1
|
Ong RR, Goh CF. Niacinamide: a review on dermal delivery strategies and clinical evidence. Drug Deliv Transl Res 2024; 14:3512-3548. [PMID: 38722460 DOI: 10.1007/s13346-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 10/24/2024]
Abstract
Niacinamide, an active form of vitamin B3, is recognised for its significant dermal benefits including skin brightening, anti-ageing properties and the protection of the skin barrier. Its widespread incorporation into cosmetic products, ranging from cleansers to serums, is attributed to its safety profile and proven efficacy. Recently, topical niacinamide has also been explored for other pharmaceutical applications, including skin cancers. Therefore, a fundamental understanding of the skin permeation behaviour of niacinamide becomes crucial for formulation design. Given the paucity of a comprehensive review on this aspect, we provide insights into the mechanisms of action of topically applied niacinamide and share the current strategies used to enhance its skin permeation. This review also consolidates clinical evidence of topical niacinamide for its cosmeceutical uses and as treatment for some skin disorders, including dermatitis, acne vulgaris and actinic keratosis. We also emphasise the current exploration and perspectives on the delivery designs of topical niacinamide, highlighting the potential development of formulations focused on enhancing skin permeation, particularly for clinical benefits.
Collapse
Affiliation(s)
- Rong Rong Ong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia.
| |
Collapse
|
2
|
Chen HW, Chen SD, Wu HT, Cheng CH, Chiou CS, Chen WT. Improvement in Curcumin's Stability and Release by Formulation in Flexible Nano-Liposomes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1836. [PMID: 39591076 PMCID: PMC11597254 DOI: 10.3390/nano14221836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Curcumin is utilized extensively as Chinese medicine in Asia due to its antioxidant, antimicrobial, and inflammatory activities. However, its use has the challenges of low oral bioavailability and high heat sensitivity. The aim of this research was to produce flexible nano-liposomes containing curcumin using an innovative approach of ethanol injection and Tween 80 to enhance the stability and preservation of curcumin. The mean particle size, encapsulation efficiency, thermal degradation, storage stability, and curcumin release in flexible nano-liposomes were also investigated. We found that the mean particle size of curcumin-loaded flexible nano-liposome decreased from 278 nm to 27.6 nm. At the same time, the Tween 80 concentration increased from 0 to 0.15 wt%, which corresponded with the results of transmission electron microscopy (TEM) morphology analyses, and particle size decreased with an enhancement in Tween 80 concentration. Further, pure curcumin was quickly released within one hour at 37 °C, and first-order kinetics matched with its release curve. However, curcumin encapsulated in flexible nano-liposomes showed a slow release of 71.24% within 12 h, and a slower release pattern matched with the Higuchi model over 24 h, ultimately reaching 84.63% release. Hence, flexible nano-liposomes of curcumin made by a combination of ethanol injection and Tween 80 addition prevented the thermal degradation of curcumin, and enhanced its storage stability and preservation for future drug delivery applications.
Collapse
Affiliation(s)
- Hua-Wei Chen
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan; (H.-W.C.); (H.-T.W.); (C.-H.C.)
| | - Su-Der Chen
- Department of Food Science, National Ilan University, Yilan 260, Taiwan;
| | - Hung-Ta Wu
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan; (H.-W.C.); (H.-T.W.); (C.-H.C.)
| | - Chun-Hung Cheng
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 260, Taiwan; (H.-W.C.); (H.-T.W.); (C.-H.C.)
| | - Chyow-San Chiou
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan;
| | - Wei-Ting Chen
- Department of Cosmetic Application & Management, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan
| |
Collapse
|
3
|
Ghasemiyeh P, Fazlinejad R, Kiafar MR, Rasekh S, Mokhtarzadegan M, Mohammadi-Samani S. Different therapeutic approaches in melasma: advances and limitations. Front Pharmacol 2024; 15:1337282. [PMID: 38628650 PMCID: PMC11019021 DOI: 10.3389/fphar.2024.1337282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Melasma is a chronic hyperpigmentation skin disorder that is more common in the female gender. Although melasma is a multifactorial skin disorder, however, sun-exposure and genetic predisposition are considered as the main etiologic factors in melasma occurrence. Although numerous topical and systemic therapeutic agents and also non-pharmacologic procedural treatments have been considered in melasma management, however, the commonly available therapeutic options have several limitations including the lack of sufficient clinical effectiveness, risk of relapse, and high rate of unwanted adverse drug reactions. Recruitment of nanotechnology for topical drug delivery in melasma management can lead to enhanced skin penetration, targeted drug delivery to the site of action, longer deposition at the targeted area, and limit systemic absorption and therefore systemic availability and adverse drug reactions. In the current review, first of all, the etiology, pathophysiology, and severity classification of melasma have been considered. Then, various pharmacologic and procedural therapeutic options in melasma treatment have been discussed. Afterward, the usage of various types of nanoparticles for the purpose of topical drug delivery for melasma management was considered. In the end, numerous clinical studies and controlled clinical trials on the assessment of the effectiveness of these novel topical formulations in melasma management are summarized.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinejad
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Kiafar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Peng X, Zhang T, Wu Y, Wang X, Liu R, Jin X. mPEG-CS-modified flexible liposomes-reinforced thermosensitive sol-gel reversible hydrogels for ocular delivery of multiple drugs with enhanced synergism. Colloids Surf B Biointerfaces 2023; 231:113560. [PMID: 37812861 DOI: 10.1016/j.colsurfb.2023.113560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
Non-invasive drug delivery offers a safe treatment while improving patient compliance. However, due to the particular physiological structure of the ocular, long-term retention and sustained drug release of the drug delivery system is crucial. Herein, this study aimed to design mPEG-CS-modified flexible liposomes-reinforced thermosensitive sol-gel reversible hydrogels (mPEG-CS-FL-TSG) for the delivery of astragaloside IV (AS-IV) and tetramethylpyrazine (TMP) to treat age-related macular degeneration. In vitro biological properties of mPEG-CS-FL and mPEG-CS-FL-TSG showed that they could be successfully taken up by ARPE-19 cells, and the uptake rate of mPEG-CS-FL-TSG was higher. Not only that, the release rate of mPEG-CS-FL-TSG was slower. More significantly, the results showed that the cytotoxicity of mPEG-CS-FL-TSG was lower than that of mPEG-CS-FL. In vivo result revealed that the drug delivery system could prominently enhance the ocular bioavailability of AS-IV and TMP, which is the enhanced synergism of well-permeable liposome and slow-releasing hydrogel. In summary, the mPEG-CS-FL-TSG can compensate for the short retention time and sudden release of liposome, as well as the low drug penetration of hydrogel, in order to show great promise in the non-invasive delivery of multiple drugs for the treatment of posterior ocular diseases.
Collapse
Affiliation(s)
- Xingru Peng
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tingting Zhang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujie Wu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Wang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Liu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xin Jin
- Department of Health Services, Logistics University of People's Armed Police Force, Tianjin, Tianjin 300162, China.
| |
Collapse
|
5
|
Li Z, Wu R, Chen K, Gu W, Zhang YHP, Zhu Z. Enzymatic biofuel cell-powered iontophoretic facial mask for enhanced transdermal drug delivery. Biosens Bioelectron 2023; 223:115019. [PMID: 36563525 DOI: 10.1016/j.bios.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Recent advances in enzymatic biofuel cells (EBFCs) have resulted in great progress in health monitoring and supplying power to medical applications, such as drug delivery. On the other hand, to enhance the electric field-assisted transdermal permeation for facial mask application, an external power source is usually required. Herein, we attempted to combine an EBFC with a facial mask so that the microcurrent generated can boost the transdermal permeability of target molecules in the facial mask essence. When screen-printed onto a polypropylene-based non-woven fabric, the three-layered flexible EBFC could produce a voltage of ∼0.4 V and a maximum power density of 23.3 μW cm-2, leading to an approximately 2-3-fold increase in permeated nicotinamide, arbutin, and aspirin levels within 15 min compared to non-iontophoretic transdermal drug delivery. Both cell viability and animal experiments further demonstrated that the EBFC-powered iontophoresis worked well in living animals with good biocompatibility. These results suggest that the EBFC-powered iontophoretic facial mask can effectively improve the permeation of drugs and holds a promise for the possible cosmetic application.
Collapse
Affiliation(s)
- Zehua Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ke Chen
- Tianjin University of Science and Technology, No.9 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin, 100049, China
| | - Wei Gu
- Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Yi-Heng Pj Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
6
|
Decrypting the Potential of Nanotechnology-Based Approaches as Cutting-Edge for Management of Hyperpigmentation Disorder. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010220. [PMID: 36615414 PMCID: PMC9822493 DOI: 10.3390/molecules28010220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The abundant synthesis and accretion of melanin inside skin can be caused by activation of melanogenic enzymes or increase in number of melanocytes. Melasma is defined as hyperpigmented bright or dark brown spots which are symmetrically distributed and have serrated and irregular borders. The three general categories of pigmentation pattern include centro facial pattern, malar pattern, and mandibular pattern. Exposure to UV rays, heat, use of cosmetics and photosensitizing drugs, female sex hormonal therapies, aberrant production of melanocyte stimulating hormone, and increasing aesthetic demands are factors which cause the development of melasma disease. This review gives a brief overview regarding the Fitzpatrick skin phototype classification system, life cycle of melanin, mechanism of action of anti-hyperpigmenting drugs, and existing pharmacotherapy strategies for the treatment of melasma. The objectives of this review are focused on role of cutting-edge nanotechnology-based strategies, such as lipid-based nanocarriers, i.e., lipid nanoparticles, microemulsions, nanoemulsions, liposomes, ethosomes, niosomes, transfersomes, aspasomes, invasomes penetration-enhancing vesicles; inorganic nanocarriers, i.e., gold nanoparticles and fullerenes; and polymer-based nanocarriers i.e., polymeric nanoparticles, polymerosomes, and polymeric micelles for the management of hyperpigmentation.
Collapse
|
7
|
Lee MS, Kim SJ, Lee JB, Yoo HS. Clinical evaluation of the brightening effect of chitosan-based cationic liposomes. J Cosmet Dermatol 2022; 21:6822-6829. [PMID: 36052771 DOI: 10.1111/jocd.15350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cationic liposomes can enhance the permeability of drugs in 3-D skin. Chitosan is considered a safe material for percutaneous delivery; thus, this study uses chitosan-incorporated cationic liposomes. AIMS This study investigated the improvement in skin brightness, melanin, and melasma after treatment niacinamide-incorporated chitosan cationic liposomes. METHODS A skin brightening agent, niacinamide, was formulated into cationic liposomes to facilitate percutaneous absorption and was clinically tested in 21 Korean female subjects. Cationic liposomes were prepared using a high-pressure homogenizer after mixing an oil phase containing lecithin and cholesterol and an aqueous phase containing niacinamide and chitosan. RESULTS The cationic liposomes exhibited stability over 28 days, with a particle size of 255-275 nm and zeta potential of 10-14 mV. Cationic liposomes containing niacinamide and a control formulation were applied to the left and right side of the face, respectively, twice daily for 28 days. Skin brightness, melanin index, and area of melasma were significantly enhanced where cationic liposomes were used, in comparison with formulations without cationic liposomes, demonstrating a 1.38-2.08-fold improvement. CONCLUSION Thus, we established that chitosan liposomes augmented the percutaneous absorption of niacinamide and improved the appearance of the skin.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Su Ji Kim
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon, Korea
| |
Collapse
|
8
|
High skin permeation, deposition and whitening activity achieved by xanthan gum string vitamin c flexible liposomes for external application. Int J Pharm 2022; 628:122290. [DOI: 10.1016/j.ijpharm.2022.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
|
9
|
Kouassi MC, Grisel M, Gore E. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids Surf B Biointerfaces 2022; 217:112676. [DOI: 10.1016/j.colsurfb.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
|
10
|
Li Y, Xiang H, Xue X, Chen Y, He Z, Yu Z, Zhang L, Miao X. Dual Antimelanogenic Effect of Nicotinamide-Stabilized Phloretin Nanocrystals in Larval Zebrafish. Pharmaceutics 2022; 14:1825. [PMID: 36145574 PMCID: PMC9502130 DOI: 10.3390/pharmaceutics14091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022] Open
Abstract
Melanin is a kind of dark insoluble pigment that can cause pigmentation and free-radical clearance, inducing melasma, freckles, and chloasma, affecting the quality of life of patients. Due to poor water solubility and low safety, the absorption of poorly water-soluble drugs is limited by the hinderance of a skin barrier. Therefore, it is necessary to develop new, safe, and highly efficient drugs to improve their transdermal absorption efficiency and thus to inhibit the production of melanin. To address these issues, we developed a new nicotinamide (NIC)-stabilized phloretin nanocrystals (PHL-NCs). First, NC technology significantly increased the solubility of PHL. The in vitro release results indicated that at 6 h, the dissolution of the PHL-NIC-NCs was 101.39% ± 2.40% and of the PHL-NCs was 84.92% ± 4.30%, while that of the physical mixture of the two drugs was only 64.43% ± 0.02%. Second, NIC acted not only as a stabilizer to enlarge the storage time of PHL-NIC-NCs (improved to 10-day in vitro stability) but also as a melanin transfer inhibitor to inhibit melanin production. Finally, we verified the melanin inhibition effect of PHL-NIC-NCs evaluated by the zebrafish model. It showed that 0.38 mM/L PHL-NIC-NCs have a lower tyrosinase activity at 62.97% ± 0.52% and have less melanin at 36.57% ± 0.44%. The inhibition effect of PHL-NCs and PHL-NIC-NCs was stronger compared to the positive control arbutin. In conclusion, the combination of NIC and PHL achieves better inhibition of tyrosinase and inhibition of melanin production through synergism. This will provide a direction to the subsequent development of melanin-inhibiting drugs and the combined use of pharmaceutical agents.
Collapse
Affiliation(s)
- Yixuan Li
- Marine College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China
| | - Yilan Chen
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhiyuan He
- Marine College, Shandong University, Weihai 264209, China
| | - Zhongrui Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Li Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
11
|
Basto R, Andrade R, Nunes C, Lima SAC, Reis S. Topical Delivery of Niacinamide to Skin Using Hybrid Nanogels Enhances Photoprotection Effect. Pharmaceutics 2021; 13:pharmaceutics13111968. [PMID: 34834383 PMCID: PMC8622650 DOI: 10.3390/pharmaceutics13111968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Niacinamide (NIA) has been widely used in halting the features of ageing by acting as an antioxidant and preventing dehydration. NIA’s physicochemical properties suggest difficulties in surpassing the barrier imposed by the stratum corneum layer to reach the target in the skin. To improve cutaneous delivery of NIA, a hybrid nanogel was designed using carrageenan and polyvinylpyrrolidone polymers combined with jojoba oil as a permeation enhancer. Three different types of transethosomes were prepared by the thin-film hydration method, made distinct by the presence of either an edge activator or a permeation enhancer, to allow for a controlled delivery of NIA. Formulations were characterized by measurements of size, polydispersity index, zeta potential, encapsulation efficiency, and loading capacity, and by evaluating their chemical interactions and morphology. Skin permeation assays were performed using Franz diffusion cells. The hybrid hydrogels exhibited robust, porous, and highly aligned macrostructures, and when present, jojoba oil changed their morphology. Skin permeation studies with transethosomes-loaded hydrogels showed that nanogels per se exhibit a more controlled and enhanced permeation, in particular when jojoba oil was present in the transethosomes. These promising nanogels protected the human keratinocytes from UV radiation, and thus can be added to sunscreens or after-sun lotions to improve skin protection.
Collapse
|
12
|
Kitaoka M, Nguyen TC, Goto M. Water-in-oil microemulsions composed of monoolein enhanced the transdermal delivery of nicotinamide. Int J Cosmet Sci 2021; 43:302-310. [PMID: 33566391 DOI: 10.1111/ics.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Nicotinamide, also known as niacinamide, is a water-soluble vitamin that is used to prevent and treat acne and pellagra. It is often found in water-based skin care cosmetics because of its high water solubility. Nicotinamide is a small molecule with a molar mass of 122.1 g/mol. However, it has a hydrophilic nature that becomes an obstacle when it penetrates through the skin. The topmost layer of the skin, the stratum corneum, acts as a strong hydrophobic barrier for such hydrophilic molecules. The oil-based formulations are expected to enhance the transdermal delivery efficiency of nicotinamide. METHODS We have developed oil-based microemulsion formulations composed of a squalane vehicle. Monoolein was used as an emulsifier that has a potential to enhance the nicotinamide delivery through the stratum corneum. RESULTS Because the mean size of the emulsions measured by dynamic light scattering was 20.9 ± 0.4 nm, the microemulsion formulation was stable under the long-term storage. Monoolein acted as a skin penetration enhancer, and it effectively enabled the penetration of nicotinamide through human abdominal skin, compared with nicotinamide in a phosphate-buffered saline solution. The flux was increased 25-fold. Microscopic imaging revealed that the hydrophilic bioactive compounds penetrated through the intercellular spaces in the epidermis. CONCLUSION The monoolein-based microemulsion was transparent and stable, suggesting that it is a promising formulation for a transdermal nicotinamide delivery.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Trung Cong Nguyen
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, Japan.,Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Subongkot T, Ngawhirunpat T, Opanasopit P. Development of Ultradeformable Liposomes with Fatty Acids for Enhanced Dermal Rosmarinic Acid Delivery. Pharmaceutics 2021; 13:404. [PMID: 33803716 PMCID: PMC8003044 DOI: 10.3390/pharmaceutics13030404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 01/05/2023] Open
Abstract
This study aimed to develop ultradeformable liposomes (ULs) with fatty acids, namely, oleic, linoleic, and linolenic acid, to improve the skin penetration of rosmarinic acid. This study also investigated the vesicle-skin interaction and skin penetration pathway of ULs with fatty acids using the co-localization technique of multifluorescently labeled particles. The prepared ULs were characterized in terms of size, surface charge, size distribution, shape, % entrapment efficiency (% EE), and % loading efficiency (% LE). The prepared ULs with fatty acids had an average particle size between 50.37 ± 0.3 and 59.82 ± 17.3 nm with a size distribution within an acceptable range and exhibited a negative surface charge. The average % EE and % LE were 9 and 24.02, respectively. The in vitro skin penetration study found that ULs with oleic acid could significantly increase the skin penetration of rosmarinic acid compared to ULs. According to confocal laser scanning microscopy observations, this study suggested that UL vesicles attach to the skin before releasing the entrapped drug to penetrate the skin. These findings suggested that ULs with oleic acid penetrated the skin via the transfollicular pathway as a major penetration pathway.
Collapse
Affiliation(s)
- Thirapit Subongkot
- Pharmaceutical Innovations of Natural Products Unit (PhInNat), Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| | - Tanasait Ngawhirunpat
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (T.N.); (P.O.)
| | - Praneet Opanasopit
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (T.N.); (P.O.)
| |
Collapse
|
14
|
Mallya R, Desai J. A review on novel topical formulations of vitamins. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2021. [DOI: 10.4103/jrptps.jrptps_91_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Hatem S, El Hoffy NM, Elezaby RS, Nasr M, Kamel AO, Elkheshen SA. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
GWAS Analysis of 17,019 Korean Women Identifies the Variants Associated with Facial Pigmented Spots. J Invest Dermatol 2020; 141:555-562. [PMID: 32835660 DOI: 10.1016/j.jid.2020.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022]
Abstract
Variation in skin pigmentation can be affected by both environmental factors and intrinsic factors such as age, gender, and genetic variation. Recent GWASs revealed that genetic variants of genes functionally related to a pigmentation pathway were associated with skin pigmentary traits. However, these GWASs focused on populations with European ancestry, and only a few studies have been performed on Asian populations, limiting our understanding of the genetic basis of skin pigmentary traits in Asians. To evaluate the genetic variants associated with facial pigmented spots, we conducted a GWAS analysis of objectively measured facial pigmented spots in 17,019 Korean women. This large-scale GWAS identified several genomic loci that were significantly associated with facial pigmented spots (five previously reported loci and two previously unreported loci, to our knowledge), which were detected by UV light: BNC2 at 9p22 (rs16935073; P-value = 2.11 × 10-46), PPARGC1B at 5q32 (rs32579; P-value = 9.04 × 10-42), 10q26 (rs11198112; P-value = 9.66 × 10-38), MC1R at 16q24 (rs2228479; P-value = 6.62 × 10-21), lnc01877 at 2q33 (rs12693889; P-value = 1.59 × 10-11), CDKN2B-AS1 at 9p21 (rs643319; P-value = 7.76 × 10-9), and MFSD12 at 19p13 (rs2240751; P-value = 9.70 × 10-9). Further functional characterization of the candidate genes needs to be done to fully evaluate their contribution to facial pigmented spots.
Collapse
|
17
|
Leem S, Kim SJ, Kim Y, Shin JG, Song HJ, Lee SG, Seo JY, Kim K, You SW, Park SG, Kang NG. Comparative analysis of skin characteristics evaluation by a dermatologist and the Janus-III measurement system. Skin Res Technol 2020; 27:86-92. [PMID: 32681600 DOI: 10.1111/srt.12915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Janus-III measurement system evaluates the overall skin characteristics such as skin pore, wrinkle, sebum, porphyrin, skin pigmentation, and skin color using high-resolution facial images. The values are measured from five different facial areas, namely, the forehead, nose, corner of/skin below the eyes, and cheeks. Owing to its convenience and diverse measuring characteristics, Janus-III has been widely used in skin research and the cosmetic industry in Korea. In our previous study, we revealed the consistency and reliability of the system with repeatedly measured values. Its measuring performance was investigated statistically, but to make it more reliable for academic skin research, additional verification by a professional dermatologist is needed. MATERIALS AND METHODS In this study, we conducted comparative analysis of three skin characteristics (pigmented spot, skin color, and eye wrinkle) by a dermatologist and the Janus-III measurement system. We utilized 330 image data that were cropped from the whole facial images of 330 different participants to avoid correlation among the three measuring items. Pearson's correlation coefficient exhibited similar patterns between the system and the dermatologist's findings. RESULTS The main finding of our study was that the measured value of skin characteristics by the Janus-III system showed clear correlation with the values evaluated by a dermatologist, especially in a pigmented spot. CONCLUSION Therefore, it would be a plausible idea to consider the Janus-III system for specialized research of skin characteristics even with a small sample size.
Collapse
Affiliation(s)
- Sangseob Leem
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Seong Jin Kim
- Department of Dermatology, Chonnam National University Medical School, Gwangju, South Korea
| | - Yunkwan Kim
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Joong-Gon Shin
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Hae Jung Song
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Seo-Gyeong Lee
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Jung Yeon Seo
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Kyunghoe Kim
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Seung Won You
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Sun Gyoo Park
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Nae Gyu Kang
- Department of Core Technology, LG Household & Health Care (LG H&H), Seoul, South Korea
| |
Collapse
|
18
|
Leem S, Chang J, Kim Y, Shin JG, Song HJ, Lee SG, Yoo S, Lee J, Myoung J, Park SG, Kang NG. Repeated measurements of facial skin characteristics using the Janus-Ⅲ measurement system. Skin Res Technol 2019; 26:362-368. [PMID: 31859440 DOI: 10.1111/srt.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/08/2019] [Accepted: 11/09/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND For personalized skin care, noninvasive quantitative methods to evaluate facial skin characteristics are important. Janus-III is one of the most widely used imaging analysis devices in the skin care industry in Korea. Janus-III generates values for a range of skin characteristics. Due to the convenience of obtaining results for a variety of skin characteristics in a single measurement, the use of Janus-III in cosmetic stores and research institutes has been recently increasing. However, the consistency of skin measurements of Janus-III has not been elucidated yet. MATERIALS AND METHODS In this study, we repeated skin measurements three times for 70 different subjects and compared each numerical value in order to assess the consistency of the Janus-III. For this purpose, we compared between-sample distances and within-sample distances. RESULTS We found important patterns for future analyses in terms of consistency. First, the average values of skin measurement categories were more reliable than individual part values of facial segments. Second, center part values such as forehead and nose were more reliable than side part values such as left and right part segments. CONCLUSION If researchers who use Janus-III for studies of facial characteristics analyze average and center part values first, they can obtain relatively reliable patterns of facial skin characteristics.
Collapse
Affiliation(s)
- Sangseob Leem
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Junghwa Chang
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Yunkwan Kim
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Joong-Gon Shin
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Hae Jung Song
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Seo-Gyeong Lee
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Suji Yoo
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Jinyong Lee
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Joonoh Myoung
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Sun Gyoo Park
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| | - Nae Gyu Kang
- R&D Center, LG Household and Health Care, Ltd., Seoul, Korea
| |
Collapse
|
19
|
Topical Delivery of Niacinamide: Influence of Binary and Ternary Solvent Systems. Pharmaceutics 2019; 11:pharmaceutics11120668. [PMID: 31835478 PMCID: PMC6956018 DOI: 10.3390/pharmaceutics11120668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Niacinamide (NIA) is the amide form of vitamin B3 and has been widely used in pharmaceutical and personal care formulations. Previously, we reported a comparative study of NIA permeation from neat solvents using the Skin Parallel Artificial Membrane Permeability Assay (PAMPA) and mammalian skin. A good correlation between NIA permeation in the different models was found. In the present work, ten binary and ternary systems were evaluated for their ability to promote NIA delivery in the Skin PAMPA model, porcine skin and human epidermis. Penetration enhancement was evident for binary systems composed of propylene glycol and fatty acids in human skin studies. However, propylene glycol and oleic acid did not promote enhancement of NIA compared with other systems in the Skin PAMPA model. A good correlation was obtained for permeation data from Skin PAMPA and porcine skin. However, data from the Skin PAMPA model and from human skin could only be correlated when the PG-fatty acid systems were excluded. These findings add to our knowledge of the potential applications of Skin PAMPA for screening dermal/transdermal preparations.
Collapse
|
20
|
A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model. Int J Pharm 2018; 556:142-149. [PMID: 30529662 DOI: 10.1016/j.ijpharm.2018.11.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/23/2022]
Abstract
The in vitro skin penetration of pharmaceutical or cosmetic ingredients is usually assessed in human or animal tissue. However, there are ethical and practical difficulties associated with sourcing these materials; variability between donors may also be problematic when interpreting experimental data. Hence, there has been much interest in identifying a robust and high throughput model to study skin permeation that would generate more reproducible results. Here we investigate the permeability of a model active, niacinamide (NIA), in (i) conventional vertical Franz diffusion cells with excised human skin or porcine skin and (ii) a recently developed Parallel Artificial Membrane Permeation Assay (PAMPA) model. Both finite and infinite dose conditions were evaluated in both models using a series of simple NIA solutions and one commercial preparation. The Franz diffusion cell studies were run over 24 h while PAMPA experiments were conducted for 2.5 h. A linear correlation between both models was observed for the cumulative amount of NIA permeated in tested models under finite dose conditions. The corresponding correlation coefficients (r2) were 0.88 for porcine skin and 0.71 for human skin. These results confirm the potential of the PAMPA model as a useful screening tool for topical formulations. Future studies will build on these findings and expand further the range of actives investigated.
Collapse
|
21
|
Zhao F, Lu J, Jin X, Wang Z, Sun Y, Gao D, Li X, Liu R. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation. Colloids Surf B Biointerfaces 2018; 172:288-297. [DOI: 10.1016/j.colsurfb.2018.08.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022]
|
22
|
Abstract
In the present scenario, consumers are searching for personal care products that supply multiple benefits with minimal efforts. The outcome has been the introduction of nanotechnology-based cosmetic products that are safe to use and results driven. Some topical cosmetics can act efficaciously when they reach their target sites present in the deeper layers of the skin. The main problem with delivering active ingredients across the skin is the barrier function of the skin. Therefore, to get the maximum benefit from cosmetic products and to overcome the problems associated with their skin penetration, scientists are investigating various strategies to overcome these barrier properties. Vesicular carriers have been claimed to improve the topical delivery of active ingredients. This review offers a brief overview of current approaches in the research and development of vesicular carriers to improve the delivery and performance of active ingredients present in the cosmetics.
Collapse
Affiliation(s)
- Alka Lohani
- a IFTM University , School of Pharmaceutical Sciences , Delhi Road, Moradabad, Moradabad , India
| | - Anurag Verma
- a IFTM University , School of Pharmaceutical Sciences , Delhi Road, Moradabad, Moradabad , India
| |
Collapse
|