1
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
2
|
Physicochemical Characterization of Chitosan-Decorated Finasteride Solid Lipid Nanoparticles for Skin Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7792180. [PMID: 35971450 PMCID: PMC9375701 DOI: 10.1155/2022/7792180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
Finasteride is considered the drug of choice for androgenic alopecia and benign prostate hyperplasia. The aim of the study was to formulate nanodrug carriers of finasteride with enhanced retentive properties in the skin. The finasteride was formulated as solid lipid nanoparticles that were decorated with different concentrations of chitosan for improved retentive properties. Solid lipid nanoparticles (SLNs) were synthesized by “high-speed homogenization technique” using stearic acid as a solid lipid while PEG-6000 and Tween-80 were used as surfactants. The SLNs were evaluated for particle size, polydispersity index (PDI), zeta potential, drug entrapment efficiency, and drug release behavior. The mean particle size of SLNs was in the range of 10.10 nm to 144.2 nm. The PDI ranged from 0.244 to 0.412 while zeta potential was in the range of 8.9 mV to 62.6 mV. The drug entrapment efficiency in chitosan undecorated formulations was 48.3% while an increase in drug entrapment was observed in chitosan-decorated formulations (51.1% to 62%). The in vitro drug release studies of SLNs showed an extended drug release for 24 hours after 4 hours of initial burst release. The extended drug release was observed in chitosan-coated SLNs in comparison with uncoated nanoparticles. The permeation and retention study revealed higher retention of drug in the skin and low permeation with chitosan-decorated SLNs that ranged from 39.4 μg/cm2 to 13.2 μg/cm2. TEM images depicted spherical shape of SLNs. The stability study confirmed stable formulations in temperature range of 5°C and 40°C for three months. It is concluded from this study that the SLNs of finasteride were successfully formulated and chitosan decoration enhanced the drug retention in the skin layers. Therefore, these formulations could be used in androgenic alopecia and benign prostate hyperplasia to avoid the side effects, drug degradation, and prolonged use of drug with conventional oral therapy.
Collapse
|
3
|
Bondre RM, Kanojiya PS, Wadetwar RN, Kangali PS. Sustained vaginal delivery of in situ gel containing Voriconazole nanostructured lipid carrier: formulation, in vitro and ex vivo evaluation. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.2022489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ruchika M. Bondre
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Pranita S. Kanojiya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Rita N. Wadetwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Priya S. Kangali
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
4
|
Shah MKA, Azad AK, Nawaz A, Ullah S, Latif MS, Rahman H, Alsharif KF, Alzahrani KJ, El-Kott AF, Albrakati A, Abdel-Daim MM. Formulation Development, Characterization and Antifungal Evaluation of Chitosan NPs for Topical Delivery of Voriconazole In Vitro and Ex Vivo. Polymers (Basel) 2021; 14:polym14010135. [PMID: 35012154 PMCID: PMC8747354 DOI: 10.3390/polym14010135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop chitosan-based voriconazole nanoparticles (NPs) using spray-drying technique. The effect of surfactants and polymers on the physicochemical properties, in vitro release, and permeation of NPs was investigated. The prepared NPs containing various surfactants and polymers (e.g., Tween 20 (T20), Tween 80 (T80), sodium lauryl sulfate (SLS), propylene glycol (PG), and Polyethylene glycol-4000 (PEG-4000)) were physiochemically evaluated for size, zeta potential, drug content, percent entrapment efficiency, in vitro release, and permeation across rats' skin. A Franz diffusion cell was used for evaluating the in vitro release and permeation profile. The voriconazole-loaded NPs were investigated for antifungal activity against Candida albicans (C. albicans). The prepared NPs were in the nano range (i.e., 160-500 nm) and positively charged. Images taken by a scanning electron microscope showed that all prepared NPs were spherical and smooth. The drug content of NPs ranged from 75% to 90%. Nanoparticle formulations exhibited a good in vitro release profile and transport voriconazole across the rat's skin in a slow control release manner. The NPs containing SLS, T80, and PG exhibited the best penetration and skin retention profile. In addition, the formulation exhibited a potential antifungal effect against C. albicans. It was concluded that the development of chitosan NPs has a great potential for the topical delivery of voriconazole against fungal infection.
Collapse
Affiliation(s)
- Muhammad Khurshid Alam Shah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (A.K.A.); (M.M.A.-D.)
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (K.J.A.)
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (K.J.A.)
| | - Attalla F. El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Zoology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.K.A.); (M.M.A.-D.)
| |
Collapse
|
5
|
Nogueira NC, de Sá LLF, de Carvalho ALM. Nanostructured Lipid Carriers as a Novel Strategy for Topical Antifungal Therapy. AAPS PharmSciTech 2021; 23:32. [PMID: 34931256 DOI: 10.1208/s12249-021-02181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Nanostructured lipid carriers (NLC) were developed as an alternative carrier system optimizing limitations found in topical treatments for superficial fungal infections, such as limited permeation through the skin. However, few published studies are focused on standardization and characterization of determinant variables of these lipid nanosystems' quality. Thus, this systematic review aims to compile information regarding the selection of lipids, surfactants, and preparation method that intimately relates to the final quality of this nanotechnology. For this, the search was carried with the following descriptors: 'nanostructured lipid carriers', 'topical', 'antifungal' separated by the Boolean operators 'and', present in the titles of the databases: Science Direct, Scopus and Pubmed. The review included experimental articles focused on the development of nanostructured lipid carriers targeted for topical application with antifungal activity, published from 2015 to 2021. Review articles, clinical studies, and studies on the development of other nanocarriers intended for other routes of administration were excluded from the study. The research included 26 articles, of which 58% were developed in India and Brazil, 53% published in the years 2019 and 2020. As for the selection of antifungal drugs incorporated into NLCs, the azole class had a preference over other classes, voriconazole being incorporated into 5 of the 26 developed NLC studied. It was also observed a predominance of medium chain triglycerides (MCT) as a liquid lipid and polysorbate 80 as a surfactant. Among other results, this review compiles the influences of each of the variables discussed in the quality parameters of NLCs, in order to guide future research involving the development of this technology. Graphical Abstract.
Collapse
|
6
|
Sharkawy A, Silva AM, Rodrigues F, Barreiro F, Rodrigues A. Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Esenturk I, Gumrukcu S, Özdabak Sert AB, Kök FN, Döşler S, Gungor S, Erdal MS, Sarac AS. Silk-fibroin-containing nanofibers for topical sertaconazole delivery: preparation, characterization, and antifungal activity. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1740992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Imren Esenturk
- Department of Pharmaceutical Technology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Selin Gumrukcu
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ayşe Buse Özdabak Sert
- Molecular Biology-Genetics and Biotechnology Program, MOBGAM, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Fatma Neşe Kök
- Molecular Biology-Genetics and Biotechnology Program, MOBGAM, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Sibel Döşler
- Department of Pharmaceutical Microbiology, Istanbul University, Istanbul, Turkey
| | - Sevgi Gungor
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, Turkey
| | - M. Sedef Erdal
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, Turkey
| | - A. Sezai Sarac
- Polymer Science and Technology, Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
8
|
Bubić Pajić N, Vucen S, Ilić T, O'Mahony C, Dobričić V, Savić S. Comparative efficacy evaluation of different penetration enhancement strategies for dermal delivery of poorly soluble drugs - A case with sertaconazole nitrate. Eur J Pharm Sci 2021; 164:105895. [PMID: 34087357 DOI: 10.1016/j.ejps.2021.105895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023]
Abstract
The aim of this study was to compare the efficacy of different approaches for enhancement of dermal availability of the highly lipophilic antifungal model drug - sertaconazole nitrate (SN). For this purpose, a physical penetration enhancer - dissolving microneedles (MNs) was fabricated by filling moulds with liquid formulation based on polyvinylpyrrolidone and loaded with SN. Dissolving MNs were characterised regarding their morphological and mechanical characteristics. A penetration enhancement efficacy of MNs was evaluated in vitro using porcine ear skin in parallel with the efficacy of formerly developed chemical penetration enhancer - biocompatible microemulsion (ME) formulation. Moreover, an ability of solid silicon MNs to significantly improve delivery of SN from ME into the skin has also been investigated. The obtained results showed that dissolving MNs had satisfying morphological properties and mechanical strength. This type of MNs provided comparable drug deposition in the skin as ME formulation, but also revealed an indication of percutaneous absorption of a portion of the administered drug dose. However, the penetration/permeation study results were largely influenced by experimental setup and dosing regimen. Although solid silicon MNs assisted SN dermal delivery led to increase of drug cutaneous retention (1.9-fold) under infinite dosing regimen, the synergistic action of solid MNs and ME applied under finite dosing was more pronounced in comparison with the application either of physical (dissolving MNs) or chemical enhancer (ME) alone. Namely, SN amount accumulated into the skin increased up to 4.67 and 4.37 folds in comparison with ME and dissolving MNs alone, respectively, while reaching a significant decrease in drug permeation through the skin compared to the use of dissolving MNs. Application of ME per se was the only approach that provided selective in vitro dermal drug delivery without SN permeation across the skin. However, despite both types of the used MNs lead to SN permeation in vitro, the ratio between the drug amount deposited in the skin and SN content permeated was significantly higher for the combined approach (12.05) than for dissolving MNs (2.10). Therefore, a combination of solid silicon MNs and biocompatible ME favoured more pronouncedly SN skin accumulation, which is preferable in the treatment of skin fungal infections.
Collapse
Affiliation(s)
- Nataša Bubić Pajić
- University of Banja Luka, Faculty of Medicine, Department of Pharmaceutical Technology and Cosmetology, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Sonja Vucen
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Tanja Ilić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Vladimir Dobričić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 11221 Belgrade, Serbia.
| | - Snežana Savić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
9
|
Nanocarriers Mediated Cutaneous Drug Delivery. Eur J Pharm Sci 2021; 158:105638. [DOI: 10.1016/j.ejps.2020.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
|
10
|
Lengert EV, Talnikova EE, Tuchin VV, Svenskaya YI. Prospective Nanotechnology-Based Strategies for Enhanced Intra- and Transdermal Delivery of Antifungal Drugs. Skin Pharmacol Physiol 2020; 33:261-269. [PMID: 33091913 DOI: 10.1159/000511038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Topical therapy of superficial fungal infections allows the prevention of systemic side effects and provides drug targeting at the site of disease. However, an appropriate drug concentration in these sites should be provided to ensure the efficacy of such local treatment. The enhancement of intra- and transdermal penetration and accumulation of antifungal drugs is an important aspect here. The present overview is focused on novel nano-based formulations served to improve antimycotic penetration through the skin. Furthermore, it summarizes various approaches towards the stimulation of drug penetration through and into the stratum corneum and hair follicles, which are considered to be promising for the future improvement of superficial antifungal therapy as providing the drug localization and prolonged storage property at the targeted area.
Collapse
Affiliation(s)
- Ekaterina V Lengert
- Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russian Federation,
| | - Ekaterina E Talnikova
- Department of Dermatovenereology and Cosmetology, Saratov State Medical University, Saratov, Russian Federation
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russian Federation.,Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, Tomsk, Russian Federation
| | - Yulia I Svenskaya
- Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russian Federation
| |
Collapse
|
11
|
Zhang S, Song W, Wu H, Wang J, Wang Y, Zhang Z, Lv H. Lecithins-Zein nanoparticles for antifungal treatment: Enhancement and prolongation of drug retention in skin with reduced toxicity. Int J Pharm 2020; 590:119894. [PMID: 32956822 DOI: 10.1016/j.ijpharm.2020.119894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Fungal infections are one of the major skin healthcare issues and cause significant morbidity. Ketoconazole (KC) as a broad-spectrum antifungal drug is widely used to treat skin fungal diseases. However, its therapeutic effects are limited by low concentration, short duration of drug efficacy in the skin and severe systemic toxicity. Here, the ketoconazole loaded Lecithins-Zein nanoparticles (KLZ-NPs) with core-shell structure were designed to resolve above problems. In vitro penetration test confirmed that the ketoconazole concentration of the KLZ-NPs group in the stratum corneum and deeper layers increased significantly (2.98-fold, 1.51-fold higher to free ketoconazole, respectively). Meanwhile, follicular closing technique showed the formed nanoparticles via follicle pathway into the skin had been significantly enhanced, and the results of the visual fluorescent images also confirmed it. Additionally, in the in vivo imaging experiment, the fluorescence intensity of the single applying of the DiR-LZ-NPs was higher than that of the thrice usage of the free DiR. More importantly, the results also indicated that the accumulation of nanoparticles in the liver and spleen was significantly reduced. Hence, Lecithins-Zein nanoparticles are a promising strategy to enhance the drug concentration, prolong efficacy and reduce systemic toxicity in the topical administration for antifungal treatment.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| | - Wenting Song
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| | - Hangyi Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| | - Jiao Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuling Wang
- Bloomage Biotechnology Corporation Limited, Jinan 250101, China.
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, China; Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Huixia Lv
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Esentürk İ, Balkan T, Özhan G, Döşler S, Güngör S, Erdal MS, Sarac AS. Voriconazole incorporated nanofiber formulations for topical application: preparation, characterization and antifungal activity studies against Candida species. Pharm Dev Technol 2020; 25:440-453. [DOI: 10.1080/10837450.2019.1706563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- İmren Esentürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Timuçin Balkan
- Polymer Science and Technology, Istanbul Technical University, Istanbul, Turkey
- TÜPRAS Energy Center (KUTEM), Koç University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sibel Döşler
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - M. Sedef Erdal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Abdulkadir Sezai Sarac
- Polymer Science and Technology, Istanbul Technical University, Istanbul, Turkey
- Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
13
|
Gowda DV, Afrasim M, Meenakshi SI, Manohar M, Hemalatha S, Siddaramaiah H, Sathishbabu P, Rizvi SMD, Hussain T, Kamal MA. A Paradigm Shift in the Development of Anti-Candida Drugs. Curr Top Med Chem 2019; 19:2610-2628. [PMID: 31663480 DOI: 10.2174/1568026619666191029145209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/27/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The considerable increase in the incidence of Candida infection in recent times has prompted the use of numerous antifungal agents, which has resulted in the development of resistance towards various antifungal agents. With rising Candida infections, the need for design and development of novel antifungal agents is in great demand. However, new therapeutic approaches are very essential in preventing the mortality rate and improving the patient outcome in those suffering from Candida infections. OBJECTIVE The present review objective is to describe the burden, types of Candidiasis, mechanism of action of antifungal agents and its resistance and the current novel approaches used to combat candidiasis. METHODS We have collected and analyzed 135 different peer-reviewed literature studies pertinent to candidiasis. In this review, we have compiled the major findings from these studies. RESULTS AND CONCLUSION The review describes the concerns related to candidiasis, its current treatment strategy, resistance mechanisms and imminent ways to tackle the problem. The review explored that natural plant extracts and essential oils could act as sources of newer therapeutic agents, however, the focus was on novel strategies, such as combinational therapy, new antibodies, utilization of photodynamic therapy and adaptive transfer primed immune cells with emphasis on the development of effective vaccination.
Collapse
Affiliation(s)
- D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - M Afrasim
- Department of Pharmaceutics, Hail University, Hail, Saudi Arabia
| | - S I Meenakshi
- Department of Prosthodontics and Crown & Bridge, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysuru-570015, India
| | - M Manohar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - S Hemalatha
- Department of Anaesthesia, JSS Medical College & Hospital, JSS Academy of Higher Education and Research, Mysuru - 570004, India
| | - H Siddaramaiah
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru - 570006, India
| | - P Sathishbabu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru- 570015, India
| | - S M Danish Rizvi
- Department of Pharmaceutics, Hail University, Hail, Saudi Arabia
| | - T Hussain
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - M A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia
| |
Collapse
|
14
|
Abstract
Human skin is the largest organ of the body and is an effective physical barrier keeping it from environmental conditions. This barrier function of the skin is based on stratum corneum, located in the uppermost skin. Stratum corneum has corneocytes surrounded by multilamellar lipid membranes which are composed of cholesterol, free fatty acids and ceramides (CERs). Alterations in ceramide content of the stratum corneum are associated with numerous skin disorders. In recent years, CERs have been incorporated into conventional and novel carrier systems with the purpose of exogenously applying CERs to help the barrier function of the skin. This review provides an overview of the structure, function and importance of CERs to restore the barrier function of the skin following their topical application.
Collapse
|