1
|
Sun J, Feng Y, Wang Y, Ji Q, Cai G, Shi L, Wang Y, Huang Y, Zhang J, Li Q. α-hederin induces autophagic cell death in colorectal cancer cells through reactive oxygen species dependent AMPK/mTOR signaling pathway activation. Int J Oncol 2019; 54:1601-1612. [PMID: 30896843 PMCID: PMC6438428 DOI: 10.3892/ijo.2019.4757] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
α-hederin, a monodesmosidic triterpenoid saponin, had previously demonstrated strong anticancer effects. In the current study, the pharmacological mechanism of autophagic cell death induced by α-hederin was investigated in human colorectal cancer cells. First, through cell counting kit-8 and colony formation assays, it was demonstrated that α-hederin could inhibit the proliferation of HCT116 and HCT8 cell. Results of flow cytometry using fluorescein isothiocyanate Annexin V/propidium iodide and Hoechst 33258 staining indicated that α-hederin could induce apoptosis. Western blotting demonstrated that α-hederin could activate mitochondrial apoptosis signal pathway. Then, using light chain 3 lentiviral and electron microscope assay, it was demonstrated that α-hederin could induce autophagy in colorectal cancer cells. In addition, immunohistochemistry results from in vivo experiments also demonstrated that α-hederin could induce autophagy. AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) signaling was demonstrated to be activated by α-hederin, which could be blocked by reactive oxygen species (ROS) inhibitor NAC. Furthermore, NAC could inhibit apoptosis and autophagy induced by α-hederin. Finally, 3-MA (autophagy inhibitor) reduced the inhibition of α-hederin on cell activity, but it had no significant effect on apoptosis. In conclusion, α-hederin triggered apoptosis through ROS-activated mitochondrial signaling pathway and autophagic cell death through ROS dependent AMPK/mTOR signaling pathway activation in colorectal cancer cells.
Collapse
Affiliation(s)
- Jian Sun
- Department of Clinical Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yu Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Gang Cai
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lei Shi
- Department of Clinical Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiyi Wang
- Department of Clinical Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Huang
- Department of Clinical Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jue Zhang
- Department of Clinical Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
2
|
Peng N, Yang M, Tang Y, Zou T, Guo F, Wu K, Wang X, Li X, Liu Y. Amphiphilic hexadecyl-quaternized chitin micelles for doxorubicin delivery. Int J Biol Macromol 2019; 130:615-621. [PMID: 30831169 DOI: 10.1016/j.ijbiomac.2019.02.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
A series of amphiphilic chitin derivatives were synthesized by conjugating hexadecyl groups (degree of substitute of hexadecyl groups (DSH) = 0.11, 0.18, and 0.24) onto the backbone of quaternized chitins (degree of substitute of quaternary ammonium groups (DSQ) = 0.36). The amphiphilic chitin derivatives could self-assemble into cationic micelles with hydrophobic alkyl side chain as core and hydrophilic quaternary ammonium groups as shell in deionized water. The biocompatible cationic micelles with an average particle size of 332.4-385.0 nm showed a drug loading content (DLC) of 10.2%-15.1%. The release behavior of DOX from micelles strongly depended on the DSH values of chitin derivatives. DOX-loaded micelles effectively inhibited the growth of HepG2 cells through being internalized into HepG2 cells, and releasing DOX into the cytoplasm and nucleus. This work presented a novel chitin-based nanocarrier for potential chemotherapy.
Collapse
Affiliation(s)
- Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
| | - Mingyue Yang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yan Tang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Tao Zou
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Fen Guo
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Kui Wu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Xiaoqiang Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Xiaofang Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine(MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|