1
|
Lakkakula J, Srilekha GKP, Kalra P, Varshini SA, Penna S. Exploring the promising role of chitosan delivery systems in breast cancer treatment: A comprehensive review. Carbohydr Res 2024; 545:109271. [PMID: 39270442 DOI: 10.1016/j.carres.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Breast cancer presents a significant global health challenge, driving the development of novel treatment strategies for therapeutic interventions. Nanotechnology has emerged as a promising avenue for addressing this challenge, with Chitosan (CS) nanoparticles receiving prominence due to their unique characteristics and multitude of potential applications. This review provides a comprehensive overview of the role of Chitosan nanoparticles in breast cancer therapy. The review begins by emphasizing the prevalence and importance of breast cancer as a major health issue, underscoring the necessity for effective treatments. It then delves into the application of Chitosan nanoparticles in breast cancer therapy. One key aspect discussed is their role as carriers for anticancer drugs, enabling targeted delivery and improved cellular uptake. Furthermore, the review explores modified Chitosan nanoparticles and strategies for enhancing their efficacy and specificity in breast cancer treatment. It also examines Chitosan conjugates and hybrids, which offer innovative approaches for combination therapy. Additionally, metal and magnetic Chitosan nanoparticles are discussed spanning their capacity to assist in imaging, hyperthermia, as well as targeted drug delivery. In conclusion, the review summarizes the current research landscape regarding Chitosan nanoparticles for breast cancer therapy and offers insights into future directions. Overall, the review highlights the versatility, potential benefits, and future prospects of Chitosan nanoparticles in combating breast cancer.
Collapse
Affiliation(s)
- Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206; Centre for Computational Biology and Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - G K P Srilekha
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - Palak Kalra
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - S A Varshini
- Ramaiah University of Applied Sciences, Bangalore, India
| | - Suprasanna Penna
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206.
| |
Collapse
|
2
|
Soliman B, Wen MM, Kandil E, El-Agamy B, Gamal-Eldeen AM, ElHefnawi M. Preparation and Optimization of MiR-375 Nano-Vector Using Two Novel Chitosan-Coated Nano-Structured Lipid Carriers as Gene Therapy for Hepatocellular Carcinoma. Pharmaceutics 2024; 16:494. [PMID: 38675155 PMCID: PMC11054685 DOI: 10.3390/pharmaceutics16040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, there is still a lack of effective carriers with minimal side effects to deliver therapeutic miRNA. Thus, it is crucial to optimize novel drug delivery systems. MiR-375 has proven superior therapeutic potency in Hepatocellular carcinoma (HCC). The purpose of this study was to fabricate 2 novel and smart nano-carriers for the transportation efficiency of miR-375 in HCC cells and enhance its anti-tumor effects. We established the miR-375 construct through the pEGP- miR expression vector. Two nano-carriers of solid/liquid lipids and chitosan (CS) were strategically selected, prepared by high-speed homogenization, and optimized by varying nano-formulation factors. Thus, the two best nano-formulations were designated as F1 (0.5% CS) and F2 (1.5% CS) and were evaluated for miR-375 conjugation efficiency by gel electrophoresis and nanodrop assessment. Then, physio-chemical characteristics and stability tests for the miR-375 nano-plexes were all studied. Next, its efficiencies as replacement therapy in HepG2 cells have been assessed by fluorescence microscopy, flow cytometry, and cytotoxicity assay. The obtained data showed that two cationic nanostructured solid/liquid lipid carriers (NSLCs); F1 and F2 typically had the best physio-chemical parameters and long-term stability. Moreover, both F1 and F2 could form nano-plexes with the anionic miR-375 construct at weight ratios 250/1 and 50/1 via electrostatic interactions. In addition, these nano-plexes exhibited physical stability after three months and protected miR-375 from degradation in the presence of 50% fetal bovine serum (FBS). Furthermore, both nano-plexes could simultaneously deliver miR-375 into HepG2 cells and they ensure miR re-expression even in the presence of 50% FBS compared to free miR-375 (p-value < 0.001). Moreover, both F1 and F2 alone significantly exhibited minimal cytotoxicity in treated cells. In contrast, the nano-plexes significantly inhibited cell growth compared to free miR-375 or doxorubicin (DOX), respectively. More importantly, F2/miR-375 nano-plex exhibited more anti-proliferative activity in treated cells although its IC50 value was 55 times lower than DOX (p-value < 0.001). Collectively, our findings clearly emphasized the multifunctionality of the two CS-coated NSLCs in terms of their enhanced biocompatibility, biostability, conjugation, and transfection efficiency of therapeutic miR-375. Therefore, the NSLCs/miR-375 nano-plexes could serve as a novel and promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Bangly Soliman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
- Biomedical Informatics and Chemo-Informatics Group, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| | - Ming Ming Wen
- Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt
| | - Eman Kandil
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
| | - Basma El-Agamy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (B.S.)
| | - Amira M. Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemo-Informatics Group, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
3
|
Pathak R, Bhatt S, Punetha VD, Punetha M. Chitosan nanoparticles and based composites as a biocompatible vehicle for drug delivery: A review. Int J Biol Macromol 2023; 253:127369. [PMID: 37839608 DOI: 10.1016/j.ijbiomac.2023.127369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The shellfish processing industry is one of the largest growing industries across the globe with a market size of around USD 62B. However, it also leads to a significant environmental issue as it produces >80,000 tons of waste shells globally. Unfortunately, the slow degradation of this waste causes it to accumulate over time, posing a serious threat to the marine environment. The key solution to this problem is to recycle this sea waste into a valuable product like chitin which is further used to produce chitosan. Chitosan is a natural biopolymeric substance obtained via N-deacetylation of the chitin. The chitosan-based nanoparticles are further useful for the fabrication of biopolymeric nanocomposites which are used in various biomedical applications specifically in drug delivery. Here, we review the recent advancements in the development of chitosan-based nanocomposites as a biocompatible carrier for drug delivery, specifically focusing on gene delivery, wound healing, microbial treatment, and anticancer drug delivery. By providing a valuable and up-to-date resource, this review illuminates the current state of research concerning chitosan's pivotal role in the biomedical domain as an efficacious drug delivery agent.
Collapse
Affiliation(s)
- Rakshit Pathak
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Surat 394125, Gujarat, India.
| | - Shalini Bhatt
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Surat 394125, Gujarat, India
| | - Vinay Deep Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Surat 394125, Gujarat, India
| | - Mayank Punetha
- 2D Materials and LASER Actuation Laboratory, Centre of Excellence for Research, PP Savani University, NH-8, Surat 394125, Gujarat, India
| |
Collapse
|
4
|
Ghafouri-Fard S, Shoorei H, Noferesti L, Hussen BM, Moghadam MHB, Taheri M, Rashnoo F. Nanoparticle-mediated delivery of microRNAs-based therapies for treatment of disorders. Pathol Res Pract 2023; 248:154667. [PMID: 37422972 DOI: 10.1016/j.prp.2023.154667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
miRNAs represent appropriate candidates for treatment of several disorders. However, safe and efficient delivery of these small-sized transcripts has been challenging. Nanoparticle-based delivery of miRNAs has been used for treatment of a variety of disorders, particularly cancers as well as ischemic stroke and pulmonary fibrosis. The wide range application of this type of therapy is based on the important roles of miRNAs in the regulation of cell behavior in physiological and pathological conditions. Besides, the ability of miRNAs to inhibit or increase expression of several genes gives them the superiority over mRNA or siRNA-based therapies. Preparation of nanoparticles for miRNA delivery is mainly achieved through using protocols originally developed for drugs or other types of biomolecules. In brief, nanoparticle-based delivery of miRNAs is regarded as a solution for overcoming all challenges in the therapeutic application of miRNAs. Herein, we provide an overview of studies which used nanoparticles as delivery systems for facilitation of miRNAs entry into target cells for the therapeutic purposes. However, our knowledge about miRNA-loaded nanoparticles is limited, and it is expected that numerous therapeutic possibilities will be revealed for miRNA-loaded nanoparticles in future.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Noferesti
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariborz Rashnoo
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Karayianni M, Sentoukas T, Skandalis A, Pippa N, Pispas S. Chitosan-Based Nanoparticles for Nucleic Acid Delivery: Technological Aspects, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1849. [PMID: 37514036 PMCID: PMC10383118 DOI: 10.3390/pharmaceutics15071849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections. In this review, we summarize the most recent developments in the field of chitosan-based NPs intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the technological aspects of chitosan complexes for nucleic acid delivery.
Collapse
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
6
|
Genedy HH, Delair T, Montembault A. Chitosan Based MicroRNA Nanocarriers. Pharmaceuticals (Basel) 2022; 15:ph15091036. [PMID: 36145257 PMCID: PMC9500875 DOI: 10.3390/ph15091036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vectorization of microRNAs has shown to be a smart approach for their potential delivery to treat many diseases (i.e., cancer, osteopathy, vascular, and infectious diseases). However, there are barriers to genetic in vivo delivery regarding stability, targeting, specificity, and internalization. Polymeric nanoparticles can be very promising candidates to overcome these challenges. One of the most suitable polymers for this purpose is chitosan. Chitosan (CS), a biodegradable biocompatible natural polysaccharide, has always been of interest for drug and gene delivery. Being cationic, chitosan can easily form particles with anionic polymers to encapsulate microRNA or even complex readily forming polyplexes. However, fine tuning of chitosan characteristics is necessary for a successful formulation. In this review, we cover all chitosan miRNA formulations investigated in the last 10 years, to the best of our knowledge, so that we can distinguish their differences in terms of materials, formulation processes, and intended applications. The factors that make some optimized systems superior to their predecessors are also discussed to reach the highest potential of chitosan microRNA nanocarriers.
Collapse
|
7
|
Golafzani FN, Vaziri AZ, Javanmardi M, Seyfan F, Yazdanifar M, Khaleghi S. Delivery of miRNA-126 through folic acid-targeted biocompatible polymeric nanoparticles for effective lung cancer therapy. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221095152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Nanoparticle-based drug delivery systems (DDSs) have been playing a considerable role in the eradication of cancer. In this experimental study, we designed and synthesized folic acid (FA)-decorated chitosan (CS) nanocarrier for targeted delivery of miR-126 (as a therapeutic agent) to lung cancer A549 cells. Materials and methods: Therefore, the FA-CS-miR-126 nano-complex was perfectly developed and characterized by various analytical devices such as Fourier transform infrared (FT-IR) and dynamic light scattering (DLS) spectroscopies and as well as transmission electron microscopy (TEM). The size was determined lower than 100 nm for synthetics. Then, a gel retardation assay was performed to investigate the entrapment efficiency of nano-complex. Afterward, the sort of in vitro assays was implemented on A549 (FA receptor-positive lung cancer cell line) and MRC5 (normal human diploid cell line) to evaluate the therapeutic efficiency of FA-CS-miR-126. Results: As the cell viability (40.7 ± 2.98% cell viability after 72 h treatment with 500 nM), migration assay (weaker migration after 24 h and 48 h), apoptotic and autophagy genes expression level (Caspse9: sixfolds; BAX: 17 folds; ATG5: fourfolds; and BECLIN1: threefolds more than the control group), the reduced expression level of EGF-L7, as a target gene for miR-126 was evaluated by Real-Time PCR too, then, cell cycle arrest (8.66% of cells in sub-G1 phase), and cell apoptosis assay (21.0% of cancer cell in late apoptosis phase) were scrutinized. Conclusion: These results are remarkably approved the biocompatible and efficient performance of FA-CS-miR-126 as a promising DDS.
Collapse
Affiliation(s)
- Forough N Golafzani
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Z Vaziri
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masoud Javanmardi
- Department of Medical Biotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Seyfan
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Department of pediatrics, Stem cell transplantation and regenerative medicine, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Yang X, Shang P, Ji J, Malichewe C, Yao Z, Liao J, Du D, Sun C, Wang L, Tang YJ, Guo X. Hyaluronic Acid-Modified Nanoparticles Self-Assembled from Linoleic Acid-Conjugated Chitosan for the Codelivery of miR34a and Doxorubicin in Resistant Breast Cancer. Mol Pharm 2022; 19:2-17. [PMID: 34910493 DOI: 10.1021/acs.molpharmaceut.1c00459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, a chitosan-based, self-assembled nanosystem that codelivered microRNA34a (miR34a) and doxorubicin (Dox) with hyaluronic acid (HA) modification (named CCmDH NPs) was developed to reverse the resistance of breast cancer (BCa) cells to Dox. The CCmDH NPs had a diameter of 180 ± 8.3 nm and a ζ potential of 16.5 mV with a slow-release effect for 96 h. The codelivery system could protect miR34a from nuclease and serum degradation and transport miR34a and Dox into drug-resistant MCF-7/A cells. In addition, the CCmDH NPs could inhibit proliferation and promote apoptosis by regulating the protein expression of B-cell lymphoma-2 (Bcl-2) and poly(ADP-ribose) polymerase (PARP) and inhibit invasion, metastasis, and adhesion by regulating E-cadherin, N-cadherin, MMP2, CD44, and Snail molecules. The CCmDH NPs induced a 73.7% tumor reduction in xenograft tumor growth in nude mice in vivo. This study provides evidence for the anticancer activity of CCmDH NPs carrying Dox and miR34a in BCa, especially metastatic Dox-resistant BCa models.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Pengfei Shang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Jianbo Ji
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Christina Malichewe
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Zhiyin Yao
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China
| | - Jing Liao
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Dandan Du
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Lei Wang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Xiuli Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wen Hua Xi Road, Jinan 250012, P. R. China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
9
|
Xia Y, Tang G, Chen Y, Wang C, Guo M, Xu T, Zhao M, Zhou Y. Tumor-targeted delivery of siRNA to silence Sox2 gene expression enhances therapeutic response in hepatocellular carcinoma. Bioact Mater 2021; 6:1330-1340. [PMID: 33210026 PMCID: PMC7658325 DOI: 10.1016/j.bioactmat.2020.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is one of the most promising methods for the treatment of malignant tumors. However, developing an efficient biocompatible delivery vector for small interfering RNA (siRNA) remains a challenging issue. This study aimed to prepare a non-viral tumor-targeted carrier, named RGDfC-modified functionalized selenium nanoparticles (RGDfC-SeNPs). RGDfC-SeNPs were used to selectively deliver siSox2 to HepG2 liver cancer cells and tissues for the treatment of hepatocellular carcinoma (HCC). In the current study, RGDfC-SeNPs were successfully synthesized and characterized. It was shown that RGDfC-SeNPs could effectively load siSox2 to prepare an antitumor prodrug RGDfC-Se@siSox2. RGDfC-Se@siSox2 exhibited selective uptake in HepG2 liver cancer cells and LO2 normal liver cells, indicating RGDfC-SeNPs could effectively deliver siSox2 to HepG2 liver cancer cells. RGDfC-Se@siSox2 entered HepG2 cells via clathrin-mediated endocytosis by firstly encircling the cytoplasm and then releasing siSox2 in the lysosomes. RGDfC-Se@siSox2 could effectively silence Sox2 and inhibit the proliferation, migration and invasion of HepG2 cells. RGDfC-Se@siSox2 induced HepG2 cells apoptosis most likely via overproduction of reactive oxygen species and disruption of the mitochondrial membrane potentials. Most importantly, RGDfC-Se@siSox2 significantly inhibited the tumor growth in HepG2 tumor-bearing mice without obvious toxic side effects. These studies indicated that RGDfC-SeNPs may be an ideal gene carrier for delivering siSox2 to HepG2 cells and that RGDfC-Se@siSox2 may be a novel and highly specific gene-targeted prodrug therapy for HCC.
Collapse
Affiliation(s)
- Yu Xia
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Guoyi Tang
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Chen
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Changbing Wang
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Min Guo
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| |
Collapse
|