1
|
Singh S, Supaweera N, Nwabor OF, Yusakul G, Chaichompoo W, Suksamrarn A, Panpipat W, Chunglok W. Polymeric scaffold integrated with nanovesicle-entrapped curcuminoids for enhanced therapeutic efficacy. Nanomedicine (Lond) 2024; 19:1313-1329. [PMID: 38884141 PMCID: PMC11285238 DOI: 10.1080/17435889.2024.2347823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: Polymeric scaffolds were developed fortified with nanovesicle-encapsulated individual curcumin (CUR) and tetrahydrocurcumin (THC) for improved therapeutic efficacy due to their low stability and efficacy in native form. Method: Nanovesicle-encapsulated individual CUR and THC were fabricated using thin-film hydration techniques and characterized. Results & conclusion: CUR/THC in native and vesicle-encapsulated form demonstrated diminished LPS-instigate nitric oxide (NO) levels in macrophage cells in a concentration-dependent demeanor. However, vesicle-encapsulated CUR/THC inhibited NO production at lower concentrations, compared with the native CUR/THC form. Furthermore, the scaffold fortified with vesicle-encapsulated CUR/THC demonstrated improved physical properties with excellent antioxidant, biocompatibility, and human keratinocyte cell proliferation ability. The results recommended that nanovesicle-encapsulated THC can be retained as a potential substitute for CUR with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Sudarshan Singh
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nassareen Supaweera
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Ozioma F Nwabor
- Department of Biomedical & Chemical Engineering, College of Engineering & Computer Science, Syracuse University, Syracuse, NY 13244, USA
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food & Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry & Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Worawan Panpipat
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- School of Agricultural Technology & Food Industry, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology & Innovation Research Center of Excellence, Research & Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
2
|
Kim KH, Ki MR, Min KH, Pack SP. Advanced Delivery System of Polyphenols for Effective Cancer Prevention and Therapy. Antioxidants (Basel) 2023; 12:antiox12051048. [PMID: 37237914 DOI: 10.3390/antiox12051048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Polyphenols from plants such as fruits and vegetables are phytochemicals with physiological and pharmacological activity as potential drugs to modulate oxidative stress and inflammation associated with cardiovascular disease, chronic disease, and cancer. However, due to the limited water solubility and bioavailability of many natural compounds, their pharmacological applications have been limited. Researchers have made progress in the development of nano- and micro-carriers that can address these issues and facilitate effective drug delivery. The currently developed drug delivery systems maximize the fundamental effects in various aspects such as absorption rate, stability, cellular absorption, and bioactivity of polyphenols. This review focuses on the antioxidant and anti-inflammatory effects of polyphenols enhanced by the introduction of drug delivery systems, and ultimately discusses the inhibition of cancer cell proliferation, growth, and angiogenesis.
Collapse
Affiliation(s)
- Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
3
|
Mukhtar M, Szakonyi Z, Farkas Á, Burian K, Kókai D, Ambrus R. Freeze-dried vs spray-dried nanoplex DPIs based on chitosan and its derivatives conjugated with hyaluronic acid for tuberculosis: In vitro aerodynamic and in silico deposition profiles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
4
|
Biopolymer Hydrogel Scaffolds Containing Doxorubicin as A Localized Drug Delivery System for Inhibiting Lung Cancer Cell Proliferation. Polymers (Basel) 2021; 13:polym13203580. [PMID: 34685337 PMCID: PMC8540863 DOI: 10.3390/polym13203580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
A hydrogel scaffold is a localized drug delivery system that can maintain the therapeutic level of drug concentration at the tumor site. In this study, the biopolymer hydrogel scaffold encapsulating doxorubicin was fabricated from gelatin, sodium carboxymethyl cellulose, and gelatin/sodium carboxymethyl cellulose mixture using a lyophilization technique. The effects of a crosslinker on scaffold morphology and pore size were determined using scanning electron microscopy. The encapsulation efficiency and the release profile of doxorubicin from the hydrogel scaffolds were determined using UV-Vis spectrophotometry. The anti-proliferative effect of the scaffolds against the lung cancer cell line was investigated using an MTT assay. The results showed that scaffolds made from different types of natural polymer had different pore configurations and pore sizes. All scaffolds had high encapsulation efficiency and drug-controlled release profiles. The viability and proliferation of A549 cells, treated with gelatin, gelatin/SCMC, and SCMC scaffolds containing doxorubicin significantly decreased compared with control. These hydrogel scaffolds might provide a promising approach for developing a superior localized drug delivery system to kill lung cancer cells.
Collapse
|
5
|
Xu P, Dai Z, Li D, Liu C, Wu C, Song J. Preparation, optimization, characterization, and in vitro bioaccessibility of a lutein microparticle using spray drying with β‐cyclodextrin and stevioside. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peng‐Xiang Xu
- Department of Food Science and Technology College of Light Industry and Food Engineering Nanjing Forestry University Nanjing China
| | - Zhu‐Qing Dai
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Da‐Jing Li
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Chun‐Quan Liu
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Cai‐E. Wu
- Department of Food Science and Technology College of Light Industry and Food Engineering Nanjing Forestry University Nanjing China
- Co‐Innovation Center for Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
| | - Jiang‐Feng Song
- Institute of Agro‐product Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| |
Collapse
|
8
|
Obaidi I, Cassidy H, Ibáñez Gaspar V, McCaul J, Higgins M, Halász M, Reynolds AL, Kennedy BN, McMorrow T. Curcumin Sensitizes Kidney Cancer Cells to TRAIL-Induced Apoptosis via ROS Mediated Activation of JNK-CHOP Pathway and Upregulation of DR4. BIOLOGY 2020; 9:E92. [PMID: 32370057 PMCID: PMC7284747 DOI: 10.3390/biology9050092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Ismael Obaidi
- NIBRT|National Institute for Bioprocessing, Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., A94 X099 Dublin, Ireland
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Hilary Cassidy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Verónica Ibáñez Gaspar
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Jasmin McCaul
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Michael Higgins
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Melinda Halász
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Alison L. Reynolds
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- UCD School of Veterinary Medicine, Rm 232, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Breandan N. Kennedy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Tara McMorrow
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| |
Collapse
|