1
|
Biji CA, Balde A, Kim SK, Nazeer RA. Optimization of alginate/carboxymethyl chitosan microbeads for the sustained release of celecoxib and attenuation of intestinal inflammation in vitro. Int J Biol Macromol 2024; 282:137022. [PMID: 39476907 DOI: 10.1016/j.ijbiomac.2024.137022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Multiple anti-inflammatory medications have helped treat inflammatory bowel disease (IBD). However, oral administration has minimal absorption and systemic side effects. This study aims to investigate the potential of encapsulating anti-inflammatory drug celecoxib (Cele) within microbeads for the treatment of IBD. Microbeads were formed by cross-linking carboxymethyl chitosan (CMCs) with sodium alginate (Alg) through the ionic gelation method and optimized through response surface methodology. Additionally, the study revealed a mucoadhesivity value of 59.32 ± 0.74 % for the optimized microbead system. The drug release study demonstrated the sustained release of Cele CMCs/Alg microbeads upto 24 h compared to quick release of the free drug. The results of the cell viability assay indicated that the Cele-Alg/CMCs microbeads exhibited a non-toxic nature within the concentration range of 100-250 μM. A significant decrease in nitric oxide (NO) generation (61.14 ± 3.67 %) was seen in HCT-116 cells stimulated with lipopolysaccharide (LPS) upon treatment with Cele-250μM/CMCs/Alg microbeads. The results of the reactive oxygen species and wound healing assay suggest that Cele-250μM/CMCs/Alg microbeads had improved anti-inflammatory characteristics comparable to those of free drug treatment. The western blot analysis demonstrated that the microbeads composed of CMCs/Alg-Cele possess the capacity to inhibit the expression of COX-2 in vitro supressing inflammation.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India.
| |
Collapse
|
2
|
Delgado MZ, Aranda FL, Hernandez-Tenorio F, Garrido-Miranda KA, Meléndrez MF, Palacio DA. Polyelectrolytes for Environmental, Agricultural, and Medical Applications. Polymers (Basel) 2024; 16:1434. [PMID: 38794627 PMCID: PMC11124962 DOI: 10.3390/polym16101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, polyelectrolytes (PELs) have attracted significant interest owing to a surge in research dedicated to the development of new technologies and applications at the biological level. Polyelectrolytes are macromolecules of which a substantial portion of the constituent units contains ionizable or ionic groups. These macromolecules demonstrate varied behaviors across different pH ranges, ionic strengths, and concentrations, making them fascinating subjects within the scientific community. The aim of this review is to present a comprehensive survey of the progress in the application studies of polyelectrolytes and their derivatives in various fields that are vital for the advancement, conservation, and technological progress of the planet, including agriculture, environmental science, and medicine. Through this bibliographic review, we seek to highlight the significance of these materials and their extensive range of applications in modern times.
Collapse
Affiliation(s)
- Martina Zuñiga Delgado
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| | - Francisca L. Aranda
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
- Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepcion, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia;
| | - Karla A. Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Manuel F. Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascuales, Lientur 1457, Concepción 4060000, Chile
| | - Daniel A. Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| |
Collapse
|
3
|
Prajapati BG, Sharma JB, Sharma S, Trivedi ND, Gaur M, Kapoor DU. Harnessing polyelectrolyte complexes for precision cancer targeting: a comprehensive review. Med Oncol 2024; 41:145. [PMID: 38727885 DOI: 10.1007/s12032-024-02354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/14/2024]
Abstract
Polyelectrolytes represent a unique class of polymers abundant in ionizable functional groups. In a solution, ionized polyelectrolytes can intricately bond with oppositely charged counterparts, giving rise to a fascinating phenomenon known as a polyelectrolyte complex. These complexes arise from the interaction between oppositely charged entities, such as polymers, drugs, and combinations thereof. The polyelectrolyte complexes are highly appealing in cancer management, play an indispensable role in chemotherapy, crafting biodegradable, biocompatible 3D membranes, microcapsules, and nano-sized formulations. These versatile complexes are pivotal in designing controlled and targeted release drug delivery systems. The present review emphasizes on classification of polyelectrolyte complex along with their formation mechanisms. This review comprehensively explores the applications of polyelectrolyte complex, highlighting their efficacy in targeted drug delivery strategies for combating different forms of cancer. The innovative use of polyelectrolyte complex presents a potential breakthrough in cancer therapeutics, demonstrating their role in enhancing treatment precision and effectiveness.
Collapse
Affiliation(s)
- Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, 384012, India.
| | - Jai Bharti Sharma
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Naitik D Trivedi
- AR College of Pharmacy & GH Institute of Pharmacy, VV Nagar, Anand, Gujarat, 388120, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur, Rajasthan, 302026, India
| | - Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat, 394601, India.
| |
Collapse
|
4
|
Rahmatpour A, Alizadeh AH. Biofilm hydrogel derived from physical crosslinking (self-assembly) of xanthan gum and chitosan for removing Cd 2+, Ni 2+, and Cu 2+ from aqueous solution. Int J Biol Macromol 2024; 266:131394. [PMID: 38582469 DOI: 10.1016/j.ijbiomac.2024.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/20/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This study aimed to fabricate a series of biodegradable hydrogel films by gelating/physically crosslinking a blend of xanthan gum (XG) and chitosan (CS) in various combinations using a facile, green, and low cost solution casting technique. The adsorption of Cd2+, Cu2+ and Ni2+ by the XG/CS biofilm in aqueous solution was studied in batch experiments to determine how the pH of the solution, contact time, dosage of adsorbent, initial metal ion concentration and ionic strength affect its adsorption. A highly pH-dependent adsorption process was observed for three metal ions. A maximum amount of Cd2+, Ni2+, and Cu2+ ions was adsorbable with 50 mg of the adsorbent at pH 6.0 for an initial metal concentration of 50 mg.L-1. An empirical pseudo-second-order model seems to fit the kinetic experimental data reasonably well. It was found that the Langmuir model correlated better with equilibrium isotherm when compared with the Freundlich model. For Cd2+, Ni2+, and Cu2+ ions at 25 °C, the maximum monolayer adsorption capacity was 152.33, 144.79, and 139.71 mg.g-1, respectively. Furthermore, the biofilm was capable of regenerating, allowing metal ions to adsorb and desorb for five consecutive cycles. Therefore, the developed biodegradable film offers the potential for remediation of specified metal ions.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box 1983969411, Tehran, Iran.
| | - Amir Hossein Alizadeh
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P. O. Box 1983969411, Tehran, Iran
| |
Collapse
|
5
|
Jin S, Zhang J, Nahar UJ, Huang W, Alharbi NA, Shalash AO, Koirala P, Yang J, Kiong JJE, Khalil ZG, Capon RJ, Stephenson RJ, Skwarczynski M, Toth I, Hussein WM. Activity Relationship of Poly(ethylenimine)-Based Liposomes as Group A Streptococcus Vaccine Delivery Systems. ACS Infect Dis 2023; 9:1570-1581. [PMID: 37489053 DOI: 10.1021/acsinfecdis.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Untreated group A Streptococcus (GAS) can lead to a range of life-threatening diseases, including rheumatic heart disease. To date, no therapeutic or prophylactic vaccines are commercially available to treat or prevent GAS infection. Development of a peptide-based subunit vaccine offers a promising solution, negating the safety issues of live-attenuated or inactive vaccines. Subunit vaccines administer small peptide fragments (antigens), which are typically poorly immunogenic. Therefore, these peptide antigens require formulation with an immune stimulant and/or vaccine delivery platform to improve their immunogenicity. We investigated polyelectrolyte complexes (PECs) and polymer-coated liposomes as self-adjuvanting delivery vehicles for a GAS B cell peptide epitope conjugated to a universal T-helper epitope and a synthetic toll-like receptor 2-targeting moiety lipid core peptide-1 (LCP-1). A structure-activity relationship of cationic PEC vaccines containing different external PEI-coatings (poly(ethylenimine); 10 kDa PEI, 25 kDa PEI, and a synthetic mannose-functionalized 25 kDa PEI) formed vaccines PEC-1, PEC-2, and PEC-3, respectively. All three PEC vaccines induced J8-specific systemic immunoglobulin G (IgG) antibodies when administered intranasally to female BALB/c mice without the use of additional adjuvants. Interestingly, PEC-3 induced the highest antibody titers among all tested vaccines, with the ability to effectively opsonize two clinically isolated GAS strains. A comparative study of PEC-2 and PEC-3 with liposome-based delivery systems was performed subcutaneously. LCP-1 was incorporated into a liposome formulation (DPPC, DPPG and cholesterol), and the liposomes were externally coated with PEI (25 kDa; Lip-2) or mannosylated PEI (25 kDa; Lip-3). All liposome vaccines induced stronger humoral immune responses compared to their PEC counterparts. Notably, sera of mice immunized with Lip-2 and Lip-3 produced significantly higher opsonic activity against clinically isolated GAS strains compared to the positive control, P25-J8 emulsified with the commercial adjuvant, complete Freund's adjuvant (CFA). This study highlights the capability of a PEI-liposome system to act as a self-adjuvanting vehicle for the delivery of GAS peptide antigens and protection against GAS infection.
Collapse
Affiliation(s)
- Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ummey J Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nedaa A Alharbi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jolynn J E Kiong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
7
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
8
|
Luo H, Wang Z, Mo Q, Yang J, Yang F, Tang Y, Liu J, Li X. Framework Nucleic Acid-Based Multifunctional Tumor Theranostic Nanosystem for miRNA Fluorescence Imaging and Chemo/Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37421332 DOI: 10.1021/acsami.3c01611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Intelligent stimulus-responsive theranostic systems capable of specifically sensing low-abundance tumor-related biomarkers and efficiently killing tumors remain a pressing endeavor. Here, we report a multifunctional framework nucleic acid (FNA) nanosystem for simultaneous imaging of microRNA-21 (miR-21) and combined chemo/gene therapy. To achieve this, two FNA nanoarchitectures labeled with Cy5/BHQ2 signal tags were designed, each of which contained an AS1411 aptamer, two pairs of DNA/RNA hybrids, a pH-sensitive DNA catcher, and doxorubicin (DOX) intercalating between cytosine and guanine in the tetrahedral DNA nanostructure (TDN). In the acidic tumor microenvironment, the DNA catchers spontaneously triggered to form an i-motif and create an FNA dimer (dFNA) while releasing DOX molecules to exert a cytotoxic effect. In addition, the overexpressed miR-21 in tumor cells dismantled the DNA/RNA hybrids to produce vascular endothelial growth factor-associated siRNA via a toehold-mediated strand displacement reaction, thus enabling a potent RNA interfering. Also importantly, the liberated miR-21 could initiate cascade-reaction amplification to efficiently activate the Cy5 signal reporters, thereby realizing on-site fluorescence imaging of miR-21 in living cells. The exquisitely designed FNA-based nanosystem showed favorable biocompatibility and stability as well as acid-driven DOX release characteristics. Owing to the aptamer-guided targeting delivery, specific uptake of the FNA-based theranostic nanosystem by HepG2 cells was verified with confocal laser scanning microscopy and flow cytometry analyses, which therefore resulted in apoptosis of HepG2 cells while doing minimal damage to normal H9c2 and HL-7702 cells. Strikingly, both in vitro and in vivo experiments demonstrated the achievements of the FNA-enabled miR-21 imaging and synergistically enhanced chemo/gene therapy. This work thus represents a noteworthy advance on the FNA-based theranostic strategy that can effectively avoid the undesirable premature leakage of anticarcinogen and off-target of siRNA, and achieve on-demand reagents release for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Haikun Luo
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Zhao Wang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- School of Medicine, Xiamen University, Xiang-an South Road, Xiamen 361102, China
| | - Qian Mo
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Jianying Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| |
Collapse
|
9
|
Le KT, Nguyen CT, Lac TD, Nguyen LGT, Tran TL, Tran-Van H. Facilely preparing carboxymethyl chitosan/hydroxyethyl cellulose hydrogel films for protective and sustained release of fibroblast growth factor 2 to accelerate dermal tissue repair. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
10
|
Murugan C, Lee H, Park S. Tumor-targeted molybdenum disulfide@barium titanate core-shell nanomedicine for dual photothermal and chemotherapy of triple-negative breast cancer cells. J Mater Chem B 2023; 11:1044-1056. [PMID: 36606505 DOI: 10.1039/d2tb02382b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Combinational therapy can improve the effectiveness of cancer treatment by overcoming individual therapy shortcomings, leading to accelerated cancer cell apoptosis. Combinational cancer therapy is attained by a single nanosystem with multiple physicochemical properties providing an efficient synergistic therapy against cancer cells. Herein, we report a folate receptor-targeting dual-therapeutic (photothermal and chemotherapy) core-shell nanoparticle (CSNP) exhibiting a molybdenum disulfide core with a barium titanate shell (MoS2@BT) to improve therapeutic efficacy against triple-negative breast cancer (TNBC) MDA-MB-231 cells. A simple hydrothermal approach was used to achieve the MoS2@BT CSNPs, and their diameter was calculated to be approximately 180 ± 25 nm. In addition to improving the photothermal efficiency and stability of the MoS2@BT CSNPs, their surface was functionalized with polydopamine (PDA) and subsequently modified with folic acid (FA) to achieve enhanced tumour-targeting CSNPs, named MoS2@BT-PDA-FA (MBPF). Then, gemcitabine (Gem) was loaded into the MBPF, and its loading and releasing efficacy were calculated to be 17.5 wt% and 64.5 ± 3%, respectively. Moreover, the photothermal conversion efficiency (PCE) of MBPF was estimated to be 35.3%, and it also showed better biocompatibility, which was determined by an MTT assay. The MBPF significantly increased the ambient temperature to 56.3 °C and triggered Gem release inside the TNBC cells when exposed to a near-infrared (NIR) laser (808 nm, 1.5 W cm-2, 5 min). Notably, the MoS2@BT-based nanosystem was used as a photothermal agent and a therapeutic drug-loading container for combating TNBC cells. Benefiting from the combined therapy, MBPF reduced TNBC cell viability to 81.3% due to its efficient synergistic effects. Thus, the proposed tumour-targeting MoS2@BT CSNP exhibits high drug loading, better biocompatibility, and improved anticancer efficacy toward TNBC cells due to its dual therapeutic approach in a single system, which opens up a new approach for dual cancer therapy.
Collapse
Affiliation(s)
- Chandran Murugan
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Hyoryong Lee
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Sukho Park
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
11
|
Suriya R, Lekshmi G, Anirudhan T. Hyaluronic Acid-Targeted Protein Capped AMSN for Inhibiting Tumour Growth and Side Effects by the Controlled Release of Curcumin and Doxorubicin. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022; 17:3933-3966. [PMID: 36105620 PMCID: PMC9465052 DOI: 10.2147/ijn.s375229] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
As per the WHO, colorectal cancer (CRC) caused around 935,173 deaths worldwide in 2020 in both sexes and at all ages. The available anticancer therapies including chemotherapy, radiotherapy and anticancer drugs are all associated with limited therapeutic efficacy, adverse effects and low chances. This has urged to emerge several novel therapeutic agents as potential therapies for CRC including synthetic and natural materials. Orally administrable and targeted drug delivery systems are attractive strategies for CRC therapy as they minimize the side effects, enhance the efficacy of anticancer drugs. Nevertheless, oral drug delivery till today faces several challenges like poor drug solubility, stability, and permeability. Various oral nano-based approaches and targeted drug delivery systems have been developed recently, as a result of the ability of nanoparticles to control the release of the encapsulant, drug targeting and reduce the number of dosages administered. The unique physicochemical properties of chitosan polymer assist to overcome oral drug delivery barriers and target the colon tumour cells. Chitosan-based nanocarriers offered additional improvements by enhancing the stability, targeting and bioavailability of several anti-colorectal cancer agents. Modified chitosan derivatives also facilitated CRC targeting through strengthening the protection of encapsulant against acidic and enzyme degradation of gastrointestinal track (GIT). This review aims to provide an overview of CRC pathology, therapy and the barriers against oral drug delivery. It also emphasizes the role of nanotechnology in oral drug targeted delivery system and the growing interest towards chitosan and its derivatives. The present review summarizes the relevant works to date that have studied the potential applications of chitosan-based nanocarrier towards CRC treatment.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| |
Collapse
|
13
|
Püsküllüoğlu M, Michalak I. An ocean of possibilities: a review of marine organisms as sources of nanoparticles for cancer care. Nanomedicine (Lond) 2022; 17:1695-1719. [PMID: 36562416 DOI: 10.2217/nnm-2022-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Seas and oceans have been explored for the last 70 years in search of new compounds that can support the battle against cancer. Marine polysaccharides can act as nanomaterials for medical applications and marine-derived bioactive compounds can be applied for the biosynthesis of metallic and nonmetallic nanoparticles. Nanooncology can be used in numerous fields including diagnostics, serving as drug carriers or acting as drugs. This review focuses on marine-derived nanoparticles with potential oncological applications. It classifies organisms used for nanoparticle production, explains the production process, presents different types of nanoparticles with prospective applications in oncology, describes the molecular pathways responsible for numerous nanomedicine applications, tags areas of nanoparticle implementation in oncology and speculates about future directions.
Collapse
Affiliation(s)
- Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, Kraków, 31-115, Poland
| | - Izabela Michalak
- Wrocław University of Science & Technology, Department of Advanced Material Technologies, Smoluchowskiego 25, Wrocław, 50-370, Poland
| |
Collapse
|
14
|
Nguyen CH, Banh KS, Dang CH, Nguyen CH, Nguyen TD. β-cyclodextrin/alginate nanoparticles encapsulated 5-fluorouracil as an effective and safe anticancer drug delivery system. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
15
|
Liu C, Yao W, Zhou H, Chen H, Yu S, Qiao W. Series of High Magnetic Resonance-Guided Photoinduced Nanodelivery Systems for Precisely Improving the Efficiency of Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20616-20627. [PMID: 35471860 DOI: 10.1021/acsami.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanochemotherapy is recognized as one of the most promising cancer treatment options, and the design of the carrier has a crucial impact on the final efficacy. To precisely improve the efficacy and reduce the toxicity, we combined the clinical contrast agent (Gd-DTPA) with a stimulus-sensitive o-nitrobenzyl ester and then prepared a series of nNBGD lipids by varying the carbon chain length of the hydrophobic group. The self-assembled nNBGD liposomes can be tracked by MRI to localize the aggregation of drug carriers in vivo, so as to prompt the application of light stimulation at the optimal time to facilitate the precise release of carriers at the lesion site. And the application potential of this strategy was verified with 88% tumor suppression effect in the 12NBGD-DOX+UV group. In addition, this paper emphasizes that small differences in structure can affect the overall performance of the carriers. By exploration of the differences in stability, drug loading, stimulus responsiveness, MRI imaging effect, and toxicity of the series of nNBGD carriers, the relationship between the length of the hydrophobic group of nNBGD lipids and the overall performance of the carriers is given, which provides experimental support and design reference for other carriers.
Collapse
Affiliation(s)
- Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
16
|
Transport of Magnetic Polyelectrolyte Capsules in Various Environments. COATINGS 2022. [DOI: 10.3390/coatings12020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microcapsules consisting of eleven layers of polyelectrolyte and one layer of iron oxide nanoparticles were fabricated. Two types of nanoparticles were inserted as one of the layers within the microcapsule’s walls: Fe2O3, ferric oxide, having a mean diameter (Ø) of 50 nm and superparamagnetic Fe3O4 having Ø 15 nm. The microcapsules were suspended in liquid environments at a concentration of 108 caps/mL. The suspensions were pumped through a tube over a permanent magnet, and the accumulation within a minute was more than 90% of the initial concentration. The design of the capsules, the amount of iron embedded in the microcapsule, and the viscosity of the transportation fluid had a rather small influence on the accumulation capacity. Magnetic microcapsules have broad applications from cancer treatment to molecular communication.
Collapse
|
17
|
Jardim KV, Palomec‐Garfias AF, Araújo MV, Márquez‐Beltrán C, Bakuzis AF, Moya SE, Parize AL, Sousa MH. Remotely triggered curcumin release from stimuli‐responsive magneto‐polymeric
layer‐by‐layer
engineered nanoplatforms. J Appl Polym Sci 2022. [DOI: 10.1002/app.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Andris Figueiroa Bakuzis
- Instituto de Física Universidade Federal de Goiás, Campus Samambaia Goiânia Brazil
- CNanoMed, Parque Tecnológico Samambaia Universidade Federal de Goiás Goiânia Brazil
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Laboratory CIC biomaGUNE San Sebastián, Guip Spain
| | - Alexandre Luis Parize
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química Universidade Federal de Santa Catarina Florianópolis Brazil
| | | |
Collapse
|
18
|
Tian B, Liu Y, Liu J. Chitosan-based nanoscale and non-nanoscale delivery systems for anticancer drugs: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
|
20
|
Yan M, Chen T, Zhang S, Lu T, Sun X. A core-shell structured alginate hydrogel beads with tunable thickness of carboxymethyl cellulose coating for pH responsive drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:763-778. [PMID: 33345720 DOI: 10.1080/09205063.2020.1866350] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
pH-responsive core-shell structured composite hydrogel beads, composed of a alginate (ALG) core coated with carboxymethyl cellulose (CMC) shell (ALG@CMC), were prepared by using in-situ gel preparation technology as a drug delivery system. An anti-inflammatory drug, indomethacin was loaded into the formed hydrogels as a model drug. The resulting gel samples were characterized by Fourier transforms infrared (FTIR) spectroscopy, thermo-gravimetric (TG) analysis, and scanning electron microscopy (SEM). The mechanical stability of all samples in phosphate buffered solution (PBS, pH 7.4) was approximately measured through oscillation experiments. Swelling and controlled drug release behaviors of ALG@CMC beads compared with ALG were studied in simulating gastric fluid of pH 1.2 or intestinal fluid of pH 7.4 at 37 °C. Oscillation experiments proved that the mechanical stability of ALG@CMC beads could be significantly improved by the CMC shell layer. The swelling and drug release behaviors revealed that the swelling and drug release rate of ALG@CMC beads were obviously slower than that of simple-ALG and both have significant pH responsiveness. The cumulative drug release from ALG, ALG@CMC-1, ALG@CMC-2 and ALG@CMC-3 was about 100%, 67%, 46% and 37% in simulated intestinal fluid of pH 7.4, respectively, while the drug release reached only about 2.0% in simulating gastric fluid of pH 1.2 within 720 min. These developed materials could potentially be employed as a pH-responsive drug delivery device in vivo.[Formula: see text].
Collapse
Affiliation(s)
- Mingzhu Yan
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Tiantian Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Shuping Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Ting Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Ximeng Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Zhong H, Gao X, Cheng C, Liu C, Wang Q, Han X. The Structural Characteristics of Seaweed Polysaccharides and Their Application in Gel Drug Delivery Systems. Mar Drugs 2020; 18:658. [PMID: 33371266 PMCID: PMC7765921 DOI: 10.3390/md18120658] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, researchers across various fields have shown a keen interest in the exploitation of biocompatible natural polymer materials, especially the development and application of seaweed polysaccharides. Seaweed polysaccharides are a multi-component mixture composed of one or more monosaccharides, which have the functions of being anti-virus, anti-tumor, anti-mutation, anti-radiation and enhancing immunity. These biological activities allow them to be applied in various controllable and sustained anti-inflammatory and anticancer drug delivery systems, such as seaweed polysaccharide-based nanoparticles, microspheres and gels, etc. This review summarizes the advantages of alginic acid, carrageenan and other seaweed polysaccharides, and focuses on their application in gel drug delivery systems (such as nanogels, microgels and hydrogels). In addition, recent literature reports and applications of seaweed polysaccharides are also discussed.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.Z.); (X.G.); (C.L.); (Q.W.)
| | | | | | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.Z.); (X.G.); (C.L.); (Q.W.)
| |
Collapse
|
22
|
Fabrication of functionalized layered double hydroxide/chitosan nanocomposite with dual responsive drug release for the targeted therapy of breast cancer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Rostami E. Progresses in targeted drug delivery systems using chitosan nanoparticles in cancer therapy: A mini-review. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhao L, Jin W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I. Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E823. [PMID: 32357402 PMCID: PMC7712447 DOI: 10.3390/nano10050823] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Peptide subunit vaccines hold great potential compared to traditional vaccines. However, peptides alone are poorly immunogenic. Therefore, it is of great importance that a vaccine delivery platform and/or adjuvant that enhances the immunogenicity of peptide antigens is developed. Here, we report the development of two different systems for the delivery of lipopeptide subunit vaccine (LCP-1) against group A streptococcus: polymer-coated liposomes and polyelectrolyte complexes (PECs). First, LCP-1-loaded and alginate/trimethyl chitosan (TMC)-coated liposomes (Lip-1) and LCP-1/alginate/TMC PECs (PEC-1) were examined for their ability to trigger required immune responses in outbred Swiss mice; PEC-1 induced stronger humoral immune responses than Lip-1. To further assess the adjuvanting effect of anionic polymers in PECs, a series of PECs (PEC-1 to PEC-5) were prepared by mixing LCP-1 with different anionic polymers, namely alginate, chondroitin sulfate, dextran, hyaluronic acid, and heparin, then coated with TMC. All produced PECs had similar particle sizes (around 200 nm) and surface charges (around + 30 mV). Notably, PEC-5, which contained heparin, induced higher antigen-specific systemic IgG and mucosal IgA titers than all other PECs. PEC systems, especially when containing heparin and TMC, could function as a promising platform for peptide-based subunit vaccine delivery for intranasal administration.
Collapse
Affiliation(s)
- Lili Zhao
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Wanli Jin
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Jazmina Gonzalez Cruz
- Diamantina Institute, Translational Research Institute, The University of Queensland, Wooloongabba, QLD 4102, Australia;
| | - Nirmal Marasini
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.Z.); (W.J.); (N.M.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
25
|
Mucin-polysaccharide interactions: A rheological approach to evaluate the effect of pH on the mucoadhesive properties. Int J Biol Macromol 2020; 149:234-245. [DOI: 10.1016/j.ijbiomac.2020.01.235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
|
26
|
Xu Y, Xiao L, Chang Y, Cao Y, Chen C, Wang D. pH and Redox Dual-Responsive MSN-S-S-CS as a Drug Delivery System in Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1279. [PMID: 32178282 PMCID: PMC7143049 DOI: 10.3390/ma13061279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023]
Abstract
In order to achieve a controlled release drug delivery system (DDS) for cancer therapy, a pH and redox dual-responsive mesoporous silica nanoparticles (MSN)-sulfur (S)-S- chitosan (CS) DDS was prepared via an amide reaction of dithiodipropionic acid with amino groups on the surface of MSN and amino groups on the surface of CS. Using salicylic acid (SA) as a model drug, SA@MSN-S-S-CS was prepared by an impregnation method. Subsequently, the stability, swelling properties and drug release properties of the DDS were studied by x-ray diffraction, scanning electron microscopy, Fourier transform infrared microspectroscopy, size and zeta potential as well as Brunauer-Emmett-Teller surface area. Pore size and volume of the composites decreased after drug loading but maintained a stable structure. The calculated drug loading rate and encapsulation efficiency were 8.17% and 55.64%, respectively. The in vitro drug release rate was 21.54% in response to glutathione, and the release rate showed a marked increase as the pH decreased. Overall, double response functions of MSN-S-S-CS had unique advantages in controlled drug delivery, and may be a new clinical application of DDS in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Yuan Cao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| | - Changguo Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (Y.X.); (L.X.); (Y.C.)
| |
Collapse
|
27
|
|
28
|
Mohanta BC, Javed MN, Hasnain MS, Nayak AK. Polyelectrolyte complexes of alginate for controlling drug release. ALGINATES IN DRUG DELIVERY 2020:297-321. [DOI: 10.1016/b978-0-12-817640-5.00012-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
29
|
Amani S, Mohamadnia Z, Ahmadi E, Mahdavi A, Kermanian M. Self-assembled polyelectrolyte complex nanoparticles as a potential carrier in protein delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Wang SY, Li J, Zhou Y, Li DQ, Du GM. Chemical cross-linking approach for prolonging diclofenac sodium release from pectin-based delivery system. Int J Biol Macromol 2019; 137:512-520. [DOI: 10.1016/j.ijbiomac.2019.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/07/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
31
|
Wang X, Xu L, Ren Z, Fan M, Zhang J, Qi H, Xu M. A novel manganese chelated macromolecular MRI contrast agent based on O-carboxymethyl chitosan derivatives. Colloids Surf B Biointerfaces 2019; 183:110452. [PMID: 31473409 DOI: 10.1016/j.colsurfb.2019.110452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Currently used Gd-based and Mn-based small molecular MRI contrast agents fail to meet the requirements for the long-term monitoring, and the potential safety risk under high administration dose or repeat dosing needs to be considered. In the present study, a biocompatible macromolecular magnetic resonance imaging (MRI) contrast agents based on O-carboxymethyl chitosan (CMCS), CMCS-(Mn-DTPA)n was designed and synthesized. The relaxivity of CMCS-(Mn-DTPA)n is approximately 3.5 and 5.5 times higher than that of Gd-DTPA and Mn-DPDP in aqueous solution, respectively. The MRI signal intensity in the kidney and liver of Sprague Dawley (SD) rats is significantly increased at a dose of 0.03 mM Mn/kg b.w. CMCS-(Mn-DTPA)n accompanied by a long effective imaging window. According to in vitro studies, CMCS-(Mn-DTPA)n exhibits good cellular and blood biocompatibility at the dose necessary for MRI imaging. Based on the results from in vivo studies, manganese (Mn) is completely excreted from SD rats within ten days after administration and does not exert a pathological effect on the liver. CMCS-(Mn-DTPA)n represents a potentially novel MRI contrast agent due to its excellent relaxivity, long effective imaging window and good biocompatibility.
Collapse
Affiliation(s)
- Xianghui Wang
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Li Xu
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanying Ren
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Hongxin Qi
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Min Xu
- Shanghai Key Laboratory of Magnetic Resonance & Biophysics Lab, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
32
|
Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. Int J Biol Macromol 2019; 135:776-789. [DOI: 10.1016/j.ijbiomac.2019.05.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
|