficacy of HUCMSCs in alleviating aGVHD in a murine model, with striking changes in metabolism and significantly elevated PHS levels due to sphingolipid metabolism. In vitro, PHS reduced CD4+ T cell proliferation, enhanced apoptosis and reduced T helper 1 (Th1) cell differentiation. Transcriptional analysis of donor CD4+ T cells treated with PHS revealed significant decreases in transcripts regulating proinflammatory pathways, such as NF-κB. In vivo, the administration of PHS significantly ameliorated aGVHD development. Collectively, these beneficial effects indicate proof-of-concept that sphingolipid metabolites could be a safe and effective means to prevent aGVHD in the clinic.
Collapse
Affiliation(s)
- Tao Hong
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China
| | - Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China; Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China
| | - Lingyu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221008, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Army Medical University, Chongqing, 400038, China..
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China..
| |
Collapse
|
15
|
Wang X, Liu Q, Zhang X. Editorial: The role of hematopoietic and immune microenvironment in hematopoietic stem cell transplantation. Front Immunol 2023; 14:1139193. [PMID: 36742326 PMCID: PMC9893921 DOI: 10.3389/fimmu.2023.1139193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Affiliation(s)
- Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China,Jinfeng Laboratory, Chongqing, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China,Jinfeng Laboratory, Chongqing, China,*Correspondence: Xi Zhang,
| |
Collapse
|
16
|
Yu S, Ren X, Li L. Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Exp Hematol Oncol 2022; 11:43. [PMID: 35854339 PMCID: PMC9295421 DOI: 10.1186/s40164-022-00296-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow cells originating from immature myeloid cells. They exert potent immunosuppressive activity and are closely associated with the development of various diseases such as malignancies, infections, and inflammation. In malignant tumors, MDSCs, one of the most dominant cellular components comprising the tumor microenvironment, play a crucial role in tumor growth, drug resistance, recurrence, and immune escape. Although the role of MDSCs in solid tumors is currently being extensively studied, little is known about their role in hematologic malignancies. In this review, we comprehensively summarized and reviewed the different roles of MDSCs in hematologic malignancies and hematopoietic stem cell transplantation, and finally discussed current targeted therapeutic strategies.Affiliation: Kindly check and confirm the processed affiliations are correct. Amend if any.correct
Collapse
Affiliation(s)
- Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China.
| |
Collapse
|
17
|
Wang X, Huang R, Zhang X, Zhang X. Current status and prospects of hematopoietic stem cell transplantation in China. Chin Med J (Engl) 2022; 135:1394-1403. [PMID: 35866344 PMCID: PMC9481431 DOI: 10.1097/cm9.0000000000002235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Hematopoietic stem cell transplantation (HSCT) is a highly effective and unique medical procedure for the treatment of most hematological malignancies. The first allogeneic transplantation was performed by E. Donnall Thomas in 1957. Since then, the field has evolved and expanded worldwide. The first successful allogenic HSCT (allo-HSCT) in China was conducted in 1981. Although the development of allo-HSCT in China lagged, China has since made considerable contributions to the process of HSCT worldwide, with more than 10,000 HSCTs performed annually. In particular, haploid HSCT (haplo-HSCT) technology represented in the Beijing Protocol has demonstrated similar efficacy to human leukocyte antigen-matched HSCT and has gradually become the pre-dominant choice for allo-HSCT in China. Currently, the number of haplo-HSCT procedures exceeds 5000 per year, and the Beijing Protocol has been greatly improved by implementing updated individualized strategies for controlling complications, relapse, and infection management. In addition, innovative haplo-HSCT technologies developed by different medical transplantation centers, such as Soochow, Zhejiang, Fujian, Chongqing, and Anhui, have emerged, providing inspiration for the refinement of global practice. This review will focus on the current activity in this field and highlight important trends that are vital in China's allo-HSCT process, examining the current viewpoint and future directions.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xiaohui Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| |
Collapse
|
18
|
Song Q, Nasri U, Nakamura R, Martin PJ, Zeng D. Retention of Donor T Cells in Lymphohematopoietic Tissue and Augmentation of Tissue PD-L1 Protection for Prevention of GVHD While Preserving GVL Activity. Front Immunol 2022; 13:907673. [PMID: 35677056 PMCID: PMC9168269 DOI: 10.3389/fimmu.2022.907673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (Allo-HCT) is a curative therapy for hematological malignancies (i.e., leukemia and lymphoma) due to the graft-versus-leukemia (GVL) activity mediated by alloreactive T cells that can eliminate residual malignant cells and prevent relapse. However, the same alloreactive T cells can cause a serious side effect, known as graft-versus-host disease (GVHD). GVHD and GVL occur in distinct organ and tissues, with GVHD occurring in target organs (e.g., the gut, liver, lung, skin, etc.) and GVL in lympho-hematopoietic tissues where hematological cancer cells primarily reside. Currently used immunosuppressive drugs for the treatment of GVHD inhibit donor T cell activation and expansion, resulting in a decrease in both GVHD and GVL activity that is associated with cancer relapse. To prevent GVHD, it is important to allow full activation and expansion of alloreactive T cells in the lympho-hematopoietic tissues, as well as prevent donor T cells from migrating into the GVHD target tissues, and tolerize infiltrating T cells via protective mechanisms, such as PD-L1 interacting with PD-1, in the target tissues. In this review, we will summarize major approaches that prevent donor T cell migration into GVHD target tissues and approaches that augment tolerization of the infiltrating T cells in the GVHD target tissues while preserving strong GVL activity in the lympho-hematopoietic tissues.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, Unites States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, Unites States.,Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, Unites States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, Unites States
| | - Ryotaro Nakamura
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, Unites States
| | - Paul J Martin
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, Unites States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, Unites States
| |
Collapse
|
19
|
Infante A, Rodríguez CI. Cell and Cell-Free Therapies to Counteract Human Premature and Physiological Aging: MSCs Come to Light. J Pers Med 2021; 11:1043. [PMID: 34683184 PMCID: PMC8541473 DOI: 10.3390/jpm11101043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
The progressive loss of the regenerative potential of tissues is one of the most obvious consequences of aging, driven by altered intercellular communication, cell senescence and niche-specific stem cell exhaustion, among other drivers. Mesenchymal tissues, such as bone, cartilage and fat, which originate from mesenchymal stem cell (MSC) differentiation, are especially affected by aging. Senescent MSCs show limited proliferative capacity and impairment in key defining features: their multipotent differentiation and secretory abilities, leading to diminished function and deleterious consequences for tissue homeostasis. In the past few years, several interventions to improve human healthspan by counteracting the cellular and molecular consequences of aging have moved closer to the clinic. Taking into account the MSC exhaustion occurring in aging, advanced therapies based on the potential use of young allogeneic MSCs and derivatives, such as extracellular vesicles (EVs), are gaining attention. Based on encouraging pre-clinical and clinical data, this review assesses the strong potential of MSC-based (cell and cell-free) therapies to counteract age-related consequences in both physiological and premature aging scenarios. We also discuss the mechanisms of action of these therapies and the possibility of enhancing their clinical potential by exposing MSCs to niche-relevant signals.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| |
Collapse
|