1
|
Guo Y, Patel HJ, Patel AS, Squillante E, Patel K. Albendazole nanosuspension coated granules for the rapid localized release and treatment of colorectal cancer. Colloids Surf B Biointerfaces 2024; 245:114320. [PMID: 39423765 DOI: 10.1016/j.colsurfb.2024.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Albendazole (ABZ), an anthelmintic drug, has been repurposed to treat various types of cancers. However, poor solubility of ABZ, resulting in low bioavailability, limits its application. Nanosuspension is a versatile method for enhancing the dissolution of hydrophobic molecules, but a successful drying has been the biggest challenge in the field. The objective of this research is to formulate and optimize ABZ nanosuspension (NS) coated granules for rapid delivery of ABZ for the treatment of colorectal cancer. ABZ NS was prepared by dual centrifugation method using Kollidon® VA64 and sodium lauryl sulphate (SLS) as stabilizers. The processing method was optimized to obtain a stable nanosuspension with particle size < 300 nm. The optimized ABZ NS was coated on microcrystalline cellulose (MCC) to form the nano-coated granules (NCG) and filled in EUDRACAP® for colon targeted delivery. The ABZ NS and NCG achieved ∼ 60 % and ∼55 % drug release, respectively, in presence of bile salt at colonic pH. Half-maximal inhibitory concentration (IC50) of ABZ NS was found to be 1.18 ± 0.081 µM and 3.59 ± 0.080 µM in two colorectal cancer cell lines: HCT 116 and HT-29, respectively. In addition, In vitro 3D tumor assay revealed that ABZ NS has superior tumor growth inhibition activity compared to the control and pure ABZ. The preparation of ABZ NCG in EUDRACAP® could be a promising approach to achieve colon targeted delivery and to repurpose ABZ for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yi Guo
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | - Henis J Patel
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | - Akanksha S Patel
- College of Pharmacy and Health Sciences, St. John's University, NY, USA
| | - Emilio Squillante
- College of Pharmacy and Health Sciences, St. John's University, NY, USA.
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, NY, USA.
| |
Collapse
|
2
|
Ghanma R, Naser YA, Kurnia Anjani Q, Hidayat Bin Sabri A, Hutton ARJ, Vora LK, Himawan A, Moreno-Castellanos N, Greer B, McCarthy HO, Paredes AJ, Donnelly RF. Dissolving microarray patches for transdermal delivery of risperidone for schizophrenia management. Int J Pharm 2024; 660:124342. [PMID: 38880253 DOI: 10.1016/j.ijpharm.2024.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Schizophrenia is a psychiatric disorder that results from abnormal levels of neurotransmitters in the brain. Risperidone (RIS) is a common drug prescribed for the treatment of schizophrenia. RIS is a hydrophobic drug that is typically administered orally or intramuscularly. Transdermal drug delivery (TDD) could potentially improve the delivery of RIS. This study focused on the development of RIS nanocrystals (NCs), for the first time, which were incorporated into dissolving microneedle array patches (DMAPs) to facilitate the drug delivery of RIS. RIS NCs were formulated via wet-media milling technique using poly(vinylalcohol) (PVA) as a stabiliser. NCs with particle size of 300 nm were produced and showed an enhanced release profile up to 80 % over 28 days. Ex vivo results showed that 1.16 ± 0.04 mg of RIS was delivered to both the receiver compartment and full-thickness skin from NCs loaded DMAPs compared to 0.75 ± 0.07 mg from bulk RIS DMAPs. In an in vivo study conducted using female Sprague Dawley rats, both RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) were detected in plasma samples for 5 days. In comparison with the oral group, DMAPs improved the overall pharmacokinetic profile in plasma with a ∼ 15 folds higher area under the curve (AUC) value. This work has represented the novel delivery of the antipsychotic drug, RIS, through microneedles. It also offers substantial evidence to support the broader application of MAPs for the transdermal delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Rand Ghanma
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
3
|
Königová A, Burcáková Ľ, Babják M, Dolinská MU, Kostecká Z, Šimková J, Kremeň J, Kuzmina TA, Várady M. Efficacy of a single-dose albendazole against lancet liver fluke Dicrocoelium dendriticum and liver enzymes activity in naturally infected sheep. Exp Parasitol 2024; 256:108656. [PMID: 38097154 DOI: 10.1016/j.exppara.2023.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Infections with D. dendriticum are distributed worldwide and mostly associated with ruminant livestock. Depending on the length and strength of the infection it can be manifested with losses in milk production, reductions in milk and wool quality, decreased weight gains, reproductive performance and poor carcass quality. The objective of this study was to determine the efficacy of albendazole (ABZ) against the lancet liver fluke Dicrocoelium dendriticum in naturally infected sheep using parasitological methods. Twenty-four sheep were divided into four groups: two untreated control groups (C1, C2) and two treated groups (T1, T2), with six animals in each group. The sheep in the treated groups were administered a single oral dose (15 mg/kg bwt) of ABZ suspension. After ABZ treatment the animals were slaughtered on Day 14 (groups C1, T1) and Day 30 (groups C2, T2) and were necropsied. Coprological therapeutic ABZ efficacy reached 92.4% on Day 14 (P < 0.001) and 88.5% on Day 30 (P < 0.001). On Day 30, the serum activities of hepatic and cholestatic enzymes including serological analysis of total protein concentration (TP) and protein fractions were evaluated. Significant decrease of aspartate aminotransferase (AST) (P < 0.01) and gamma-glutamyltransferase (GGT) (P < 0.05) activity by 36.9% and 34.6%, respectively, were detected for sheep in T2 group. These enzymes showed a strong positive correlation to fluke burden: AST (r = 0.654) and GGT (r = 0.768), respectively (P < 0.05). Additionally, the electrophoretic analysis of serum total protein and protein fraction concentrations revealed minimal hypoproteinemia and hyperalbuminemia after ABZ treatment. The decrease of liver enzyme activities and their correlation with fluke burden may indicate recovery of hepatocellular and biliary damage following the reduction of fluke burdens after ABZ therapy. A decline in AST and GGT activity could serve as a valuable adjunct bioindicator of liver damage and fluke reduction after treatment of dicrocoeliosis in naturally infected sheep.
Collapse
Affiliation(s)
- Alžbeta Königová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia.
| | - Ľudmila Burcáková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia; Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 040 01, Košice, Slovakia
| | - Michal Babják
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia
| | - Michaela Urda Dolinská
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia; Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 040 01, Košice, Slovakia
| | - Zuzana Kostecká
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 040 01, Košice, Slovakia
| | - Jana Šimková
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy, Komenského 73, 040 01, Košice, Slovakia
| | - Jozef Kremeň
- Department of General Competencies, University of Veterinary Medicine and Pharmacy, Komenského 73, 040 01, Košice, Slovakia
| | - Tetiana A Kuzmina
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia; I. I. Schmalhausen Institute of Zoology NAS of Ukraine, Bogdan Khmelnytsky Street, 15, Kyiv, 01030, Ukraine
| | - Marián Várady
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia
| |
Collapse
|
4
|
Mahfufah U, Aisha Fitri Sultan N, Maqhfirah Nurul Fitri A, Elim D, Alif Sya'ban Mahfud M, Wafiah N, Ardita Friandini R, Chabib L, Aliyah, Dian Permana A. Application of multipolymers system in the development of hydrogel-forming microneedle integrated with polyethylene glycol reservoir for transdermal delivery of albendazole. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Joshi P, Sangamwar AT. Insights into the Role of Compendial/Biorelevant Media on the Supersaturation Behaviour of Drug Combination (Drug-Drug Interaction) and Precipitation Inhibition by Polymers. AAPS PharmSciTech 2022; 23:300. [DOI: 10.1208/s12249-022-02448-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
|
6
|
Jabeen N, Sohail M, Shah SA, Mahmood A, Khan S, Kashif MUR, Khaliq T. Silymarin nanocrystals-laden chondroitin sulphate-based thermoreversible hydrogels; A promising approach for bioavailability enhancement. Int J Biol Macromol 2022; 218:456-472. [PMID: 35872320 DOI: 10.1016/j.ijbiomac.2022.07.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
Hydrogels has gained tremendous interest as a controlled release drug delivery. However, currently it is a big challenge to attain high drug-loading as well as stable and sustained release of hydrophobic drugs. The poor aqueous solubility and low bioavailability of many drugs have driven the need for research in new formulations. This manuscript hypothesized that incorporation of nanocrystals of hydrophobic drug, such as silymarin into thermoreversible hydrogel could be a solution to these problems. Herein, we prepared nanocrystals of silymarin by antisolvent precipitation technique and characterized for morphology, particle size, polydispersity index (PDI) and zeta potential. Moreover, physical cross-linking of hydrogel formulations based on chondroitin sulphate (CS), kappa-Carrageenan (κ-Cr) and Pluronic® F127 was confirmed by Fourier transformed infrared spectroscopy (FT-IR). The hydrogel gelation time and temperature of optimized hydrogel was 14 ± 3.2 s and 34 ± 0.6 °C, respectively. The release data revealed controlled release of silymarin up to 48 h and in-vivo pharmacokinetic profiling was done in rabbits and further analyzed by high-performance liquid chromatography (HPLC). It is believed that the nanocrystals loaded thermoreversible injectable hydrogel system fabricated in this study provides high drug loading as well as controlled and stable release of hydrophobic drug for extended period.
Collapse
Affiliation(s)
- Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Superior University, Lahore, Punjab-Pakistan
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan
| | | | - Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
7
|
Ilyas U, Asif M, Wang M, Altaf R, Zafar H, Faran Ashraf Baig MM, Paiva-Santos AC, Abbas M. Nanostructured Lipid Carrier-Based Delivery of Pioglitazone for Treatment of Type 2 Diabetes. Front Pharmacol 2022; 13:934156. [PMID: 35903327 PMCID: PMC9315350 DOI: 10.3389/fphar.2022.934156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Pioglitazone (PGZ) is utilized as a therapeutic agent in the management of (type 2) diabetes to control blood glucose levels. The existing research work was intended to make and optimize PGZ-containing NLCs (nanostructured lipid carriers). The fabricated nanostructured lipid carrier preparation was optimized by using different concentrations of the surfactants (Tween 80 and Span 80) and solid lipid (Compritol® 888 ATO) and liquid lipid (Labrasol®) while keeping the concentration of drug (PGZ), and co-surfactants (poloxamer 188) the same. The optimized NLC formulation (PGZ-NLCs) was further assessed for physical and chemical characterization, in vitro PGZ release, and stability studies. The optimized PGZ-NLCs have shown an average diameter of 150.4 nm, EE of 92.53%, PDI value of 0.076, and zeta-potential of −29.1 mV, correspondingly. The DSC thermal analysis and XRD diffractograms had not presented the spectrum of PGZ, confirming the comprehensive encapsulation of PGZ in the lipid core. PGZ-NLCs showed significantly extended release (51% in 24 h) compared to the unformulated PGZ. Our study findings confirmed that PGZ-NLCs can be a promising drug delivery system for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Umair Ilyas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Asif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Minglian Wang
- Faculty of Environment and Life Science, Beijing University of Technology, Bejing, China
- *Correspondence: Minglian Wang, ; Reem Altaf, ; Muhammad Abbas,
| | - Reem Altaf
- Department of Pharmacy, Iqra University Islamabad Campus, Islamabad, Pakistan
- *Correspondence: Minglian Wang, ; Reem Altaf, ; Muhammad Abbas,
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-Functional, and Pharmaceutical Nano-Materials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Muhammad Abbas
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Minglian Wang, ; Reem Altaf, ; Muhammad Abbas,
| |
Collapse
|
8
|
Porras M, Adrover ME, Pedernera M, Bucalá V, Gallo L. Novel techniques for drug loading quantification in mesoporous SBA-15 using chemometric-assisted UV and FT-IR data. J Pharm Biomed Anal 2022; 216:114830. [DOI: 10.1016/j.jpba.2022.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/17/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
|
9
|
Joshi P, Mallepogu P, Kaur H, Singh R, Sodhi I, Samal SK, Jena KC, Sangamwar AT. Explicating the molecular level drug-polymer interactions at the interface of supersaturated solution of the model drug: Albendazole. Eur J Pharm Sci 2021; 167:106014. [PMID: 34644598 DOI: 10.1016/j.ejps.2021.106014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Supersaturation as a formulation principle relates to the aqueous solubility of poorly soluble drugs in solution . However, supersaturation state of drugs tends to crystallize because of its thermodynamic instability thereby compromising the solubility and biopharmaceutical performance of drugs. The present study aims to investigate the supersaturation potential of albendazole (ABZ) and its precipitation via nucleation and crystal growth. We hypothesized the use of polymers will avoid ABZ precipitation by interacting with drug molecules. The drug polymer interactions are characterized using conventional methods of Fourier transform infrared (FTIR), Nuclear magnetic resonance (NMR) and Polarized light microscopy (PLM). We have used a novel approach of sum frequency generation (SFG) vibrational spectroscopic in exploring the drug polymer interactions at air-water interface. Recently we have reported the SFG for e rifaximin-polymer interactions (Singh et al., 2021). The supersaturation assay, saturation solubility studies and nucleation induction time analysis revealed polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP K30) as effective precipitation inhibitors thereby enhancing the ABZ equilibrium solubility and in vitro supersaturation maintenance of ABZ. Further, modification in the solid state of ABZ has confirmed the influence of polymers on its precipitation behaviour. We conclude that PVA and PVP K30 act as nucleation and crystal growth inhibitor, respectively for the precipitation inhibition of ABZ.
Collapse
Affiliation(s)
- Prachi Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India
| | - Prabhakar Mallepogu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India
| | - Harpreet Kaur
- Department of Physics, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India
| | - Ikjot Sodhi
- Formulation Development, Fresenius Kabi Oncology Ltd., Gurgaon, Haryana 122001, India
| | - Sanjaya K Samal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India; Center for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sahibzada Ajit Singh Nagar, Punjab 160062, India.
| |
Collapse
|
10
|
Khan MA, Ansari MM, Arif ST, Raza A, Choi HI, Lim CW, Noh HY, Noh JS, Akram S, Nawaz HA, Ammad M, Alamro AA, Alghamdi AA, Kim JK, Zeb A. Eplerenone nanocrystals engineered by controlled crystallization for enhanced oral bioavailability. Drug Deliv 2021; 28:2510-2524. [PMID: 34842018 PMCID: PMC8635601 DOI: 10.1080/10717544.2021.2008051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Poor aqueous solubility of eplerenone (EPL) is a major obstacle to achieve sufficient bioavailability after oral administration. In this study, we aimed to develop and evaluate eplerenone nanocrystals (EPL-NCs) for solubility and dissolution enhancement. D-optimal combined mixture process using Design-Expert software was employed to generate different combinations for optimization. EPL-NCs were prepared by a bottom-up, controlled crystallization technique during freeze-drying. The optimized EPL-NCs were evaluated for their size, morphology, thermal behavior, crystalline structure, saturation solubility, dissolution profile, in vivo pharmacokinetics, and acute toxicity. The optimized EPL-NCs showed mean particle size of 46.8 nm. Scanning electron microscopy revealed the formation of elongated parallelepiped shaped NCs. DSC and PXRD analysis confirmed the crystalline structure and the absence of any polymorphic transition in EPL-NCs. Furthermore, EPL-NCs demonstrated a 17-fold prompt increase in the saturation solubility of EPL (8.96 vs. 155.85 µg/mL). The dissolution rate was also significantly higher as indicated by ∼95% dissolution from EPL-NCs in 10 min compared to only 29% from EPL powder. EPL-NCs improved the oral bioavailability as indicated by higher AUC, Cmax, and lower Tmax than EPL powder. Acute oral toxicity study showed that EPL-NCs do not pose any toxicity concern to the blood and vital organs. Consequently, NCs prepared by controlled crystallization technique present a promising strategy to improve solubility profile, dissolution velocity and bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Muhammad Ayub Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abida Raza
- Nanomedicine Research Laboratory, National Institute of Lasers and Optronics (NILOP), PIEAS, Islamabad, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jin-Su Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Salman Akram
- Laboratory for the Study of Rheology and the Adhesion of Medical Adhesives, IPREM, University of Pau and Pays de l'Adour, Pau, France
| | - Hafiz Awais Nawaz
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amani Ahmed Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
11
|
Bongioanni A, Sancho MI, Bueno MS, Longhi MR, Garnero C. Binary systems of albendazole desmotropes with amino-acids: Experimental and theoretical studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Saber S, Nasr M, Saad AS, Mourad AAE, Gobba NA, Shata A, Hafez AM, Elsergany RN, Elagamy HI, El-Ahwany E, Amin NA, Girgis S, Elewa YHA, Mahmoud MH, Batiha GES, El-Rous MA, Kamal I, Kaddah MMY, Khodir AE. Albendazole-loaded cubosomes interrupt the ERK1/2-HIF-1α-p300/CREB axis in mice intoxicated with diethylnitrosamine: A new paradigm in drug repurposing for the inhibition of hepatocellular carcinoma progression. Biomed Pharmacother 2021; 142:112029. [PMID: 34416629 DOI: 10.1016/j.biopha.2021.112029] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer related deaths worldwide. It was suggested that albendazole (ABZ) is a powerful inhibitor of several carcinoma types. However, the bioavailability of ABZ is very poor. Additionally, the mechanisms underlying the antitumor effects of ABZ may go beyond its tubulin-inhibiting activity. Therefore, we aimed to examine the effects of ABZ suspension (i.p. and p.o.) and ABZ-loaded cubosomes (LC) on the diethylnitrosamine-induced HCC in mice. ABZ-loaded nanoparticles exhibited a mean particle size of 48.17 ± 0.65 nm and entrapped 93.26 ± 2.48% of ABZ. The in vivo absorption study confirmed a two-fold improvement in the relative bioavailability compared with aqueous ABZ suspension. Furthermore, the oral administration of ABZ cubosomal dispersion demonstrated regression of tumor production rates that was comparable with ABZ (i.p.). ABZ relieved oxidative stress, improved liver function, and decreased necroinflammation score. The antiangiogenic activity was evident as ABZ effectively downregulated tissue expression of CD34, mRNA expression of CD309 and VEGF at the protein expression level. Besides, lower levels of MMP-9 and CXCR4 indicated antimetastatic activity. ABZ showed a considerable level of apoptotic activity as indicated by increased mRNA expression level of p53 and the increased Bax/BCL-2 ratio and active caspase-3. Additionally, Ki-67 expression levels were downregulated showing an antiproliferative potential. These protective effects contributed to increasing survival rate of diethylnitrosamine-treated mice. These effects found to be mediated via interrupting ERK1/2-HIF-1α-p300/CREB interactions. Therefore, our findings revealed that disrupting ERK1/2-HIF-1α-p300/CREB interplay might create a novel therapeutic target for the management of HCC.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mohamed Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed S Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Naglaa A Gobba
- Department of Pharmacology and Toxicology, College of Pharmacy, Misr University for Science and Technology, Egypt
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Abdel-Moneim Hafez
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt; Department of Physiology, College of Medicine, Qassim University, Saudi Arabia
| | - Ramy N Elsergany
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Heba I Elagamy
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Egypt
| | - Samuel Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Alsalam University, Egypt
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Magdy Abou El-Rous
- Department of Biochemistry, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University, Egypt
| |
Collapse
|
13
|
de Melo CG, Gonzaga LAC, Rabello MM, de Albuquerque Wanderley Sales V, Ferreira AS, da Silva PCD, Nishimura RHV, da Silva RMF, de Araújo Rolim L, Neto PJR. Enhanced solubility of Albendazole in Cyclodextrin Inclusion Complex: A Molecular Modeling Approach and Physicochemical Evaluation. Curr Drug Deliv 2021; 19:86-92. [PMID: 34126897 DOI: 10.2174/1567201818666210614104234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Albendazole (ABZ) is the drug of choice for the treatment of a variety of human and veterinary parasites. However, it has low aqueous solubility and low bioavailability. Cyclodextrins (CD) are pharmaceutical excipients with the ability to modulate the solubilization property of hydrophobic molecules. OBJECTIVE To analyze (Autodock Vina software and CycloMolder platform) the formation of inclusion complexes between ABZ, β-cyclodextrin (β-CD) and its derivatives, Methyl-β-cyclodextrin (M-β-CD) and Hydroxypropyl-β-cyclodextrin (HP-β-CD), through in vitro and in silico studies. METHODS The most stable inclusion complexes were produced by the kneading method and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), determination of the ABZ content, and in vitro dissolution profile. RESULTS Molecular modeling revealed that inclusion complexes between HP-β-CD:ABZ (in the proportion 1:1 and 2:1) presented the lowest formation energy and the highest number of intermolecular interactions, showing that the use of more cyclodextrins does not provide any gain in the stability of the complex. Through the characterization tests, the complexes experimentally obtained by kneading method demonstrated a highly suggestive method, including ABZ in HP-β-CD in both molar proportions; The results of this study showed suppression of bands in the infrared spectrum, displacement of the drug's melting temperature in DSC, crystallinity halos instead of the characteristic peaks of ABZ crystals in the XRD and a release of more than 80% of ABZ in less than 5 minutes, beyond dissolution efficiency of up to 92%. CONCLUSION In silico studies provided a rational selection of the appropriate cyclodextrin, enabling the elaboration of more targeted complexes, decreasing time and costs to elaborate on new formulations that increase the oral biodisponibility of ABZ.
Collapse
Affiliation(s)
- Camila Gomes de Melo
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Recife/PE, Brazil
| | | | - Marcelo Montenegro Rabello
- Central de Análise de Fármacos Medicamentos e Alimentos, Universidade Federal do Vale do São Francisco, Petrolina/PE, Brazil
| | | | - Aline Silva Ferreira
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Recife/PE, Brazil
| | | | | | | | - Larissa de Araújo Rolim
- Central de Análise de Fármacos Medicamentos e Alimentos, Universidade Federal do Vale do São Francisco, Petrolina/PE, Brazil
| | - Pedro José Rolim Neto
- Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Recife/PE, Brazil
| |
Collapse
|
14
|
Singh S, Singha P. Effect of Modifications in Poly (Lactide-co-Glycolide) (PLGA) on Drug Release and Degradation Characteristics: A Mini Review. Curr Drug Deliv 2021; 18:1378-1390. [PMID: 33970845 DOI: 10.2174/1567201818666210510165938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
The use of PLGA in the pharmaceutical industry has only increased as we move towards more and more advanced delivery carrier systems. The qualities of PLGA like biocompatibility, biodegradability and a tunable degradation and drug release has only helped in keeping up the release requirements desired for various delivery platforms. Fine-tuning the release and degradation rate is gaining more and more attention as researchers keep pushing the boundaries of novel delivery carriers. Various experiments are being performed to understand the degradation behavior drug of PLGA under various physiological and process-related conditions. The understanding of these parameters has helped formulate various ways one can fine-tune the properties that can lead to the release of active ingredients encapsulated within. Various techniques have been tried and tested including modifications like chemical modifications, physical blending and surface modifications and have found to be effective means of release modulation in delivery systems like parenteral, orals, topicals and tissue engineering scaffolds. In this review, all these experiments and implications thereon have been discussed in detail.
Collapse
Affiliation(s)
- Sweta Singh
- Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Prabha Singha
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
15
|
Türkan F. Investigation of the toxicological and inhibitory effects of some benzimidazole agents on acetylcholinesterase and butyrylcholinesterase enzymes. Arch Physiol Biochem 2021; 127:97-101. [PMID: 31135232 DOI: 10.1080/13813455.2019.1618341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Benzimidazole, an anthelmintic used in the manufacture of human and veterinary drugs, is an important heterocyclic compound. In this work, I investigated the effect of drugs such as ricobendazole, thiabendazole, albendazole, and oxfendazole, on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) enzyme activity. As kinetic studies, Ki and IC50 values were calculated separately for each drug, respectively. Study findings have shown that benzimidazoles inhibit both AChE and BChE enzymes at the nanomolar level. The compound that best was inhibited the AChE enzyme ricobendazole, and it was that the best inhibited the BChE enzyme thiabendazole. IC50 and Ki values were calculated 123.02 nM, 28.68 ± 8.46 nM for AChE and 64.26 nM, 12.08 ± 2.18 nM for BChE respectively. The types of inhibition indicated by the drugs were investigated and they were found to show non-competitive inhibition.
Collapse
Affiliation(s)
- Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| |
Collapse
|
16
|
Sanabria R. Nanotechnological Improvement of Veterinary Anthelmintics. Pharm Nanotechnol 2021; 9:5-14. [PMID: 32448112 DOI: 10.2174/2211738508666200524233724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Helminths infections are among the most important problems in animal health and husbandry. Moreover, zoonotic helminths endanger rural communities, particularly in developing countries. Helminthiasis are not only important in relation to the harmful effects of parasites; additional issues like anthelmintic resistance spread became more important over time. As new anthelmintic development takes many years and millions of dollars of investment, some strategies are currently focused on the modification of already available drugs, in order to improve their efficacy and overcome their limitations. In this field, nanotechnology has brought a novel approach, showing advantages like the regulation of the drug's delivery and kinetics, reaching of specific targets, and possibilities to avoid the systemic spread and side effects. Taking this into account, the present review aims to introduce some of the current knowledge in anthelmintic improvement based on nanotechnology, and how researchers could benefit from this technology in order to overcome the drugs limitations. Finally, some insights into potential field applications are discussed, based on the most important concerns of current anthelmintic therapy.
Collapse
Affiliation(s)
- Rodrigo Sanabria
- Instituto Tecnologico Chascomus (INTECH)-CONICET-UNSAM. Av. Marino KM 8.2, (7130), Chascomús, Argentina
| |
Collapse
|
17
|
Racoviceanu R, Trandafirescu C, Voicu M, Ghiulai R, Borcan F, Dehelean C, Watz C, Aigner Z, Ambrus R, Coricovac DE, Cîrcioban D, Mioc A, Szuhanek CA, Şoica C. Solid Polymeric Nanoparticles of Albendazole: Synthesis, Physico-Chemical Characterization and Biological Activity. Molecules 2020; 25:E5130. [PMID: 33158183 PMCID: PMC7663605 DOI: 10.3390/molecules25215130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Albendazole is a benzimidazole derivative with documented antitumor activity and low toxicity to healthy cells. The major disadvantage in terms of clinical use is its low aqueous solubility which limits its bioavailability. Albendazole was incorporated into stable and homogeneous polyurethane structures with the aim of obtaining an improved drug delivery system model. Spectral and thermal analysis was used to investigate the encapsulation process and confirmed the presence of albendazole inside the nanoparticles. The in vitro anticancer properties of albendazole encapsulated in polyurethane structures versus the un-encapsulated compound were tested on two breast cancer cell lines, MCF-7 and MDA-MB-231, in terms of cellular viability and apoptosis induction. The study showed that the encapsulation process enhanced the antitumor activity of albendazole on the MCF-7 and MDA-MB-23 breast cancer lines. The cytotoxic activity manifested in a concentration-dependent manner and was accompanied by changes in cell morphology and nuclear fragmentation.
Collapse
Affiliation(s)
- Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.R.); (C.T.); (C.Ş.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.R.); (C.T.); (C.Ş.)
| | - Mirela Voicu
- Department of Pharmacology and Clinical Pharmacy, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.R.); (C.T.); (C.Ş.)
| | - Florin Borcan
- Department of Analytical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (F.B.); (D.C.)
| | - Cristina Dehelean
- Department of Toxicology, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.D.); (D.E.C.)
| | - Claudia Watz
- Department of Pharmaceutical Physics, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Zoltán Aigner
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6th Eotvos Str., 6720 Szeged, Hungary; (Z.A.); (R.A.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, 6th Eotvos Str., 6720 Szeged, Hungary; (Z.A.); (R.A.)
| | - Dorina Elena Coricovac
- Department of Toxicology, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.D.); (D.E.C.)
| | - Denisa Cîrcioban
- Department of Analytical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (F.B.); (D.C.)
| | - Alexandra Mioc
- Department of Anatomy, Physiology and Physiopathology, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Camelia Alexandrina Szuhanek
- Department of Orthodontics, Victor Babeș University of Medicine and Pharmacy, 9th Revolutiei din 1989 Bvd, 300041 Timisoara, Romania;
| | - Codruţa Şoica
- Department of Pharmaceutical Chemistry, Victor Babeș University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.R.); (C.T.); (C.Ş.)
| |
Collapse
|
18
|
Toxicological effects of some antiparasitic drugs on equine liver glutathione S-Transferase enzyme activity. J Pharm Biomed Anal 2019; 180:113048. [PMID: 31887670 DOI: 10.1016/j.jpba.2019.113048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Benzimidazoles are antiparasitic drugs having an extensive application field like agriculture, medicine, and especially in veterinary medicine. In this study, we report the effect of some benzimidazole drugs such as ricobendazole (RBZ), thiabendazole (TBZ), albendazole (ALBA) and oxfendazole (OFZ) on glutathione s-transferase (GST) enzyme activity. The kinetics studies, IC50 and Ki values of the tested drugs on GSTs enzyme activity were investigated. The obtained ranking of IC50 values were found to be approximately RBZ (53.31 μM, r2: 0.9778) < OFZ (57.75 μM, r2: 0.9630) < ALBA (63.00 μM, r2: 0.9443) < TBZ (69.30 μM, r2: 0.9491). And the obtained ranking of Ki values of the tested drugs (RBZ, TBZ, ALBA, and OFZ) for GSTs enzyme activity was found to be approximately 26.37 ± 2.96, 44.01 ± 5.74, 39.82 ± 3.98 and 30.14 ± 3.03 μM, respectively. Experimental results showed that tested the benzimidazoles drugs have some significant inhibitory effect on GSTs enzyme activity. And also, it was determined that RBZ, ALBA, OFZ are competitive inhibition, but TBZ is non-competitive inhibitors on GSTs enzyme activity. RBZ drug showed the best inhibitory effect with the lowest Ki value.
Collapse
|
19
|
Esperanza Adrover M, Pedernera M, Bonne M, Lebeau B, Bucalá V, Gallo L. Synthesis and characterization of mesoporous SBA-15 and SBA-16 as carriers to improve albendazole dissolution rate. Saudi Pharm J 2019; 28:15-24. [PMID: 31920429 PMCID: PMC6950956 DOI: 10.1016/j.jsps.2019.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023] Open
Abstract
Albendazole (ABZ, anti-parasitic active pharmaceutical ingredient) is a crystalline low water-soluble drug, thus the dissolution rate in gastrointestinal fluids is limited. Consequently, the improvement of the water solubility and dissolution rate of ABZ implies a great challenge for a more efficient treatment of hydatidosis. In this context, SBA-15 and SBA-16 ordered mesoporous silica materials were synthetized and loaded with ABZ. X-ray diffraction, FT-IR spectroscopy, nitrogen physisorption manometry, particle size distribution and scanning electronic microscopy were used to characterize unloaded and loaded materials (ABZ/SBA-15 and ABZ/SBA-16). The loaded ABZ amount in the carriers was estimated by elemental analysis. For the loaded materials, the drug solubility and release profile were evaluated. In addition, mathematical models were compared to explain the dissolution kinetics of ABZ from mesoporous solids. ABZ was successfully loaded into the mesopores. The amorphous state of the adsorbed ABZ was confirmed by differential scanning calorimetry that resulted in a notable increment in the dissolution rate compared to crystalline ABZ. Drug release behaviors were well simulated by the Weibull model for ABZ/SBA-15 and by the Gompertz function for pure ABZ and ABZ/SBA-16. The SBA-15 carrier exhibited the highest drug loading and dissolution rate becoming a promising material to improve ABZ bioavailability.
Collapse
Affiliation(s)
- María Esperanza Adrover
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000 Bahía Blanca, Argentina.,Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Marisa Pedernera
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000 Bahía Blanca, Argentina.,Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Magali Bonne
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, 68100 Mulhouse, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Bénédicte Lebeau
- Université de Haute Alsace (UHA), CNRS, IS2M UMR 7361, 68100 Mulhouse, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Verónica Bucalá
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000 Bahía Blanca, Argentina.,Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Loreana Gallo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000 Bahía Blanca, Argentina.,Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
20
|
Nalin D. Antihelminthic Efficacy Against Trichuriasis. Clin Infect Dis 2019; 69:376. [DOI: 10.1093/cid/ciy1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- David Nalin
- Center for Immunology and Microbial Diseases, Albany Medical College, New York
| |
Collapse
|
21
|
Soisuwan S, Teeranachaideekul V, Wongrakpanich A, Langguth P, Junyaprasert VB. Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur J Pharm Biopharm 2019; 137:68-76. [DOI: 10.1016/j.ejpb.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 11/29/2022]
|
22
|
Nanocrystals of Poorly Soluble Drugs: Drug Bioavailability and Physicochemical Stability. Pharmaceutics 2018; 10:pharmaceutics10030134. [PMID: 30134537 PMCID: PMC6161002 DOI: 10.3390/pharmaceutics10030134] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022] Open
Abstract
Many approaches have been developed over time to overcome the bioavailability limitations of poorly soluble drugs. With the advances in nanotechnology in recent decades, science and industry have been approaching this issue through the formulation of drugs as nanocrystals, which consist of “pure drugs and a minimum of surface active agents required for stabilization”. They are defined as “carrier-free submicron colloidal drug delivery systems with a mean particle size in the nanometer range, typically between 10–800 nm”. The primary importance of these nanoparticles was the reduction of particle size to nanoscale dimensions, with an increase in the particle surface area in contact with the dissolution medium, and thus in bioavailability. This approach has been proven successful, as demonstrated by the number of such drug products on the market. Nonetheless, despite the definition that indicates nanocrystals as a “carrier-free” system, surface active agents are necessary to prevent colloidal particles aggregation and thus improve stability. In addition, in more recent years, nanocrystal properties and technologies have attracted the interest of researchers as a means to obtain colloidal particles with modified biological properties, and thus their interest is now also addressed to modify the drug delivery and targeting. The present work provides an overview of the achievements in improving the bioavailability of poorly soluble drugs according to their administration route, describes the methods developed to overcome physicochemical and stability-related problems, and in particular reviews different stabilizers and surface agents that are able to modify the drug delivery and targeting.
Collapse
|