1
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Moutaharrik S, Palugan L, Cerea M, Filippin I, Maroni A, Gazzaniga A, Foppoli A. Cushion-coated pellets for tableting without external excipients. Int J Pharm 2024; 653:123874. [PMID: 38316318 DOI: 10.1016/j.ijpharm.2024.123874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Multiple-unit dosage forms prepared by compacting pellets offer important manufacturing and compliance advantages over pellet-filled capsules. However, compaction may negatively affect the release control mechanism of pellets, and subunits may not be readily available after intake. Application of a cushioning layer to the starting units is here proposed as a strategy to obtain tablets with satisfactory mechanical strength, rapid disintegration and maintenance of the expected release profile of individual subunits while avoiding the use of mixtures of pellets and excipients to promote compaction and limit the impact of the forces involved. Cushion-coating with PEG1500, a soft and soluble material, was proved feasible provided that the processing temperature was adequately controlled. Cushioned gastro-resistant pellets were shown to consolidate under relatively low compaction pressures, which preserved their inherent release performance after tablet disintegration. Adhesion problems associated with the use of PEG1500 were overcome by applying an outer Kollicoat® IR film. Through design of experiment (DoE), robustness of the proposed approach was demonstrated, and the formulation as well as tableting conditions were optimized. The tableted cushion-coated pellet systems manufactured would allow a relatively high load of modified-release units to be conveyed, thus setting out a versatile and scalable approach to oral administration of multiple-unit dosage forms.
Collapse
Affiliation(s)
- Saliha Moutaharrik
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy.
| | - Luca Palugan
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Matteo Cerea
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Ilaria Filippin
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Alessandra Maroni
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Andrea Gazzaniga
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Anastasia Foppoli
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| |
Collapse
|
3
|
Morelli L, Ochoa E, Salvioni L, Davide Giustra M, De Santes B, Spena F, Barbieri L, Garbujo S, Tomaino G, Novati B, Bolis L, Moutaharrik S, Prosperi D, Palugan L, Colombo M. Microfluidic nanoparticle synthesis for oral solid dosage forms: A step toward clinical transition processes. Int J Pharm 2024; 652:123850. [PMID: 38280498 DOI: 10.1016/j.ijpharm.2024.123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Nanomedicine provides various opportunities for addressing medical challenges associated with drug bioavailability, stability, and efficacy. In particular, oral nanoparticles (NPs) represent an alternative strategy to enhance the solubility and stability of active ingredients through the gastrointestinal tract. The nanocarriers could be used for both local and systemic targeting, enabling controlled release of encapsulated drugs. This approach allows more efficient therapies. In this work, we aim to develop reliable oral solid dosage forms incorporating NPs produced by either one pot synthesis or continuous production, following protocols that yield highly consistent outcomes, promoting their technology transfer and clinical use. Microfluidics technology was selected to allow an automated and highly productive synthetic approach suitable for the highly throughput production. In particular, innovative systems, which combine advantage of NPs and solid dosage formulation, were designed, developed, and characterized demonstrating the possibility to obtaining oral administration. The resulting NPs were thus carried on oral dosage forms, i.e., pellets and minitablets. NPs resulted stable after dosage forms manufacturing, leading to confidence also on protection of encapsulated drugs. Indomethacin was used as a tracer to test biopharmaceutical behaviour. Anti-inflammatories or cytotoxic chemotherapeutics could be vehiculated leading to a breakthrough in the treatment of severe diseases allowing the oral administration of these drugs. We believe that the advancement achieved with the results of our work paves the way for the progression of nanoproducts into clinical transition processes.
Collapse
Affiliation(s)
- Lucia Morelli
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Evelyn Ochoa
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Lucia Salvioni
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Davide Giustra
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Beatrice De Santes
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesca Spena
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Linda Barbieri
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Stefania Garbujo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giulia Tomaino
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Brian Novati
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Leonardo Bolis
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Saliha Moutaharrik
- University of Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milano, Italy
| | - Davide Prosperi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Luca Palugan
- University of Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milano, Italy.
| | - Miriam Colombo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
4
|
Moutaharrik S, Maroni A, Neut C, Dubuquoy C, Dubuquoy L, Foppoli A, Cerea M, Palugan L, Siepmann F, Siepmann J, Gazzaniga A. In vitro and in vivo evaluation of a pH-, microbiota- and time-based oral delivery platform for colonic release. Eur J Pharm Biopharm 2023; 183:13-23. [PMID: 36563887 DOI: 10.1016/j.ejpb.2022.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Several formulation strategies have been proposed for oral colon delivery, particularly for the therapy of inflammatory bowel disease (IBD). However, targeting the large intestine remains a challenging goal. The aim of this study was to develop and evaluate a novel type of drug delivery system, which is based on multiple drug release triggers for reliable performance. The system consists of: (i) a drug core, (ii) an inner swellable low-viscosity hydroxypropyl methylcellulose (HPMC) layer, and (iii) an outer film coating based on a Eudragit® S:high-methoxyl (HM) pectin (7:3 w/w) blend, optionally containing chitosan. Convex immediate release tablets (2 or 4 mm in diameter) containing paracetamol or 5-aminosalicylic acid (5-ASA) were coated in a fluid bed. The double-coated tablets exhibited pulsatile release profiles when changing the release medium from 0.1 N HCl to phosphate buffer pH 7.4. Also, drug release was faster in simulated colonic fluid (SCF) in the presence of fecal bacteria from IBD patients compared to control culture medium from tablets with outer Eudragit® S: HM pectin: chitosan coatings. The latter systems showed promising results in the control of the progression of colitis and alteration of the microbiota in a preliminary rat study.
Collapse
Affiliation(s)
- S Moutaharrik
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - A Maroni
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - C Neut
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| | - C Dubuquoy
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| | - L Dubuquoy
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| | - A Foppoli
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - M Cerea
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - L Palugan
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - F Siepmann
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| | - J Siepmann
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| | - A Gazzaniga
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| |
Collapse
|
5
|
Navarro-Ruíz E, Álvarez-Álvarez C, Peña MÁ, Torrado-Salmerón C, Dahma Z, de la Torre-Iglesias PM. Multiparticulate Systems of Meloxicam for Colonic Administration in Cancer or Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14071504. [PMID: 35890399 PMCID: PMC9322124 DOI: 10.3390/pharmaceutics14071504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this research is the development of new colonic release systems of meloxicam (MLX) a non-steroidal anti-inflammatory drug (NSAIDs) with pH and time-dependent vehicles for cancer or autoimmune diseases. The colon has a higher pH than the rest of the gastrointestinal tract (GIT) and this can be used as a modified release strategy. Eudragit® polymers are the most widely used synthetic products in the design of colonic release formulations because they might offer mucoadhesiveness and pH-dependent release. Colonic delivery systems produced with pH-dependent and permeable polymers (FS-30D) or with pH-independent and low permeability polymers (NM-30D), must dissolve at a pH range of 6.0–7.0 to delay the release of the drug and prevent degradation in the GIT, before reaching the colon. The conditions prepared to simulate a gastrointestinal transit showed the CNM multiparticulate system, composed of Eudragit® NM and cellulose, as the best release option for MLX with a more sustained release with respect to the other formulations. CNM formulation followed Higuchi and First-order release kinetics, thus MLX release was controlled by a combination of diffusion and polymers swelling/eroding processes.
Collapse
Affiliation(s)
- Eva Navarro-Ruíz
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (C.Á.-Á.); (P.M.d.l.T.-I.); Tel.: +34-091-394-1741 (C.Á.-Á.); +34-091-394-1620 (P.M.d.l.T.-I.)
| | - M Ángeles Peña
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain;
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.N.-R.); (C.T.-S.); (Z.D.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (C.Á.-Á.); (P.M.d.l.T.-I.); Tel.: +34-091-394-1741 (C.Á.-Á.); +34-091-394-1620 (P.M.d.l.T.-I.)
| |
Collapse
|
6
|
Suryavanshi P, Chaudhari VS, Banerjee S. Customized 3D-printed hollow capsular device filled with norfloxacin-loaded micropellets for controlled-release delivery. Drug Deliv Transl Res 2022; 13:1183-1194. [PMID: 35776385 DOI: 10.1007/s13346-022-01198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
Pharmacotherapy has become more focused on the personalized treatment of patients with various diseases. This field of pharmacology and pharmacogenomics focuses on developing drug delivery systems designed to address the unique characteristics of individual patients. Three-dimensional printing technology can be used to fabricate personalized drug delivery systems with desired release properties according to patient needs. Norfloxacin (NOR)-loaded micropellets (MPs) were fabricated and filled inside a stereolithography (SLA) 3D printing technology-mediated hollow capsular device in accordance with a standard size of 09 (8.4 mm length × 2.70 mm diameter). The prepared 3D-printed hollow capsular device filled with pristine NOR and NOR-loaded MPs were characterized in terms of both in vitro and in vivo means. MPs with the particle size distribution of 1540.0 ± 26 µm showed 95.63 ± 2.0% NOR content with pellet-shaped surface morphology. The in vitro release profile showed an initial lag phase of approximately 30 min, followed by the sustained release of NOR from MPs from the 3D-printed hollow capsular device. The pharmacokinetic profile showed prolonged Tmax, AUC, and evidence of good RBA of NOR compared to pure NOR after a single oral administration in the experimental animal model. The overall results confirm the feasibility of SLA-mediated 3D printing technology for preparing customized solid oral unit dosage carriers that can be filled with pure NOR- and NOR-loaded MPs with controlled-release delivery features.
Collapse
Affiliation(s)
- Purushottam Suryavanshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Vishal Sharad Chaudhari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
7
|
Lu CH, Huang YF, Chu IM. Design of Oral Sustained-Release Pellets by Modeling and Simulation Approach to Improve Compliance for Repurposing Sobrerol. Pharmaceutics 2022; 14:pharmaceutics14010167. [PMID: 35057064 PMCID: PMC8777650 DOI: 10.3390/pharmaceutics14010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Sobrerol, an oral mucolytic agent, in a recent study showed promise for treating multiple sclerosis. A human equivalent dose of 486 mg of sobrerol administered thrice daily (i.e., 1459 mg of daily dose) demonstrated the highest therapeutic efficacy for repurposing use, which also points out the poor compliance of administration. In this study, oral sustained-release pellets of sobrerol were successfully developed with evaluated manufacturing conditions and drug release kinetics. For design of the target drug product, we used a modeling and simulation approach to establish a predictive model of oral pharmacokinetic profile, by exploring the characteristics and correlations corresponding to the pharmacokinetics and pharmacodynamics of sobrerol, such as absorption lag time (0.18 h), time-scaling in vitro–in vivo correlation (tin-vitro = 0.494 tin-vivo − 0.0904), gastrointestinal transit time (8 h), minimum effective concentration (1.61 μg/mL), and duration of action (12.8 h). Results showed that the frequency of administration and the daily dose remarkably reduced by 33.3% (i.e., from thrice to twice daily) and 22.8%, respectively, which indicates that this prototype approach can be adopted for rapidly developing a modified-release dosage form of sobrerol, with improvement of compliance of administration and therapeutic efficacy.
Collapse
Affiliation(s)
- Chu-Hsun Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan;
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (C.-H.L.); (I.-M.C.)
| | - Yu-Feng Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan;
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: (C.-H.L.); (I.-M.C.)
| |
Collapse
|
8
|
Ibrahim YHE, Wobuoma P, Kristó K, Lajkó F, Klivényi G, Jancsik B, Regdon jr G, Pintye-Hódi K, Sovány T. Effect of processing conditions and material attributes on the design space of lysozyme pellets prepared by extrusion/spheronization. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Benzine Y, Siepmann F, Neut C, Danede F, Francois Willart J, Siepmann J, Karrout Y. Injection-molded capsule bodies and caps based on polymer blends for controlled drug delivery. Eur J Pharm Biopharm 2021; 168:1-14. [PMID: 34438018 DOI: 10.1016/j.ejpb.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
A variety of polymer:polymer blends was used to prepare hot melt extrudates and empty capsules (bodies and caps) by injection-molding using a benchtop extruder (Babyplast). KollidonSR:inulin and Carbothane:inulin blends were investigated. The impact of the blend ratio on the water uptake and dry mass loss kinetics upon exposure to 0.1 MHCl, phosphate buffer pH6.8 and culture medium optionally inoculated with fecal samples from Inflammatory Bowel Disease (IBD) patients were studied. Hot melt extrudates were loaded with up to 60% theophylline, capsules were filled with drug powder. Increasing the inulin content led to increased water uptake and dry mass loss rates, resulting in accelerated drug release from the dosage forms, irrespective of the type of polymer blend. This can be attributed to the higher hydrophilicity/water-solubility of this polymer compared to KollidonSR and Carbothane. Interestingly, the presence of fecal samples in culture medium increased the water uptake and dry mass loss of hot melt extrudates to a certain extent, suggesting partial system degradation by bacterial enzymes. However, these phenomena did not translate into any noteworthy impact of the presence of colonic bacteria on theophylline release from the investigated extrudates or capsules. Hence, drug release can be expected to be independent of the location "small intestine vs. colon" from these dosage forms, which can be advantageous for long term release throughout the entire gastro intestinal tract.
Collapse
Affiliation(s)
- Youcef Benzine
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | | | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Florence Danede
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | | | | | - Youness Karrout
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
10
|
Das S. Pectin based multi-particulate carriers for colon-specific delivery of therapeutic agents. Int J Pharm 2021; 605:120814. [PMID: 34147609 DOI: 10.1016/j.ijpharm.2021.120814] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
In case of colon-specific delivery of therapeutic agents through oral route, microbial/enzyme-triggered release approach has several advantages over other approaches due to unique microbial ecosystem in the colon. Multiple-unit carriers have an edge over single-unit carriers for this purpose. Among different materials/polymers explored, pectin appears as a promising biopolymer to construct microbial-triggered colon-specific carriers. Pectin is specifically degraded by colonic enzymes but insusceptible to upper gastro-intestinal enzymes. In this article, utilization of pectin solely or in combination with other polymers and/or colonic-delivery approaches is critically discussed in detail in the context of multi-particulate systems. Several studies showed that pectin-based carriers can prevent the release of payload in the stomach but start to release in the intestine. Hence, pectin alone may construct delayed release formulation but may not be sufficient for effective colon-targeting. On the other hand, combination of pectin with other materials/polymers (e.g., chitosan and Eudragit® S-100) has demonstrated huge promise for colon-specific release of payload. Hence, smartly designed pectin-based multi-particulate carriers, especially in combination with other polymers and/or colon-targeting approaches (e.g., microbial-triggered + pH-triggered or microbial-triggered + pH-triggered + time-release or microbial-triggered + pH-triggered + pressure-based), can be successful colon-specific delivery systems. However, more clinical trials are necessary to bring this idea from bench to bedside.
Collapse
Affiliation(s)
- Surajit Das
- Takasago International Corporation, 5 Sunview Road, Singapore 627616, Singapore.
| |
Collapse
|
11
|
Singh A, Mandal UK, Narang RK. Development and characterization of enteric coated pectin pellets containing mesalamine and Saccharomyces boulardii for specific inflamed colon: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH
‐sensitive polymers: Classification and some fine potential applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5230] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabrice Ofridam
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Émilie Gagnière
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Denis Mangin
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| |
Collapse
|
13
|
Characterization of transport mechanisms for controlled release polymer membranes using focused ion beam scanning electron microscopy image-based modelling. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Phan TQ, Tran PHL, Tran TTD. The relationship between mucoadhesive polymers and surface coating in tablets for the controlled colonic delivery of a poorly water-soluble drug. DARU : JOURNAL OF FACULTY OF PHARMACY, TEHRAN UNIVERSITY OF MEDICAL SCIENCES 2020; 28:545-553. [PMID: 32705542 DOI: 10.1007/s40199-020-00360-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mucoadhesive polymers play an important role in targeted and controlled drug delivery. OBJECTIVES This study aimed to investigate the drug release behaviour and interpret the role of mucoadhesive polymers involved in the coating layer of mucoadhesive tablets for the sustained release of a poorly water-soluble drug. METHODS A solid dispersion of prednisolone and zein was used in the core tablets created with two mucoadhesive polymers, which included Carbopol 940 and hydroxypropyl methylcellulose K4M. In addition, the properties of a single-layer coating, created from the combination of zein and Kollicoat MAE 100P to delay release through the upper parts of the gastrointestinal tract, were investigated in the presence of the above mucoadhesive polymers; these properties included drug dissolution, mucoadhesion, surface morphology, swelling and erosion. RESULTS The mucoadhesive polymer concentrations and types were integrated not only into the core tablets through a swelling/erosion mechanism but also into the surface polymer coatings for controlled drug release. HPMC was preferred in the formulations due to the ability to form pores on the surface coating, allowing water uptake so that the coating could control drug release for a later stage via a swelling/erosion mechanism. CONCLUSION The proposed mechanism determined in this project could be beneficial in the selection of polymers for applications targeting the colon with coated mucoadhesive tablets. Graphical abstract.
Collapse
Affiliation(s)
| | | | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
15
|
Arévalo-Pérez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. J Control Release 2020; 327:703-724. [DOI: 10.1016/j.jconrel.2020.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
|
16
|
Feng K, Wei YS, Hu TG, Linhardt RJ, Zong MH, Wu H. Colon-targeted delivery systems for nutraceuticals: A review of current vehicles, evaluation methods and future prospects. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion. Catalysts 2020. [DOI: 10.3390/catal10050530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work proposes to use core-shell structured spheres to evaluate whether it allows to individually optimize bulk and surface effects of a packing material, in order to optimize conversion and energy efficiency. Different core-shell materials have been prepared by spray coating, using dense spheres (as core) and powders (as shell) of SiO2, Al2O3, and BaTiO3. The materials are investigated for their performance in CO2 dissociation and compared against a benchmark consisting of a packed-bed reactor with the pure dense spheres, as well as an empty reactor. The results in terms of CO2 conversion and energy efficiency show various interactions between the core and shell material, depending on their combination. Al2O3 was found as the best core material under the applied conditions here, followed by BaTiO3 and SiO2, in agreement with their behaviour for the pure spheres. Applying a thin shell layer on the cores showed equal performance between the different shell materials. Increasing the layer thickness shifts this behaviour, and strong combination effects were observed depending on the specific material. Therefore, this method of core-shell spheres has the potential to allow tuning of the packing properties more closely to the application by designing an optimal combination of core and shell.
Collapse
|
18
|
Foppoli A, Maroni A, Moutaharrik S, Melocchi A, Zema L, Palugan L, Cerea M, Gazzaniga A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int J Pharm 2019; 572:118723. [DOI: 10.1016/j.ijpharm.2019.118723] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
19
|
Benzine Y, Siepmann F, Neut C, Danede F, Willart J, Siepmann J, Karrout Y. Hot melt extruded polysaccharide blends for controlled drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Sabahi MM, Ahmadi SA, Mahjub R, Ranjbar A. Oxidative Toxicity in Diabetes Mellitus: The Role of Nanoparticles and Future Therapeutic Strategies. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(4)190809.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is one of the most common chronic medical conditions in the world. Increasing evidence suggests that chronic hyperglycemia can cause excessive production of free radicals, particularly reactive oxygen species (ROS). Free radicals play important roles in tissue damage in diabetes. The relationship between exposure to nanoparticles (NPs) and diabetes has been reported in many previous studies. Evaluation of the potential benefits and toxic effects of NPs on diabetic disorders is of importance. This review highlights studies on the relationship between NPs and oxidative stress (OS) as well as the possible mechanisms in diabetic animal models and humans.
Collapse
Affiliation(s)
| | | | - Reza Mahjub
- 3Department of Pharmaceutics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- 4Department of Toxicology and Pharmacology, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Yin X, Pan H, Liu H. A Novel Micron-Size Particulate Formulation of Felodipine with Improved Release and Enhanced Oral Bioavailability Fabricated by Coaxial Electrospray. AAPS PharmSciTech 2019; 20:282. [PMID: 31407104 DOI: 10.1208/s12249-019-1495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022] Open
Abstract
The antihypertensive drug felodipine (FD) is a typical biopharmaceutics classification system (BCS) II drug; thus, improving the dissolution rate of FD is very important to enhance its bioavailability. Besides, according to the in situ "close loop" perfusion assay, we found that the jejunum is the main absorptive site, then the duodenum and ileum. Consequently, a novel micron-size particulate of FD in a core-shell structure was fabricated by a coaxial electrospray technique; within the drug delivery system, Hypromellose K4M (HPMC K4M) was selected as a sheath material to prolong the retention time in the upper GI tract, while povidone K30 (PVP K30) was mixed with FD in the inner layer. The dissolution study in three different media (0.02% Tween-80 solution; phosphate buffer containing 0.02% Tween-80, pH 6.8; and HCl solution containing 0.02% Tween-80, pH 1.2) demonstrated that FD-loaded coaxial electrospray particles (F-COES) could greatly improve the dissolution of FD. Furthermore, in vivo pharmacokinetics revealed that F-COES emerged no changes in the half-life but significantly prolonged the tmax and increased the oral bioavailability. Collectively, this work supplies a promising drug release system that will improve the dissolution and enhance the bioavailability simultaneously for those poorly water-soluble drugs mainly absorbed in the upper GI tract.
Collapse
Affiliation(s)
- Xuezhi Yin
- Zhejiang Tianyu Pharmaceutical CO., Ltd, Zhejiang, China
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang, 110036, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, No.301, Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
22
|
Nguyen MN, Tran PH, Tran TT. A single-layer film coating for colon-targeted oral delivery. Int J Pharm 2019; 559:402-409. [DOI: 10.1016/j.ijpharm.2019.01.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/13/2018] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
|
23
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Eom T, Yoo W, Kim S, Khan A. Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials 2018; 185:333-347. [DOI: 10.1016/j.biomaterials.2018.09.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022]
|
25
|
Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev 2018; 136-137:2-27. [PMID: 30359631 DOI: 10.1016/j.addr.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy. We briefly review colonic physiology in relation to the main colon-associated diseases (inflammatory bowel disease, irritable bowel syndrome, infection, and colorectal cancer), along with the impact of colon physiology on dosage form design of macromolecules. We then assess formulation strategies designed to achieve colonic delivery of small molecules and concluded that they can also be applied some extent to macromolecules. We describe examples of formulation strategies in preclinical research aimed at colonic delivery of macromolecules to achieve high local concentration in the lumen, epithelial-, or sub-epithelial tissue, depending on the target, but with the benefit of reduced systemic exposure and toxicity. Finally, the industrial challenges in developing macromolecule formulations for colon-associated diseases are presented, along with a framework for selecting appropriate delivery technologies.
Collapse
|
26
|
Karrout Y, Siepmann F, Benzine Y, Paccou L, Guinet Y, Hedoux A, Siepmann J. When drugs plasticize film coatings: Unusual formulation effects observed with metoprolol and Eudragit RS. Int J Pharm 2018; 539:39-49. [PMID: 29337184 DOI: 10.1016/j.ijpharm.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Metoprolol tartrate and metoprolol free base loaded pellet starter cores were coated with Eudragit RS, plasticized with 25% triethyl citrate (TEC). The initial drug loading and coating level were varied from 10 to 40 and 0 to 20%, respectively. Drug release was measured in 0.1 N HCl and phosphate buffer pH 7.4. The water uptake and swelling kinetics, mechanical properties and TEC leaching of/from coated pellets and/or thin, free films of identical composition as the film coatings were monitored. The following unusual tendencies were observed: (i) the relative drug release rate from coated pellets increased with increasing initial drug content, and (ii) drug release from pellets was much faster for metoprolol free base compared to metoprolol tartrate, despite its much lower solubility (factor >70). These phenomena could be explained by plasticizing effects of the drug for the polymeric film coatings. In particular: 1) Metoprolol free base is a much more potent plasticizer for Eudragit RS than the tartrate, leading to higher film permeability and overcompensating the pronounced differences in drug solubility. Also, Raman imaging revealed that substantial amounts of the free base migrated into the film coatings, whereas this was not the case for the tartrate. 2) The plasticizing effects of the drug for the film coating overcompensated potential increasing limited solubility effects when increasing the initial drug loading from 10 to 40%. In summary, this study clearly demonstrates how important the plasticization of polymeric controlled release film coatings by drugs can be, leading to unexpected formulation effects.
Collapse
Affiliation(s)
- Youness Karrout
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | | | - Youcef Benzine
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Laurent Paccou
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | - Yannick Guinet
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | - Alain Hedoux
- Univ. Lille, USTL UMET UMR CNRS 8207, F-59650 Villeneuve d'Ascq, France
| | | |
Collapse
|
27
|
3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release 2017; 268:10-18. [DOI: 10.1016/j.jconrel.2017.10.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/22/2022]
|
28
|
Maroni A, Moutaharrik S, Zema L, Gazzaniga A. Enteric coatings for colonic drug delivery: state of the art. Expert Opin Drug Deliv 2017; 14:1027-1029. [PMID: 28749188 DOI: 10.1080/17425247.2017.1360864] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alessandra Maroni
- a Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli" , Università degli Studi di Milano , Milan , Italy
| | - Saliha Moutaharrik
- a Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli" , Università degli Studi di Milano , Milan , Italy
| | - Lucia Zema
- a Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli" , Università degli Studi di Milano , Milan , Italy
| | - Andrea Gazzaniga
- a Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli" , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
29
|
Neufeld L, Bianco-Peled H. Pectin–chitosan physical hydrogels as potential drug delivery vehicles. Int J Biol Macromol 2017; 101:852-861. [DOI: 10.1016/j.ijbiomac.2017.03.167] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
|
30
|
Shah N, Mehta T, Gohel M. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading. AAPS PharmSciTech 2017; 18:2157-2167. [PMID: 28039572 DOI: 10.1208/s12249-016-0689-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/06/2016] [Indexed: 11/30/2022] Open
Abstract
The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1, polyvinylpyrrolidone K-90 (PVP K-90)-X 2, croscarmellose sodium (CCS)-X 3, and polacrilin potassium (PP)-X 4. Dependent variables considered were disintegration time (DT)-Y 1, sphericity-Y 2, and percent drug release-Y 3. The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.
Collapse
|
31
|
Shtenberg Y, Goldfeder M, Schroeder A, Bianco-Peled H. Alginate modified with maleimide-terminated PEG as drug carriers with enhanced mucoadhesion. Carbohydr Polym 2017; 175:337-346. [PMID: 28917874 DOI: 10.1016/j.carbpol.2017.07.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022]
Abstract
The goal of this study was to generate a new mucoadhesive carbohydrate-based delivery system composed of alginate (Alg) backbone covalently attached to polyethylene glycol (PEG) modified with a unique functional end-group (maleimide). The immobilization of PEG-maleimide chains significantly improved the mucoadhesion properties attributed to thioether bonds creation via Michael-type addition and hydrogen bonding with the mucus glycoproteins. Mucoadhesion studies using tensile and rotating cylinder assays revealed a 3.6-fold enhanced detachment force and a 2.8-fold enhanced retention time compared to the unmodified polymer, respectively. Additional indirect studies confirmed the presence of polymer-mucus glycoproteins interactions. Drug release experiments were used to evaluate the release profiles from Alg-PEG-maleimide tablets in comparison to Alg and Alg-SH tablets. Viability studies of normal human dermal fibroblasts cells depicted the non-toxic nature of Alg-PEG-maleimide. Overall, our studies disclose that PEG-maleimide substitutions on other biocompatible polymers can lead to the development of useful biomaterials for diverse biomedical applications.
Collapse
Affiliation(s)
- Yarden Shtenberg
- The Inter-Departmental Program of Biotechnology, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Mor Goldfeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel; The Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
32
|
Abstract
Polysaccharides are abundant natural polymers found in plants, animals and microorganisms with exceptional properties and essential roles to sustain life. They are well known for their high nutritive value and the positive effects on our immune and digestive functions and detoxification system. The knowledge and recognition of the important role they play for promoting and maintaining human health and wellbeing is continuously increasing. This review describes some important polysaccharides (e.g. mucilages and gums, glycosamine glycans and chitin/chitosan) and their medical, cosmetic and pharmaceutical applications, with emphasis on the relationship between structure and function. Next, the use of polysaccharides as nutraceuticals and vaccines is discussed in more detail. An analysis of the trends and challenges in polysaccharide research concludes the paper.
Collapse
Affiliation(s)
- Jan E.G. van Dam
- Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Carmen G. Boeriu
- Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
33
|
Lancuški A, Abu Ammar A, Avrahami R, Vilensky R, Vasilyev G, Zussman E. Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydr Polym 2017; 158:68-76. [DOI: 10.1016/j.carbpol.2016.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
|
34
|
Self-microemulsifying sustained-release pellet of Ginkgo biloba extract: Preparation, in vitro drug release and pharmacokinetics study in beagle dogs. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Diabetes management strategies: can nanoparticles be used to therapeutically deliver insulin? Ther Deliv 2017; 8:49-51. [PMID: 28088882 DOI: 10.4155/tde-2016-0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Pápay ZE, Kállai-Szabó N, Ludányi K, Klebovich I, Antal I. Development of oral site-specific pellets containing flavonoid extract with antioxidant activity. Eur J Pharm Sci 2016; 95:161-169. [PMID: 27989856 DOI: 10.1016/j.ejps.2016.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Herbal medicines are recognized as an effective treatment of common diseases, mainly associated with oxidative stress. Therefore developing drug delivery systems of these biological active ingredients are gaining interest. Parsley (Petroselinum crispum L.) is a well-known culinary herb and its leaf contains high amount of apigenin, therefore it is suitable as a natural source of this flavonoid. Apigenin possess many health effects such as antioxidant, anti-inflammatory and anticancer activities. Unfortunately, these benefits are limited due to the low water solubility and bioavailability, it was recently classified as BCS II group compound. Therefore the aim of this study was to develop a carrier system for Petroselinum crispum extract, containing high amount of apigenin. Microcrystalline cellulose inert pellet cores were chosen and enteric coatings were applied. The produced multiparticulates had spherical shape, narrow size distribution and low moisture content. 10% (w/w) Eudragit® L 30 D-55 and 15% (w/w) Eudragit® FS 30 D coating was adequate for the modified release in vitro. The layered pellets demonstrated antioxidant activity. It was concluded that development of oral site-specific pellets containing flavonoid extract successful and the therapeutic effectiveness could be hypothesized.
Collapse
Affiliation(s)
- Zsófia Edit Pápay
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Krisztina Ludányi
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - Imre Klebovich
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes E. Street 7-9, H-1092 Budapest, Hungary.
| |
Collapse
|
37
|
In vitro and in vivo evaluation of an oral multiple-unit formulation for colonic delivery of insulin. Eur J Pharm Biopharm 2016; 108:76-82. [DOI: 10.1016/j.ejpb.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/01/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022]
|
38
|
Size-induced segregation during pharmaceutical particle die filling assessed by response surface methodology using discrete element method. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Salvioni L, Fiandra L, Del Curto MD, Mazzucchelli S, Allevi R, Truffi M, Sorrentino L, Santini B, Cerea M, Palugan L, Corsi F, Colombo M. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol Res 2016; 110:122-130. [DOI: 10.1016/j.phrs.2016.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 11/27/2022]
|
40
|
Importance of air bubbles in the core of coated pellets: Synchrotron X-ray microtomography allows for new insights. J Control Release 2016; 237:125-37. [PMID: 27374626 DOI: 10.1016/j.jconrel.2016.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022]
Abstract
High-resolution X-ray microtomography was used to get deeper insight into the underlying mass transport mechanisms controlling drug release from coated pellets. Sugar starter cores were layered with propranolol HCl and subsequently coated with Kollicoat SR, plasticized with 10% TEC. Importantly, synchrotron X-ray computed microtomography (SR-μCT) allowed direct, non-invasive monitoring of crack formation in the film coatings upon exposure to the release medium. Propranolol HCl, as well as very small sugar particles from the pellets' core, were expulsed through these cracks into the surrounding bulk fluid. Interestingly, SR-μCT also revealed the existence of numerous tiny, air-filled pores (varying in size and shape) in the pellet cores before exposure to the release medium. Upon water penetration into the system, the contents of the pellet cores became semi-solid/liquid. Consequently, the air-pockets became mobile and fused together. They steadily increased in size (and decreased in number). Importantly, "big" air bubbles were often located in close vicinity of a crack within the film coating. Thus, they play a potentially crucial role for the control of drug release from coated pellets.
Collapse
|
41
|
Maroni A, Zema L, Cerea M, Foppoli A, Palugan L, Gazzaniga A. Erodible drug delivery systems for time-controlled release into the gastrointestinal tract. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Cerciello A, Auriemma G, Del Gaudio P, Sansone F, Aquino RP, Russo P. A novel core–shell chronotherapeutic system for the oral administration of ketoprofen. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Neufeld L, Bianco-Peled H. Designing a biocompatible hydrogel for the delivery of mesalamine. Int J Pharm 2015; 491:170-9. [PMID: 26116013 DOI: 10.1016/j.ijpharm.2015.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/28/2022]
Abstract
A new design for nanocomposite hydrogels based on cross-linked chitosan for the delivery of mesalamine is presented. To enhance drug loading in chitosan, the mineral montmorillonite was incorporated into the matrix. The exfoliated silica montmorillonite nanosheets form interactions with both chitosan and mesalamine, which affect the hydrogel's drug release mechanism and swelling properties. The impact of montmorillonite and glutaraldehyde concentrations on the hydrogel properties was investigated. In vitro drug-release studies detected slower release over short times when montmorillonite was introduced into the matrix. This study is the first to evaluate the influence of pH during mixing and on mixing duration. It was shown that lowering the pH during mixing delayed the release since the positively charged drug was better introduced between the montmorillonite layers, as confirmed by differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) analysis. All hydrogels showed prolonged sustained release of mesalamine over 24h in simulated colonic fluid (pH 7.4). When modeled, the mesalamine release profile suggests a complex release mechanism, involving adsorption of the drug to the montmorillonite and its diffusion. The results imply that chitosan-montmorillonite hydrogels can serve as potential drug carriers for controlled-release applications.
Collapse
Affiliation(s)
- Lena Neufeld
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|