1
|
Hayati F, Ramadani AP, Putri CA, Chabib L, Putri FU, Nugroho AE. A Wound-Healing Effect of Nanoemulgel of Kangkung ( Ipomoea Reptans, Poir) Leaf Extract in STZ Diabetic Rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:51-59. [PMID: 39169925 PMCID: PMC11335055 DOI: 10.4103/jpbs.jpbs_1139_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 03/18/2024] [Indexed: 08/23/2024] Open
Abstract
Context The chronic diabetes mellitus (DM) condition may lead to diabetic wounds that increase morbidity in patients. Ipomoea reptans Poir leaves have been widely reported to possess anti-diabetic activity due to their flavonoid contents. To enhance drug penetration, a nanoemulgel preparation was formulated. Aims This study aimed to evaluate the activity of nanoemulgel preparations of Ipomoea reptans Poir leaf extract on diabetic and non-diabetic wound-healing using male Wistar rats. Settings and Design This research was an experimental study with a post-test only control group design. Materials and Methods The rats (n = 32) were randomly divided into two groups: diabetic (induced by 40 mg/kg BW STZ) and non-diabetic model. Each model consisted of four groups: normal, positive control, I. reptans leaf extract (IRLE), and nanoemulgel of I. reptans leaf extract (NIRLE). All the animals studied were shaved from the back, and a 2.5 × 0.5 cm full-thickness excision wound was made. IRLE and NIRLE were administered daily and observed for the wound-healing process. Statistical Analysis Used The one-way analysis of variance with the Tukey post-hoc test was used for the statistical analysis. Results A NIRLE formulation has been developed to produce a preparation that meets the physical requirements. IRLE and NIRLE possessed wound-healing activity in normal and diabetic rat models. However, the wound-healing process in diabetic rats treated with NIRLE was faster than those with IRLE. Conclusions NIRLE increased the activity of wound-healing effect of I. reptans leaves on diabetic rats in comparison with the extract form.
Collapse
Affiliation(s)
- Farida Hayati
- Department of Pharmacy, Universitas Islam Indonesia, Sleman Regency, Special Region of Yogyakarta, Indonesia
| | - Arba P. Ramadani
- Department of Pharmacy, Universitas Islam Indonesia, Sleman Regency, Special Region of Yogyakarta, Indonesia
| | - Cynthia A. Putri
- Department of Pharmacy, Universitas Islam Indonesia, Sleman Regency, Special Region of Yogyakarta, Indonesia
| | - Lutfi Chabib
- Department of Pharmacy, Universitas Islam Indonesia, Sleman Regency, Special Region of Yogyakarta, Indonesia
| | - Farah U. Putri
- Department of Pharmacy, Universitas Islam Indonesia, Sleman Regency, Special Region of Yogyakarta, Indonesia
| | - Agung E. Nugroho
- Faculty of Pharmacy, Universitas Gadjah Mada, Sleman Regency, Special Region of Yogyakarta, Indonesia
| |
Collapse
|
2
|
Iskandar B, Mei HC, Liu TW, Lin HM, Lee CK. Evaluating the effects of surfactant types on the properties and stability of oil-in-water Rhodiola rosea nanoemulsion. Colloids Surf B Biointerfaces 2024; 234:113692. [PMID: 38104466 DOI: 10.1016/j.colsurfb.2023.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Different types and ratios of surfactant, co-surfactant, and oil phase, have a greater impact on nanoemulsion preparation. The presence of surfactants in the nanoemulsion can reduce surface tension and characteristic stability. In this study, four groups of oil-in-water (O/W) nanoemulsions (NEs) with different ratios of surfactant and co-surfactant, and two oils were formulated as carriers of Rhodiola rosea. The variable optimization was investigated and then indicated as optimization group A (Opt A) with the formula of 10% of transcutol, 16.63% of tween 80, Opt B with 10% of tween 80, 29.87% of span 80, Opt C with 28.42% of transcutol, 30% of labrasol, and Opt D with 30% of transcutol, 30% of tween 80. Labrafac and soybean oil were used as the oil phase. The optimized formula using the response surface method (RSM) by design expert software showed the ideal conditions with a higher desirability score. Desirability score are 0.72% (Opt A), 0.81% (Opt B), 0.76% (Opt C) and 0.98% (Opt D), the desirability rating close to 1 indicates a high possibility that the projected values would closely match the experimental results for the optimum formula. All of the optimized formulation were also checked for the characteristics of nanoemulsion including particle size, polydispersity index (PDI), zeta potential, viscosity, encapsulation efficiency, transmission electron microscope (TEM), antioxidant activity, skin irritation test and stability studies. Our study provides a promising combination of surfactant-co-surfactant and oil phases to produce a stable nanoemulsion that can be used in pharmaceuticals and cosmetics in the future.
Collapse
Affiliation(s)
- Benni Iskandar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmaceutical Technology, Riau College of Pharmaceutical Sciences (STIFAR), Pekanbaru 28292, Riau, Indonesia
| | - Hui-Ching Mei
- Department of Science Education, National Taipei University of Education, Taipei 106, Taiwan
| | - Ta-Wei Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
3
|
Bhardwaj K, Sharma A, Kumar R, Tyagi V, Kumar R. Improving Oral Bioavailability of Herbal Drugs: A Focused Review of Self-Emulsifying Drug Delivery System for Colon Cancer. Curr Drug Deliv 2024; 21:389-402. [PMID: 37151062 DOI: 10.2174/1567201820666230505113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023]
Abstract
One of the most frequent malignancies in the world is colon cancer. Both men and women are affected in the same way. The colon, which makes up the last part of the digestive system and is where water and minerals from food waste are absorbed, is vulnerable to cancer. The most suitable technique of drug administration is oral administration. Aqueous solubility is low in more than 40% of novel chemical entities, resulting in poor oral drug administration. In the formulation of oral medications, low inconsistent bioavailability is a major challenge. Increasing medication bioavailability is one of the most difficult aspects of pharmacological development. Self-nano-emulsifying drug delivery systems (SNEDDS) have been a potential platform for biopharmaceutical classification system class II and IV drugs for oral delivery. Enhanced bioavailability and solubility, control of toxicity, pharmacological effects, improved stability, improved tissue macrophage dispersion, prolonged delivery, and resistance to physical and chemical degradation are just a few benefits of SNEDDS for herbal drugs. To increase activity and address problems associated with herbal drugs, nanosized modern drug delivery technologies are expected to have a promising future. Improved patient compliance, fewer problems with liquid SNEDDS filled in capsules, and enhanced stability SNEDDS are all benefits of converting liquid SNEDDS to solid oral dosage forms or solid SNEDDS. SNEDDS differs from previous solubility augmentation methods due to its biodegradable components, simplicity of large-scale production, and range of drug-targeting possibilities.
Collapse
Affiliation(s)
- Khushboo Bhardwaj
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Arun Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Varnit Tyagi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| |
Collapse
|
4
|
Jahan RN, Khan Z, Akhtar MS, Ansari MD, Solanki P, Ahmad FJ, Aqil M, Sultana Y. Development of Bedaquiline-Loaded SNEDDS Using Quality by Design (QbD) Approach to Improve Biopharmaceutical Attributes for the Management of Multidrug-Resistant Tuberculosis (MDR-TB). Antibiotics (Basel) 2023; 12:1510. [PMID: 37887211 PMCID: PMC10603879 DOI: 10.3390/antibiotics12101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Background: The ever-growing emergence of antibiotic resistance associated with tuberculosis (TB) has become a global challenge. In 2012, the USFDA gave expedited approval to bedaquiline (BDQ) as a new treatment for drug-resistant TB in adults when no other viable options are available. BDQ is a diarylquinoline derivative and exhibits targeted action on mycobacterium tuberculosis, but due to poor solubility, the desired therapeutic action is not achieved. Objective: To develop a QbD-based self-nanoemulsifying drug delivery system of bedaquiline using various oils, surfactants, and co-surfactants. Methods: The quality target product profile (QTPP) and critical quality attributes (CQAs) were identified with a patient-centric approach, which facilitated the selection of critical material attributes (CMAs) during pre-formulation studies and initial risk assessment. Caprylic acid as a lipid, propylene glycol as a surfactant, and Transcutol-P as a co-surfactant were selected as CMAs for the formulation of bedaquiline fumarate SNEDDS. Pseudo-ternary phase diagrams were constructed to determine the optimal ratio of oil and Smix. To optimize the formulation, a Box-Benkhen design (BBD) was used. The optimized formulation (BDQ-F-SNEDSS) was further evaluated for parameters such as droplet size, polydispersity index (PDI), percentage transmittance, dilution studies, stability studies, and cell toxicity through the A549 cell. Results: Optimized BDQ-F-SNEDDS showed well-formed droplets of 98.88 ± 2.1 nm with a zeta potential of 21.16 mV. In vitro studies showed enhanced drug release with a high degree of stability at 25 ± 2 °C, 60 ± 5% and 40 ± 2 °C, 75 ± 5%. Furthermore, BDQ-F-SNEDDS showed promising cell viability in A549 cells, indicating BDQ-F-SNEDDS as a safer formulation for oral delivery. Conclusion: Finally, it was concluded that the utilization of a QbD approach in the development of BDQ-F-loaded SNEDDS offers a promising strategy to improve the biopharmaceutical properties of the drug, resulting in potential cost and time savings.
Collapse
Affiliation(s)
- Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Md. Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia
| | - Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Pavitra Solanki
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| | - Farhan J. Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| |
Collapse
|
5
|
Mahmood A, Khan L, Ijaz M, Nazir I, Naseem M, Tahir MA, Aamir MN, Rehman MU, Asim MH. Enhanced Intestinal Permeability of Cefixime by Self-Emulsifying Drug Delivery System: In-Vitro and Ex-Vivo Characterization. Molecules 2023; 28:molecules28062827. [PMID: 36985803 PMCID: PMC10055996 DOI: 10.3390/molecules28062827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Cefixime (CFX) belongs to a group of third-generation cephalosporin antibiotics with low water solubility and low intestinal permeability, which ultimately leads to significantly low bioavailability. AIM This study aimed to increase solubility, improve drug release, and intestinal permeability of CFX by loading into SEDDS. METHODS Suitable excipients were selected based on drug solubility, percent transmittance, and emulsification efficiency. Pseudo-ternary phase diagram was fabricated for the identification of effective self-emulsification region. The best probably optimized formulations were further assessed for encumbered drug contents, emulsification time, cloud point measurement, robustness to dilution, mean droplet size, zeta potential, polydispersity index (PDI), and thermodynamic and chemical stability. Moreover, in vitro drug release studies and ex vivo permeation studies were carried out and apparent drug permeability Papp of different formulations was compared with the marketed brands of CFX. RESULTS Amongst the four tested SEDDS formulations, F-2 formulation exhibited the highest drug loading of 96.32%, emulsification time of 40.37 ± 3 s, mean droplet size of 19.01 ± 1.12 nm, and demonstrated improved long-term thermodynamic and chemical stability when stored at 4 °C. Release studies revealed a drug release of 97.32 ± 4.82% within 60 min in simulated gastric fluid. Similarly, 97.12 ± 5.02% release of CFX was observed in simulated intestinal fluid within 120 min; however, 85.13 ± 3.23% release of CFX was observed from the marketed product. Ex vivo permeation studies displayed a 2.7-fold increase apparent permeability compared to the marketed product in 5 h. CONCLUSION Owing to the significantly improved drug solubility, in vitro release and better antibacterial activity, it can be assumed that CFX-loaded SEDDS might lead to an increased bioavailability and antibacterial activity, possibly leading to improved therapeutic effectiveness.
Collapse
Affiliation(s)
- Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi P.O. Box 112612, United Arab Emirates
- Health and Biomedical Research Centre (HBRC), Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Laraib Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Mahrukh Naseem
- Department of Zoology, University of Baluchistan, Quetta 87300, Pakistan
| | - Muhammad Azam Tahir
- Department of Pharmacy, Khalid Mahmood Institute of Medical Sciences, Sialkot 51310, Pakistan
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | | |
Collapse
|
6
|
Nanophytosomes Loading Andrographis paniculata Hydroalcoholic Extract: Promising Drug Delivery for Hepatoprotective Efficacy. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Andrographis paniculata Dosage Forms and Advances in Nanoparticulate Delivery Systems: An Overview. Molecules 2022; 27:molecules27196164. [PMID: 36234698 PMCID: PMC9570691 DOI: 10.3390/molecules27196164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Andrographis paniculata is a well-known Asian medicinal plant with a major phytoconstituent of diterpene lactones, such as andrographolide, 14-deoxyandrographolide, and neoandrographolide. A World Health Organization (WHO) monograph on selected medicinal plants showed that A. paniculata extracts and its major diterpene lactones have promising anti-inflammatory, antidiabetic, antimalarial, anticancer, antifungal, antibacterial, antioxidant, and hypoglycemic activities. However, these active phytochemicals have poor water solubility and bioavailability when delivered in a conventional dosage form. These biological barriers can be mitigated if the extract or isolated compound are delivered as nanoparticles. This review discusses existing studies and marketed products of A. paniculata in solid, liquid, semi-solid, and gaseous dosage forms, either as an extract or isolated pure compounds, as well as their deficits in reaching maximum bioavailability. The pharmaceutics and pharmacological activity of A. paniculata as a nano-delivery system are also discussed.
Collapse
|
8
|
Yao S, Chen N, Li M, Wang Q, Sun X, Feng X, Chen Y. Elucidating the Particle Size Effect of Andrographolide Suspensions on Their IVIVC Performance in Oral Absorption. Eur J Pharm Biopharm 2022; 179:65-73. [PMID: 36058447 DOI: 10.1016/j.ejpb.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
The study aimed to explore the size effect on the in vitro-in vivo correlation (IVIVC) in the oral absorption of andrographolide nanosuspensions (Ag-NS). Ag-NS with controllable particle sizes were prepared by ultrasonic dispersion method, and the formulation and process parameters were optimized through single factor experiments using mean particle size, polydispersity index, and stability as evaluation indicators. The morphology of Ag-NS was observed by scanning electron microscopy (SEM), and the crystalline state of the nanosuspensions was characterized by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). The dissolution tests were carried out with the paddle method in two different mediums simulating the pH conditions in intestinal fluid pH 6.8 and gastric fluid (pH 1.2), respectively. The pharmacokinetic behaviors were investigated in rats after oral administration, and a deconvolution approach was introduced to determine the correlation between in vitro dissolution and in vivo absorption (IVIVC). The formulation with the use of lecithin and PEG-800 as stabilizers showed its potential in the size-controllable preparation of Ag-NS. Via altering the ultrasonication amplitude and time, three Ag-NS suspensions with particle sizes of particle size, i.e., Ag-NS 250 (244.3 ± 0.4 nm), Ag-NS 450 (464.3 ± 32.2 nm), Ag-NS 1000 (1015 ± 36.1 nm) were prepared. Their morphological and crystal characteristics did not change during the size reduction process, but both of their in vitro dissolution and in vivo absorption were improved. Relatively better IVIVC performance was observed with the in vitro dissolution data at pH 6.8 (r > 0.9). With the reduction of particle size, the in vivo absorption fraction was more closed to the level of the in vitro dissolution. In conclusion, the decrease in particle size would improve the dissolution and absorption of Ag-NS, and also affect their IVIVC performance. The study would facilitate the design and quality control of Ag-NS in terms of particle size and dissolution specifications.
Collapse
Affiliation(s)
- Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Mingming Li
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, China
| | - Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Xinxing Sun
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Kumar R, Kumar R, Khurana N, Singh SK, Khurana S, Verma S, Sharma N, Vyas M, Dua K, Khursheed R, Awasthi A, Vishwas S. Improved neuroprotective activity of Fisetin through SNEDDS in ameliorating the behavioral alterations produced in rotenone-induced Parkinson's model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50488-50499. [PMID: 35230633 DOI: 10.1007/s11356-022-19428-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Fisetin is a polyphenolic flavonoid reported to have antioxidant, anti-inflammatory, and anti-cancer activities. However, it loses its importance as an effective phytochemical due to its poor water solubility and lower bioavailability. In the present study, the self-nanoemulsifying drug delivery system (SNEDDS) of fisetin was developed in order to improve its pharmacological activity. The developed SNEDDS of fisetin was evaluated for improving the rotenone-induced behavioral changes in the rats, and its efficacy was compared with naïve fisetin. It was noticed that fisetin loaded in the SNEDDS formulation significantly (p < 0.001) ameliorated the rotenone-induced alteration in the body weight, grip strength, beam walk, postural instability, etc., in rats when compared to the effect of naïve fisetin. Naïve fisetin significantly (p < 0.05) ameliorated the effect of rotenone on the level of dopamine only at a higher dose. Whereas, SNEDDS of fisetin produced a significant (p < 0.05) effect at both dose levels when compared with the diseased group as well as also produced a significant (p < 0.05) effect when compared with the naïve fisetin group. The results of histopathological examination revealed about the neuroprotective effect of SNEDDS loaded with fisetin as observed through the protection of neuronal damage. From this study, it was concluded that SNEDDS improved the anti-Parkinsonian activity of fisetin by improving the behavioral alteration produced by rotenone due to enhancement in its solubility and bioavailability.
Collapse
Affiliation(s)
- Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shelly Khurana
- Department of Pharmacy, Government Polytechnic College, Amritsar, Punjab, India
| | - Surajpal Verma
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
11
|
de Oliveira MC, Bruschi ML. Self-Emulsifying Systems for Delivery of Bioactive Compounds from Natural Origin. AAPS PharmSciTech 2022; 23:134. [PMID: 35534702 DOI: 10.1208/s12249-022-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Nature has been used as therapeutic resources in the treatment of diseases for many years. However, some natural compounds have poor water solubility. Therefore, physicochemical strategies and technologies are necessary for development of systems for carrying these substances. The self-emulsifying drug delivery systems (SEDDS) have been used as carriers of hydrophobic compounds in order to increase the solubility and absorption, improving their bioavailability. SEDDS are constituted with a mixture of oils and surfactants which, when come into contact with an aqueous medium under mild agitation, can form emulsions. In the last years, a wide variety of self-emulsifying formulations containing bioactive compounds from natural origin has been developed. This review provides a comprehensive overview of the main excipients and natural bioactive compounds composing SEDDS. In addition, applications, new technologies and innovation are reviewed as well. Examples of self-emulsifying formulations administered in different sites are also considered for a better understanding of the use of this strategy to modify the delivery of compounds from natural origin.
Collapse
|
12
|
Goyal R, Bala R, Sindhu RK, Zehravi M, Madaan R, Ramproshad S, Mondal B, Dey A, Rahman MH, Cavalu S. Bioactive Based Nanocarriers for the Treatment of Viral Infections and SARS-CoV-2. NANOMATERIALS 2022; 12:nano12091530. [PMID: 35564239 PMCID: PMC9104170 DOI: 10.3390/nano12091530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
Since ancient times, plants have been used for their medicinal properties. They provide us with many phytomolecules, which serve a synergistic function for human well-being. Along with anti-microbial, plants also possess anti-viral activities. In Western nations, about 50% of medicines were extracted from plants or their constituents. The spread and pandemic of viral diseases are becoming a major threat to public health and a burden on the financial prosperity of communities worldwide. In recent years, SARS-CoV-2 has made a dramatic lifestyle change. This has promoted scientists not to use synthetic anti-virals, such as protease inhibitors, nucleic acid analogs, and other anti-virals, but to study less toxic anti-viral phytomolecules. An emerging approach includes searching for eco-friendly therapeutic molecules to develop phytopharmaceuticals. This article briefly discusses numerous bioactive molecules that possess anti-viral properties, their mode of action, and possible applications in treating viral diseases, with a special focus on coronavirus and various nano-formulations used as a carrier for the delivery of phytoconstituents for improved bioavailability.
Collapse
Affiliation(s)
- Ravi Goyal
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Rajni Bala
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Rakesh K. Sindhu
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Reecha Madaan
- Department of Pharmacognosy, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.G.); (R.B.); (R.M.)
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (R.K.S.); (M.H.R.); (S.C.)
| |
Collapse
|
13
|
Seo EB, du Plessis LH, Viljoen JM. Solidification of Self-Emulsifying Drug Delivery Systems as a Novel Approach to the Management of Uncomplicated Malaria. Pharmaceuticals (Basel) 2022; 15:ph15020120. [PMID: 35215233 PMCID: PMC8877057 DOI: 10.3390/ph15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria affects millions of people annually, especially in third-world countries. The mainstay of treatment is oral anti-malarial drugs and vaccination. An increase in resistant strains of malaria parasites to most of the current anti-malarial drugs adds to the global burden. Moreover, existing and new anti-malarial drugs are hampered by significantly poor aqueous solubility and low permeability, resulting in low oral bioavailability and patient noncompliance. Lipid formulations are commonly used to increase solubility and efficacy and decrease toxicity. The present review discusses the findings from studies focusing on specialised oral lipophilic drug delivery systems, including self-emulsifying drug delivery systems (SEDDSs). SEDDSs facilitate the spontaneous formation of liquid emulsions that effectively solubilise the incorporated drugs into the gastrointestinal tract and thereby improve the absorption of poorly-soluble anti-malaria drugs. However, traditional SEDDSs are normally in liquid dosage forms, which are delivered orally to the site of absorption, and are hampered by poor stability. This paper discusses novel solidification techniques that can easily and economically be up-scaled due to already existing industrial equipment that could be utilised. This method could, furthermore, improve product stability and patient compliance. The possible impact that solid oral SEDDSs can play in the fight against malaria is highlighted.
Collapse
|
14
|
Hanif M, Ameer N, Shehzad MA, Azeem M, Rana HL, Usman M. Improved anti-inflammatory effect of curcumin by designing self-emulsifying drug delivery system. Drug Dev Ind Pharm 2021; 47:1432-1438. [PMID: 34779318 DOI: 10.1080/03639045.2021.2001486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose of present study was to prepare and evaluate self-emulsifying drug delivery system (SEDDS) of curcumin (Cur) to enhance its solubility and percentage release for the evaluation of anti-inflammatory effect. Curcumin loaded SEDDS formulation was prepared, and zones of self-emulsification were recognized by dilution method for the construction of phase diagram. Lauroglycol FCC, Tween 80 (surfactant), and Transcutol HP (co-surfactant) were selected based on their solubility and highest emulsion region in phase diagram. Thermodynamic stability of Cur-SEDDS was calculated through globule size, zeta potential, polydispersity index (PDI), viscosity and pH. Cur-SEDDS were also characterized by encapsulation efficiency (EE %), FT-IR, in vitro release, and in vivo anti-inflammatory effect. Results revealed that droplet size of Cur-SEDDS was 19.77 ± 0.03 nm with their PDI 0.22 ± 0.19, zeta potential -19.33 ± 0.94 and viscosity 25.68 ± 0.86 cp. EE % of Cur-SEDDS was found to be 94.99 ± 0.38%, percentage release 65.83% compared with pure curcumin powder. The designed formulation possesses significant anti-inflammatory activity in paw edema when compared with positive control in carrageenan induced rat paw edema assay. Newly developed Cur-SEDDS with enhanced curcumin solubility, percentage release and better anti-inflammatory action may be an alternative source of oral delivery of curcumin.
Collapse
Affiliation(s)
- Muhammad Hanif
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| | - Nabeela Ameer
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| | | | - Muhammad Azeem
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| | - Hafsa Latif Rana
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| | - Muhammad Usman
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan
| |
Collapse
|
15
|
Antiviral Activities of Andrographolide and Its Derivatives: Mechanism of Action and Delivery System. Pharmaceuticals (Basel) 2021; 14:ph14111102. [PMID: 34832884 PMCID: PMC8619093 DOI: 10.3390/ph14111102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Andrographispaniculata (Burm.f.) Nees has been used as a traditional medicine in Asian countries, especially China, India, Vietnam, Malaysia, and Indonesia. This herbaceous plant extract contains active compounds with multiple biological activities against various diseases, including the flu, colds, fever, diabetes, hypertension, and cancer. Several isolated compounds from A. paniculata, such as andrographolide and its analogs, have attracted much interest for their potential treatment against several virus infections, including SARS-CoV-2. The mechanisms of action in inhibiting viral infections can be categorized into several types, including regulating the viral entry stage, gene replication, and the formation of mature functional proteins. The efficacy of andrographolide as an antiviral candidate was further investigated since the phytoconstituents of A. paniculata exhibit various physicochemical characteristics, including low solubility and low bioavailability. A discussion on the delivery systems of these active compounds could accelerate their development for commercial applications as antiviral drugs. This study critically reviewed the current antiviral development based on andrographolide and its derivative compounds, especially on their mechanism of action as antiviral drugs and drug delivery systems.
Collapse
|
16
|
Choradiya BR, Patil SB. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Han T, Wang M, Li W, An M, Fu H. Bmk9 and Uricase Nanoparticle Complex for the Treatment of Gouty Arthritis and Uric Acid Nephropathy. J Biomed Nanotechnol 2021; 17:2071-2084. [PMID: 34706807 DOI: 10.1166/jbn.2021.3168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Uric acid is the final product of purine metabolism, and excessive serum uric acid can cause gouty arthritis and uric acid nephropathy. Therefore, lowering the uric acid level and alleviating inflammation in the body are the key points to treating these diseases. A stable nanosuspension of peptide BmK9 was prepared by the precipitation-ultrasonication method. By combining uricase on the surface of a positively charged carrier, a complex consisting of neutral rod-shaped BmK9 and uricase nanoparticles (Nplex) was formed to achieve the delivery of BmK9 and uricase, respectively. The formulation of Nplex has a diameter of 180 nm and drug loading up to 200%, which releases BmK9 and uricase slowly and steadily in drug release tests in vitro. There was significantly improved pharmacokinetic behavior of the two drugs because Nplex prolonged the half-life and increased tissue accumulation. Histological assessments showed that the dual drug Nplex can reduce the inflammation response in acute gouty arthritis and chronic uric acid nephropathy in vivo. In the macrophage system, there was lower toxicity and increased beneficial effect on inflammation with Nplex than free BmK9 or uricase. Collectively, this novel formulation provides a dual drug delivery system that can treat gouty arthritis and uric acid nephropathy.
Collapse
Affiliation(s)
- Tianjiao Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Meiying Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Wenchao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Mingxing An
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Hongzheng Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| |
Collapse
|
18
|
Abd El-Halim SM, Mamdouh MA, Eid SM, Ibrahim BMM, Aly Labib DA, Soliman SM. The Potential Synergistic Activity of Zolmitriptan Combined in New Self-Nanoemulsifying Drug Delivery Systems: ATR-FTIR Real-Time Fast Dissolution Monitoring and Pharmacodynamic Assessment. Int J Nanomedicine 2021; 16:6395-6412. [PMID: 34566412 PMCID: PMC8456549 DOI: 10.2147/ijn.s325697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose The current work aimed to overcome the poor permeability and undesirable adverse effects of Zolmitriptan (ZMT) and to increase its efficacy in the treatment of acute migraine by exploiting the synergistic effect of the essential oil, lavender, to fabricate ZMT self-nanoemulsifying drug delivery systems (ZMT-SNEDDS). Methods ZMT-SNEDDS were fabricated based on full factorial design (32) to statistically assess the impact of oil and surfactant concentrations on the nanoemulsion globule size, zeta potential and percentage drug dissolution efficiency. An ATR-FTIR method was developed and validated for continuous real-time monitoring of ZMT dissolution and permeation. The dose of the optimized ZMT-SNEDDS used in the efficacy study was selected according to the acute toxicity study. The efficacy study was performed on migraineous rats induced by nitroglycerin and was evaluated by the activity cage and thermal tests, electroencephalogram, electroconvulsive stimulation, and biochemical analysis of brain tissue. Finally, histopathological and immunohistochemical examinations of the cerebra were carried out. Results Upon dilution, the optimized ZMT-SNEDDS (F5) exhibited nanosized spherical droplets of 19.59±0.17 nm with narrow size distribution, zeta potential (-23.5±1.17mV) and rapid emulsification characteristics. ATR-FTIR spectra elucidated the complete time course of dissolution and permeation, confirming F5 superior performance. Moreover, ZMT-SNEDDS (F5) showed safety in an acute toxicity study. ZMT concentration in rat brain tissues derived from F5 was lower compared to that of ZMT solution, yet its effect was better on the psychological state, algesia, as well as maintaining normal brain electrical activity and delayed convulsions. It counteracted the cerebral biochemical alternations induced by nitroglycerin, which was confirmed by histopathological examination. Conclusion In a nutshell, these findings corroborated the remarkable synergistic efficacy and the high potency of lavender oil-based ZMT-SNEDDS in migraine management compared to the traditional zolmitriptan solution.
Collapse
Affiliation(s)
- Shady M Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Sherif M Eid
- Analytical Chemistry, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research Division, National Research Centre, Giza, 12622, Egypt
| | - Dina A Aly Labib
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, 11559, Egypt
| | - Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| |
Collapse
|
19
|
Annisa R, Yuwono M, Hendradi E. Formulation and characterization of Eleutherine palmifolia extract-loaded self-nanoemulsifying drug delivery system (SNEDDS). J Basic Clin Physiol Pharmacol 2021; 32:859-865. [PMID: 34214309 DOI: 10.1515/jbcpp-2020-0400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aimed to determine the effect of different components and ratios of oil, surfactant, and cosurfactant on E. palmifolia extract-loaded SNEDDS. METHODS E. palmifolia extract loaded SNEDDS was formulated from virgin coconut oil, Miglyol 812 as oil, using Tween 80 and Transcutol as surfactants, as well as propylene glycol and PEG 400 as cosurfactants. The optimization design formula consisted of eight design formulas in five ratio formulas, thus a total of 40 formulas were optimized using different components and ratios of oil, surfactant, and cosurfactant. These ratios used were 1:1:1, 1:2:1, 1:3:1, 1:4:1, as well as 1:5:1, and the formula's components were determined based on the optimization results. RESULTS The optimal formula of E. palmifolia extract loaded SNEDDS had the ratio 1:1:1 (formula A) of Miglyol 812:Tween 80:PEG 400 and 1:3:1 (formula E) of Miglyol 812:Tween 80:propylene glycol. Meanwhile, the optimal formulation characteristics showed a transmittance value above 90%, pH range of 5.10-5.20, 2.21-14.51 cP viscosity, emulsification time below 120 s, and particle size of 24.71-136.77 nm. CONCLUSIONS The optimal formula of E. palmifolia extract-loaded SNEDDS, were obtained using different components and ratios. These are Miglyol:Tween 80:PEG 400 at a component ratio of 1:1:1 (formula A) and Miglyol 812:Tween 80:propylene glycol at a component ratio of 1:3:1 (formula E).
Collapse
Affiliation(s)
- Rahmi Annisa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.,Department of Pharmacy, Faculty of Medicine and Health Science, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
| | - Mochammad Yuwono
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Esti Hendradi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
20
|
Fitria A, Hanifah S, Chabib L, Uno AM, Munawwarah H, Atsil N, Pohara HA, Weuanggi DA, Syukri Y. Design and characterization of propolis extract loaded self-nano emulsifying drug delivery system as immunostimulant. Saudi Pharm J 2021; 29:625-634. [PMID: 34194270 PMCID: PMC8233540 DOI: 10.1016/j.jsps.2021.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
This current study aims to optimize, characterize, and observe the stability of the self-nano emulsifying drug delivery system (SNEDDS) of propolis extract (PE) for improving the immune response. Optimization of the selected composition of SNEDDS was conducted using a D-optimal mixture design. SNEDDS was prepared by loading 150 mg/mL of PE in oil, surfactant, and cosurfactant phases. The thermodynamic stability test was carried out with phase separation parameters followed by the robustness to dilution and accelerated stability test. The immunostimulant activity was examined in vitro and in vivo by determining the phagocytic activity, cell proliferation, production of nitrite oxide levels of RAW 264.7 cells, phagocytic activity of macrophages, and the number of leukocytes, neutrophils, and lymphocytes. The formula optimization showed that the formula containing Capryol-90, Cremophor RH40, and PEG 400 at a ratio of 30: 34: 36 was optimum. The verification response of the optimum formula with drug loading showed that the transmittance, droplet size, and zeta potential were 96.90 ± 0.00%, 28.7 ± 1.20 nm, and -56.5 ± 2.05 mV, respectively. The thermodynamic stability test and robustness to dilution did not find any separation phase. The accelerated stability test results were classified as stable. The in vitro and in vivo immunostimulant activity test showed that PE-loaded SNEDDS exhibited a higher immunostimulant effect than PE. In conclusion, the optimum and stable composition of PE loaded SNEDDS was found with a simple and accurate method using the D-Optimal mixture design and demonstrated an immunostimulant activity.
Collapse
Affiliation(s)
- Annisa Fitria
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Suci Hanifah
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Lutfi Chabib
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Adnan Muhammad Uno
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | | | - Nur Atsil
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | | | | | - Yandi Syukri
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| |
Collapse
|
21
|
Priani SE, Rahayu DP, Maulana IT. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Oral Delivery of Cod Liver Oil. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cod liver oil (CLO) has long been used as medicine or as a functional food. The CLO is a potential source of vitamin D, vitamin A, and omega fatty acids (eicosapentaenoic acid/EPA and docosahexaenoic acid/DHA). Self-nanoemulsifying drug delivery system (SNEDDS) can enhance dissolution, absorption, and bioavailability of hydrophilic and lipophilic substances for oral administration. The objective of this study was to develop a SNEDDS of CLO with good physical characteristics and stability. The optimization formula was carried out using various ratios of oil, surfactant, and cosurfactant. The physical properties of SNEDDS were determined by transmittance percentage, dispersibility, robustness, thermodynamics stability (heating-cooling cycle, centrifugation, and freeze-thaw cycle), and globule size distribution. The optimum formula of CLO-SNEDDS was obtained at a ratio of surfactant and cosurfactant 2 : 1 and a comparison of oil and surfactant mixtures 1 : 6. The CLO-SNEDDS meets the requirement of percent transmittance (97.90±0.85), dispersibility (grade A), and stability based on robustness and thermodynamic stability tests. Diluted SNEDDS has an average globule size of 125 nm with a polydispersity index (PDI) of 0.515. CLO-SNEDDS preparation has good physical characteristics and stability.
Collapse
|
22
|
Zhao ZJ, Cui XD, Ma XL, Wang ZH. Formulation of a Self-Nanoemulsifying Drug Delivery System of Buckwheat Flavonoids and Evaluation of Its Antimicrobial Activity. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3050-3058. [PMID: 33653479 DOI: 10.1166/jnn.2021.19080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study was aimed at constructing a self-nanoemulsifying drug delivery system of buckwheat flavonoids and evaluating its antimicrobial activity. The construction of the nanoemulsion followed a pseudo-ternary phase diagram, and its particle properties (particle size, zeta potential, and surface morphology) and physicochemical parameters (turbidity, surface tension, pH value, conductivity, encapsulation efficiency, and stability) were evaluated. The antimicrobial potential of buckwheat flavonoids nanoemulsion was determined against Staphylococcus aureus, Escherichia coli, and Candida albicans and compared to the buckwheat flavonoids suspension. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) exhibited that the antimicrobial activity of the nanoemulsions and suspension increased while enhancing the drug concentration, and the antimicrobial activity of nanoemulsion was significantly higher than that of the suspension against those three bacteria. Agar disc diffusion test demonstrated that the inhibition zone diameter of the suspension was about 50% of the nanoemulsion against three bacteria. The time killing assay indicated that the IC50 of the nanoemulsion was significantly lower than that of the suspension. These results indicate that nanoemulsion is a promising drug delivery system, which can improve the antimicrobial activity of buckwheat flavonoids.
Collapse
Affiliation(s)
- Zhi-Juan Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiao-Dong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiao-Li Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Zhuan-Hua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
23
|
Mehta S, Sharma AK, Singh RK. Ethnobotany, Pharmacological activities and Bioavailability studies of "King of Bitter" (Kalmegh): A Review (2010-2020). Comb Chem High Throughput Screen 2021; 25:788-807. [PMID: 33745423 DOI: 10.2174/1386207324666210310140611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Andrographis paniculata, commonly known as "Kalmegh", is an annual herbaceous plant from family Acanthaceae. The whole plant of A. paniculata has explored for multiple pharmacological activities and is scientifically recognized by in-vivo and in-vitro studies. Various biotechnologically engineered techniques have been explored to enhance the bioavailability of this plant. OBJECTIVE In this review, we aim to present comprehensive recent advances in the ethnopharmacology, phytochemistry, specific pharmacology, safety and toxicology and bioavailability of A. paniculata and its pure compounds. Possible directions for future research are also outlined in brief, which will encourage advance investigations on this plant. METHODS Information on the recent updates of the present review is collected from different electronic scientific databases such as Science Direct, PubMed, Scopus, and Google Scholar. All the composed information is classified into different sections according to the objective of the paper. RESULTS More than hundred research and review papers have been studied and incorporated in the present manuscript. After vast literature search of A. paniculata, we present a noteworthy report of various phytoconstituents present in plant, which are accountable for potential therapeutic properties of the plant. Forty-five of studied articles give general information about introduction, ethnobotany and traditional uses of the plant. Twenty-two papers enclosed information about the phytoconstituents present in different parts of A. paniculata and seventy-two papers briefly outlined the pharmacological activities like antioxidant, anti-dengue, anti-ulcerogenic, antifungal, some miscellaneous activities like activity against SARS-CoV-2, antidiarrhoeal. Nineteen studies highlighted the research work conducted by various researchers to increased bioavailability of A. paniculata and two studies reported the safety and toxicology of the plant. CONCLUSION This review incorporated the scientifically validated research work encompassing the ethnobotanical description of the subjected plant, phytochemical profile, various pharmacological activities, and recent approaches to enhance the bioavailability of active metabolites.
Collapse
Affiliation(s)
- Sharuti Mehta
- CT Institute of Pharmaceutical Sciences, Jalandhar, 144020, Punjab. India
| | - Anil Kumar Sharma
- AIMIL Pharmaceuticals India Limited, Ranjeet Nagar, 110008, New Delhi. India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, 140126, Punjab. India
| |
Collapse
|
24
|
Hayati F, Chabib L, Fauzi IS, Awaluddin R, Sumayya, Faizah WS, Mohd Nasir MH, Nipun TS. Effects of Pegagan ( Centella asiatica L.) Ethanolic Extract SNEDDS (Self-nanoemulsifying Drug Delivery Systems) on the Development of Zebrafish ( Danio rerio) Embryos. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 12:457-461. [PMID: 33679093 PMCID: PMC7909061 DOI: 10.4103/jpbs.jpbs_297_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/03/2020] [Accepted: 06/08/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Pegagan is a traditional medicinal plant with three major bioactive properties, triterpenoid, steroids, and saponin. It has the properties of antioxidant, antistress, and wound healing. Pegagan extract is prepared in self-nanoemulsifying drug delivery systems (SNEDDS) to overcome the problem of low water-solubility level. Objectives This study aimed to observe the effect of pegagan ethanolic extract SNEDDS on the development of zebrafish embryos. Materials and Methods This study used 12 sets of zebrafish embryos presented in five sets of extract SNEDDS with different concentrations, that is, 20, 10, 5, 2.5, and 1.25 μg, five sets of SNEDDS without extract with different concentrations, that is, 20, 10, 5, 2.5, and 1.25 μg, a set of positive control (3.4-DCA 4 mg/L) with one control set (diluted with water), and a negative control (SNEDDS without extract). The procedure was conducted for 96 h with observations every 24 h. The parameters observed were embryonic coagulation, formation of somites, detachment of tail bud from the yolk, and abnormality of embryo. Results The results showed that in 96 h the 20ppm concentration caused 100% mortality. Embryo abnormality appeared as coagulation of embryo, somite malformation, and abnormal tail. Discussion There is a correlation between the concentration of SNEDDS and the incidence of embryo coagulation. The malformation in the group of pegagan extract SNEDDS is characterized by cardiac edema, somite malformation, and abnormal tail. Conclusion Pegagan ethanolic extract SNEDDS of 20ppm can inhibit the development of zebrafish embryos.
Collapse
Affiliation(s)
- Farida Hayati
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Ngemplak, Indonesia
| | - Lutfi Chabib
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Ngemplak, Indonesia
| | - It Silmi Fauzi
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Ngemplak, Indonesia
| | - Rizki Awaluddin
- Department of Pharmacy, Faculty of Health Science, University of Darussalam Gontor, Indonesia
| | - Sumayya
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Ngemplak, Indonesia
| | - Wan Syarifah Faizah
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Ngemplak, Indonesia
| | - Moh Hamzah Mohd Nasir
- Department of CREAM (Central Research and Animal Facility), Kulliyah of Science, International Islamic University of Malaysia, Selangor, Malaysia
| | - T S Nipun
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Selangor, Malaysia.,Department of Pharmacy, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
25
|
Antihyperglycemic activity of Centella asiatica (L.) Urb. leaf ethanol extract SNEDDS in zebrafish ( Danio rerio). OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study aimed to identify the effectiveness of SNEDDS of Pegagan Leaf Ethanol Extract (PLE) to reduce fasting blood glucose (FBG) levels in zebrafish. Centella asiatica (L.) Urb. or pegagan is among the medicinal plants widely used to treat diabetes in Indonesia. Maceration was employed with 70% ethanol to obtain a viscous extract for the formulation of SNEDDS with Capryol 90, Tween 80, and PEG 400 (1:6:3). Antihyperglycemic testing was conducted on five groups, consisting of normal, positive control, negative control, P I treatment, and P II treatment. On Day 1, all except the normal group was induced with 300 mg alloxan and soaked in 2% glucose solution for 7 days. On day 8, the treatment consisted of 25 mg/2 L metformin for the positive control, 100 mg/2 L SNEDDS for P I, 200 mg/2 L SNEDDS for P II, and no treatment for the negative control. The SNEDDS characterization obtained 100.6 ± 3.12 nm particle size and −7.93 ± 0.66 mV zeta potential, indicating that the SNEDDS had fulfilled the requirements of good preparation. The antidiabetic activity test found a 69.90% decline in FBG levels in 100 mg/2 L SNEDDS and 72.20% in 200 mg/2 L SNEDDS.
Collapse
|
26
|
Ansari MJ, Alnakhli M, Al-Otaibi T, Meanazel OA, Anwer MK, Ahmed MM, Alshahrani SM, Alshetaili A, Aldawsari MF, Alalaiwe AS, Alanazi AZ, Zahrani MA, Ahmad N. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: Improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zhao Z, Cui X, Ma X, Wang Z. Preparation, characterization, and evaluation of antioxidant activity and bioavailability of a self-nanoemulsifying drug delivery system (SNEDDS) for buckwheat flavonoids. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1265-1274. [PMID: 33216131 PMCID: PMC7731523 DOI: 10.1093/abbs/gmaa124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The self-nanoemulsifying drug delivery system has shown many advantages in drug delivery. In this study, a self-nanoemulsifying drug delivery system of buckwheat flavonoids was prepared for enhancing its antioxidant activity and oral bioavailability. A nanoemulsion of buckwheat flavonoids was developed and characterized, and its antioxidant, in vitro release, and in vivo bioavailability were determined. The nanoemulsion was optimized by the central composite design response surface experiment, and its particle size, polymer dispersity index (PDI), zeta potential, morphology, encapsulation efficiency, and stability were evaluated. The antioxidant activity was tested by measuring its 2,2-diphenyl-1-picrylhydrazyl scavenging activity, hydroxyl radical scavenging activity, and superoxide anion scavenging ability. In vitro release of buckwheat flavonoids nanoemulsion showed a higher cumulative release than the suspension, and the release fitting model followed the Ritger-Peppas and Weibull models. The effective concentration of the nanoemulsion was evaluated in vivo using a Wistar rat model, and the area under the plasma concentration-time curve of the buckwheat flavonoids nanoemulsion was 2.2-fold higher than that of the buckwheat flavonoid suspension. The Cmax of the nanoemulsion was 2.6-fold greater than that of the suspension. These results indicate that the nanoemulsion is a promising oral drug delivery system that can improve the oral bioavailability to satisfy the clinical requirements.
Collapse
Affiliation(s)
- Zhijuan Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xiaoli Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
28
|
Indrati O, Martien R, Rohman A, Nugroho AK. Development of Nanoemulsion-based Hydrogel Containing Andrographolide: Physical Properties and Stability Evaluation. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:S816-S820. [PMID: 33828382 PMCID: PMC8021068 DOI: 10.4103/jpbs.jpbs_174_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 12/01/2022] Open
Abstract
Introduction: Andrographolide is a compound that shows various pharmacological activities, which can be applied topically or orally. Nanoemulsion can improve drug solubility and stability, but has limitations for topical application. Incorporation of nanoemulsion into hydrogel can increase the viscosity of the system which can prolong the drug residence time. The aim of this study was to develop andrographolide nanoemulsion-based hydrogel for topical application. Method: Andrographolide nanoemulsion was prepared using Capryol 90 as the oil, Kolliphor RH 40 as the surfactant, and propylene glycol as the cosurfactant. Droplet size and polydispersity index of the nanoemulsions were evaluated using particle size analyzer. D-optimal mixture design was employed to generate the total number of runs (formulation), and obtain the optimum formulation. Fourteen formulations of nanoemulsion-based hydrogel were prepared by incorporating nanoemulsion into the hydrogel base (1:1). Carbopol was employed as the gelling agent, whereas other excipients including propylene glycol, oleic acid, triethanolamine, methylparaben, and propylparaben were also added to produce hydrogel base. Nanoemulsion-based hydrogel was evaluated for its pH, viscosity, and physical appearance (after 8 weeks of storage). Results: The result revealed that nanoemulsion-based hydrogel containing 34.65% of carbopol, 1.35% of triethanolamine, and 9% of propylene glycol was selected as an optimum formulation which shows acceptable pH, viscosity, and physical appearance. This optimum nanoemulsion-based hydrogel has pH of 6.50 ± 0.02, and 2492.33 ± 36.91 cP of viscosity with milky white color, and smooth homogeneous texture. Conclusion: This study suggested that andrographolide can be successfully formulated into an acceptable nanoemulsion-based hydrogel.
Collapse
Affiliation(s)
- Oktavia Indrati
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Sleman, Yogyakarta, Indonesia.,Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Ronny Martien
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| | - Akhmad Kharis Nugroho
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
29
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Alghananim A, Özalp Y, Mesut B, Serakinci N, Özsoy Y, Güngör S. A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies. Pharmaceuticals (Basel) 2020; 13:ph13080162. [PMID: 32722238 PMCID: PMC7465256 DOI: 10.3390/ph13080162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
The research work was designed to develop a solid self-nanoemulsifying drug delivery system (S-SNEDDS) of deferasirox (DFX). According to the solubility studies of DFX in different components, Peceol, Kolliphor EL, and Transcutol were selected as excipients. Pseudo-ternary phase diagrams were constructed, and then SNEDDS formation assessment studies and solubility of DFX in selected SNEDDSs formulations were performed. DFX loaded SNEDDS were prepared and characterized. The optimum DFX-SNEDDS formulations were developed. The relative safety of the optimized SNEDDS formulation was examined in a human immortalized myelogenous leukemia cell line, K562 cells, using the MTT cell viability test. Cytotoxicity studies revealed more cell viability (71.44%) of DFX loaded SNEDDS compared to pure DFX (3.99%) at 40 μM. The selected DFX-SNEDDS formulation was converted into S-SNEDDS by adsorbing into porous carriers, in order to study its dissolution behavior. The in vitro drug release studies indicated that DFX release (Q5%) from S-SNEDDS solidified with Neusilin UFL2 was significantly higher (93.6 ± 0.7% within 5 min) compared with the marketed product (81.65 ± 2.10%). The overall results indicated that the S-SNEDDS formulation of DFX could have the potential to enhance the solubility of DFX, which would in turn have the potential to improve its oral bioavailability as a safe novel delivery system.
Collapse
Affiliation(s)
- Alaa Alghananim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Near East University, Nicosia 99010, Cyprus; (A.A.); (Y.Ö.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, Jerash 26150, Jordan
| | - Yıldız Özalp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Near East University, Nicosia 99010, Cyprus; (A.A.); (Y.Ö.)
| | - Burcu Mesut
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
| | - Nedime Serakinci
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia 99010, Cyprus;
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences Near East University, Nicosia 99010, Cyprus
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Istanbul University, Faculty of Pharmacy, Istanbul 34116, Turkey; (B.M.); (Y.Ö.)
- Correspondence: ; Tel.: +90-212-440-00-00 (ext. 13493)
| |
Collapse
|
31
|
Niu J, Xu Z, Li X, Wang Z, Li J, Yang Z, Khattak SU, Liu Y, Shi Y. Development and evaluation of rhubarb free anthraquinones loaded self-nanoemulsifying tablets. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Khalifa MKA, Salem HA, Shawky SM, Eassa HA, Elaidy AM. Enhancement of zaleplon oral bioavailability using optimized self-nano emulsifying drug delivery systems and its effect on sleep quality among a sample of psychiatric patients. Drug Deliv 2020; 26:1243-1253. [PMID: 31752566 PMCID: PMC6882476 DOI: 10.1080/10717544.2019.1687613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of this work is to develop self-nano emulsifying drug delivery system (SNEDDS) to enhance the oral bioavailability of zaleplon (Zal) as a poorly water-soluble drug. Moreover, the bioavailability and the effect on the quality of sleep among a sample of psychiatric patients is to be assessed. D-optimal mixture design was used for optimization. Optimized SNEDDS formulation was evaluated for droplet size, transmission electron microscope (TEM) and in-vitro dissolution test. Zal bioavailability was evaluated by determining its serum concentration and pharmacokinetic parameters in 8 patients after oral administration. Effect on sleep quality was assessed among 40 psychiatric patients. Patients’ sleep quality was assessed in 40 psychiatric patients before and after medication using the Arabic version of the Pittsburgh Sleep Quality Index (PSQI). Zal- SNEDDS appeared as nano-sized spherical vesicles. Moreover, Zal was completely dissolved from optimized formulation after 45 min indicating improved dissolution rate. Zal-SNEDDS showed significantly higher Cmax, Tmax and AUC0→∞ compared to commercial product after oral administration. Zal-SNEDDS significantly improved the total score of PSQIs (p < .001) with higher subjective sleep quality, reduced sleep latency, improved day time function and sleep disturbance (p < .001). Using sleep medication was reduced significantly (p = .027). However, it did not modify sleep duration or sleep efficiency. SNEDDS have improved Zal solubility and enhanced its bioavailability. Furthermore, Zal-SNEDDS have improved the total score of PSQIs and may be considered a good choice to enhance the quality of sleep among psychiatric patients.
Collapse
Affiliation(s)
- Maha K A Khalifa
- Department of Pharmaceutics and industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Hoda A Salem
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Seham M Shawky
- Department of Pharmaceutics and industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Heba A Eassa
- Department of Pharmaceutics and industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Asmaa M Elaidy
- Department of Psychiatry, Faculty of Medicine for girls, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
33
|
Development of Topical/Transdermal Self-Emulsifying Drug Delivery Systems, Not as Simple as Expected. Sci Pharm 2020. [DOI: 10.3390/scipharm88020017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) originated as an oral lipid-based drug delivery system with the sole purpose of improving delivery of highly lipophilic drugs. However, the revolutionary drug delivery possibilities presented by these uniquely simplified systems in terms of muco-adhesiveness and zeta-potential changing capacity lead the way forward to ground-breaking research. Contrarily, SEDDSs destined for topical/transdermal drug delivery have received limited attention. Therefore, this review is focused at utilising principles, established during development of oral SEDDSs, and tailoring them to fit evaluation strategies for an optimised topical/transdermal drug delivery vehicle. This includes a detailed discussion of how the authentic pseudo-ternary phase diagram is employed to predict phase behaviour to find the self-emulsification region most suitable for formulating topical/transdermal SEDDSs. Additionally, special attention is given to the manner of characterising oral SEDDSs compared to topical/transdermal SEDDSs, since absorption within the gastrointestinal tract and the multi-layered nature of the skin are two completely diverse drug delivery territories. Despite the advantages of the topical/transdermal drug administration route, certain challenges such as the relatively undiscovered field of skin metabolomics as well as the obstacles of choosing excipients wisely to establish skin penetration enhancement might prevail. Therefore, development of topical/transdermal SEDDSs might be more complicated than expected.
Collapse
|
34
|
Ghosh D, Singh SK, Khursheed R, Pandey NK, Kumar B, Kumar R, Kumari Y, Kaur G, Clarisse A, Awasthi A, Gulati M, Jain SK, Porwal O, Bayrakdar E, Sheet M, Gowthamarajan K, Gupta S, Corrie L, Gunjal P, Gupta RK, Singh TG, Sinha S. Impact of solidification on micromeritic properties and dissolution rate of self-nanoemulsifying delivery system loaded with docosahexaenoic acid. Drug Dev Ind Pharm 2020; 46:597-605. [DOI: 10.1080/03639045.2020.1742143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dipanjoy Ghosh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ayinkamiye Clarisse
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Omji Porwal
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Bayrakdar
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Muath Sheet
- Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - K. Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ooty, India
| | - Saurabh Gupta
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Pradnya Gunjal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajneesh Kumar Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shibanand Sinha
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
35
|
Kumar R, Khursheed R, Kumar R, Awasthi A, Sharma N, Khurana S, Kapoor B, Khurana N, Singh SK, Gowthamarajan K, Wadhwani A. Self-nanoemulsifying drug delivery system of fisetin: Formulation, optimization, characterization and cytotoxicity assessment. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101252] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Giarra S, Lupo N, Campani V, Carotenuto A, Mayol L, De Rosa G, Bernkop-Schnürch A. In vitro evaluation of tumor targeting ability of a parenteral enoxaparin-coated self-emulsifying drug delivery system. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
A S BG, Prasana JC, Muthu S, Abraham CS, David HA. Spectroscopic and quantum/classical mechanics based computational studies to compare the ability of Andrographolide and its derivative to inhibit Nitric Oxide Synthase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:374-387. [PMID: 31030004 DOI: 10.1016/j.saa.2019.04.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The inhibition of the enzyme Nitric Oxide Synthase by a bioactive compounds results in it possessing anti-inflammatory property. The ability of Andrographolide and its derivative Isoandrographolide to inhibit Nitric Oxide Synthase was studied using computational and experimental techniques. A combination of UV Spectroscopic and DFT computational techniques were used to calculate the molecular descriptors of the title compounds which were used to establish relationship with its biological activity. The drug-likeness of the compounds was estimated using Lipinski's rule. Molecular dynamics and docking studies were carried out to test for the structural and energetic favourability of the title compounds(ligand) being bound to Nitric Oxide Synthase(Protein) to induce inhibition. The force constant data obtained from IR spectroscopy was used in aid to parametrize force fields used in molecular dynamics simulation. The DFT method was used to perform NBO analysis that revealed the charge transfer interactions responsible for its biological properties. The Molecular Electrostatic Potential (MEP) plot revealed the regions of electrophilic and nucleophilic reactivity of the title compounds. MTT (3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay was carried out which revealed the cytotoxicity at different concentrations of the title compounds by which means the biologically safe concentration was determined and therefore at this biologically safe concentration the ability of the compounds to inhibit Nitric Oxide formation was determined. Quantitative Structure-Activity Studies (QSAR) were used to furnish relationship between molecular descriptors and the Nitric Oxide Synthase inhibition activity resulting in anti-inflammatory property, based on the chosen molecular descriptors suggestions were made for the search of more potent Nitric Oxide Synthase inhibitors in the Andrographolide derivative family of compounds.
Collapse
Affiliation(s)
- Ben Geoffrey A S
- Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India
| | | | - S Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu, India.
| | | | - Host Antony David
- Bioinformatics Centre of BTISnet, Madras Christian College, Chennai, Tamil Nadu 600059, India
| |
Collapse
|