1
|
Nyamba I, Sombié CB, Yabré M, Zimé-Diawara H, Yaméogo J, Ouédraogo S, Lechanteur A, Semdé R, Evrard B. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur J Pharm Biopharm 2024; 204:114513. [PMID: 39313163 DOI: 10.1016/j.ejpb.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
High solubility in water and physiological fluids is an indispensable requirement for the pharmacological efficacy of an active pharmaceutical ingredient. Indeed, it is well established that pharmaceutical substances exhibiting limited solubility in water are inclined towards diminished and inconsistent absorption following oral administration, consequently resulting in variability in therapeutic outcomes. The current advancements in combinatorial chemistry and pharmaceutical design have facilitated the creation of drug candidates characterized by increased lipophilicity, elevated molecular size, and reduced aqueous solubility. Undoubtedly, the issue of poorly water-soluble medications has been progressively escalating over recent years. Indeed, 40% of the top 200 oral medications marketed in the United States, 33% of drugs listed in the US pharmacopoeia, 75% of compounds under development and 90% of new chemical entities are insufficiently water-soluble compounds. In order to address this obstacle, formulation scientists employ a variety of approaches, encompassing both physical and chemical methods such as prodrug synthesis, salt formation, solid dispersions formation, hydrotropic substances utilization, solubilizing agents incorporation, cosolvent addition, polymorphism exploration, cocrystal creation, cyclodextrins complexation, lipid formulations, particle size reduction and nanoformulation techniques. Despite the utilization of these diverse approaches, the primary reason for the failure in new drug development persists as the poor aqueous solubility of pharmaceutical compounds. This paper, therefore, delves into the foundational principles that underpin the implementation of various formulation strategies, along with a discussion on the respective advantages and drawbacks associated with each approach. Additionally, a discourse is provided regarding methodological frameworks for making informed decisions on selecting an appropriate formulation strategy to effectively tackle the key challenges posed during the development of a poorly water-soluble drug candidate.
Collapse
Affiliation(s)
- Isaïe Nyamba
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso.
| | - Charles B Sombié
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Moussa Yabré
- Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Hermine Zimé-Diawara
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Josias Yaméogo
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Salfo Ouédraogo
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium
| | - Rasmané Semdé
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Osei FB, Twum K, Manfredi B, Fatohi M, Bessem Ojong Y, Washington V, Beyeh NK. Ionic resorcinarenes as drug solubilization agents in water. RSC Adv 2024; 14:34228-34238. [PMID: 39469002 PMCID: PMC11514725 DOI: 10.1039/d4ra06682k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Resorcinarenes are capable of host-guest complexation with small molecules, however, they are less studied as pharmaceutical drug delivery aids. This article reports on the aqueous-solubility enhancing effect of an octa-sulfonated resorcinarene and a C-hydroxybenzyl ammonium resorcinarene chloride on three hydrophobic drugs: isoniazid, caffeine, and griseofulvin. The findings are backed by dynamic light scattering, isothermal calorimetric titration, and nuclear magnetic resonance experiments in water. Aqueous mixtures of equal volumes of drug compounds and resorcinarene solutions produced a more soluble and clearer unit than solutions of pure drug compounds in water. Light scattering experiments revealed shifts in particle sizes of pure drug compounds to the range of resorcinarene hosts. 1H NMR measurements of resorcinarene-drug mixtures confirmed interactions with shift changes ranging from -0.20 to 0.81 ppm. Binding affinities quantified through ITC experiments ranged between 0.54 and 211 mM, signifying interactions between resorcinarenes and drug compounds necessary for the solubility of the drugs. Cytotoxicity studies suggest that resorcinarenes alone, or complexed with any of the drug compounds, do not exert cytotoxicity in mammalian cells HEK-293 up to 200 μM. We herein propose a set of hydrophilic resorcinarene macrocycles as potential drug solubilizers.
Collapse
Affiliation(s)
- Frank Boateng Osei
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| | - Kwaku Twum
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| | - Barbara Manfredi
- Oakland University, Department of Biological Sciences 146 Library Drive Rochester MI 48309-4479 USA
| | - Mariana Fatohi
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| | - Yvonne Bessem Ojong
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| | - Valance Washington
- Oakland University, Department of Biological Sciences 146 Library Drive Rochester MI 48309-4479 USA
| | - Ngong Kodiah Beyeh
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| |
Collapse
|
3
|
Emzhik M, Qaribnejad A, Haeri A, Dadashzadeh S. Bile salt-enriched vs. non-enriched nanoparticles: comparison of their physicochemical characteristics and release pattern. Pharm Dev Technol 2024; 29:187-211. [PMID: 38369965 DOI: 10.1080/10837450.2024.2320279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.
Collapse
Affiliation(s)
- Marjan Emzhik
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirsajad Qaribnejad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Padaraju A, Dwivedi F, Kumar G. Microemulsions, nanoemulsions and emulgels as carriers for antifungal antibiotics. Ther Deliv 2023; 14:721-740. [PMID: 38014430 DOI: 10.4155/tde-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
According to estimates, up to 25% of the world's population has fungal skin diseases, making them the most prevalent infectious disease. Several chemical classes of antifungal drugs are available to treat fungal infections. However, the major challenges of conventional formulations of antifungal drugs include poor pharmacokinetic profiles like solubility, low permeability, side effects and decreased efficacy. Novel drug delivery is a promising approach for overcoming pharmacokinetic limitations and increasing the effectiveness of antibiotics. In this review, we have shed light on microemulsions, nanoemulsions, and emulgels as novel drug delivery approaches for the topical delivery of antifungal antibiotics. We believe these formulations have potential translational value and could be developed for treating fungal infections in humans.
Collapse
Affiliation(s)
- Annapurna Padaraju
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Falguni Dwivedi
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
5
|
Ding Y, Cui W, Zhang Z, Ma Y, Ding C, Lin Y, Xu Z. Solubility and Pharmacokinetic Profile Improvement of Griseofulvin through Supercritical Carbon Dioxide-Assisted Complexation with HP- γ-Cyclodextrin. Molecules 2023; 28:7360. [PMID: 37959779 PMCID: PMC10650103 DOI: 10.3390/molecules28217360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Since griseofulvin was marketed as a non-polyene antifungal antibiotic drug in 1958, its poor water solubility has been an issue for its wide applications, and over the last sixty years, many attempts have been made to increase its water solubility; however, a significant result has yet to be achieved. Through supercritical carbon dioxide-assisted cyclodextrin complexation with the addition of a trace amount of water-soluble polymer surfactant, the griseofulvin inclusion complex with HP-γ-cyclodextrin was prepared and confirmed. The 1:2 ratio of griseofulvin and HP-γ-cyclodextrin in the complex was determined based on its NMR study. After complexation with HP-γ-cyclodextrin, griseofulvin's water solubility was increased 477 times compared with that of griseofulvin alone, which is the best result thus far. The complex showed 90% of griseofulvin release in vitro in 10 min, in an in vivo dog pharmacokinetic study; the Cmax was increased from 0.52 µg/mL to 0.72 µg/mL, AUC0-12 was increased from 1.55 μg·h/mL to 2.75 μg·h/mL, the clearance was changed from 51.78 L/kg/h to 24.16 L/kg/h, and the half-life time was changed from 0.81 h to 1.56 h, indicating the obtained griseofulvin complex can be a more effective drug than griseofulvin alone.
Collapse
Affiliation(s)
- Yili Ding
- College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ 07083, USA
| | - Wutong Cui
- Life Science Department, Foshan University, Foshan 528231, China
| | - Zhiyuan Zhang
- Life Science Department, Foshan University, Foshan 528231, China
| | - Yanzhi Ma
- Life Science Department, Foshan University, Foshan 528231, China
| | - Charles Ding
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089-1149, USA
| | - Yikai Lin
- Life Science Department, Foshan University, Foshan 528231, China
| | - Zhe Xu
- College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| |
Collapse
|
6
|
Zhao YQ, Li LJ, Zhou EF, Wang JY, Wang Y, Guo LM, Zhang XX. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1751036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Lipid-based nanocarriers have been extensively investigated for drug delivery due to their advantages including biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. However, the shortcomings of traditional lipid-based nanocarriers such as insufficient targeting, capture by the reticuloendothelial system, and fast elimination limit the efficiency of drug delivery and therapeutic efficacy. Therefore, a series of multifunctional lipid-based nanocarriers have been developed to enhance the accumulation of drugs in the lesion site, aiming for improved diagnosis and treatment of various diseases. In this review, we summarized the advances and applications of lipid-based nanocarriers from traditional to novel functional lipid preparations, including liposomes, stimuli-responsive lipid-based nanocarriers, ionizable lipid nanoparticles, lipid hybrid nanocarriers, as well as biomembrane-camouflaged nanoparticles, and further discussed the challenges and prospects of this system. This exploration may give a complete idea viewing the lipid-based nanocarriers as a promising choice for drug delivery system, and fuel the advancement of pharmaceutical products by materials innovation and nanotechnology.
Collapse
Affiliation(s)
- Yan-Qi Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Jun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Er-Fen Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jiang-Yue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lin-Miao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
7
|
Kumar R, Sarkar C, Panja S, Khatua C, Gugulothu K, Sil D. Biomimetic Nanocomposites for Biomedical Applications. ACS SYMPOSIUM SERIES 2022:163-196. [DOI: 10.1021/bk-2022-1410.ch007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Chandrani Sarkar
- Department of Chemistry, Mahila College, Kolhan University, Chaibasa, Jharkand 833202, India
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Chandra Khatua
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kishan Gugulothu
- Department of Chemistry, Osmania University, Hyderabad, Telangana 500007, India
| | - Diptesh Sil
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| |
Collapse
|
8
|
Saveleva M, Lengert E, Verkhovskii RA, Abalymov A, Pavlov AM, Ermakov A, Prikhozhdenko E, Shtykov SN, Svenskaya YI. CaCO 3-based carriers with prolonged release property for antifungal drug delivery to hair follicles. Biomater Sci 2022; 10:3323-3345. [DOI: 10.1039/d2bm00539e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superficial fungal infections are of serious concern worldwide due to their morbidity and increasing distribution across the globe in this era of growing antimicrobial resistance. Delivery of antifungals to target...
Collapse
|
9
|
Share Mohammadi H, Haghighi Asl A, Khajenoori M. Experimental study and modeling of letrozole (anticancer drug) solubility in subcritical water: Production of nanoparticles using subcritical water precipitation method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Banarase NB, Kaur CD. Whole whey stabilized oleanolic acid nanosuspension: Formulation and evaluation study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
11
|
Salehi H, Karimi M, Raofie F. Micronization of Thebaine Extracted from Papaver Bracteatum Lindl. Using Supercritical Fluid Technology. J AOAC Int 2021; 105:593-602. [PMID: 34570218 DOI: 10.1093/jaoacint/qsab118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Thebaine, as a main opiate alkaloid extracted from papaveraceae plants, is widely used in the synthesis of many pharmaceutical ingredients such as buprenorphine, naltrexone, naloxone, and hydrocodone. Nevertheless, thebaine and related derivatives are often insoluble in aqueous media and have low bioavailability in digestive system. OBJECTIVE Reducing particle size and changing the morphology can mitigate the mentioned problem. In this study, extraction of thebaine from the capsule, steam, and root of Papaver bracteatum L. was optimized and micronization of extract components was developed to study of solubility. METHODS Extraction process was performed using supercritical carbon dioxide. Experimental central composite design was employed to determine the optimal conditions. Analysis of extract was done using validated HPLC method and mass spectrometry. Micronization process was performed using an inhouse developed supercritical technique. The nanoparticles were characterized using FESEM and Image J software. The Effect of micronization was explored on the solubility of extract components via ultraviolet spectroscopy. RESULTS The percentage of thebaine in dried capsule, steam, and root powder was about 1.05%, 0.31, and 0.83% respectively. The extraction results indicated that supercritical pressure has the greatest effect on the extraction yield. Analysis of FESEM images revealed that nanoparticles of extract components with particle size distribution of 5 to 100 nm were collected successfully. CONCLUSIONS The extraction results indicated that pressure has the greatest effect on the extraction yield. In vitro studies illustrated that the solubility of extract components increased up to 1.7 times during the micronization process. HIGHLIGHTS Expansion of supercritical methods as an effective method was performed for extracting and preparing alkaloids nanoparticles. This process led to improved oral bioavailability of alkaloids.
Collapse
Affiliation(s)
- Hamze Salehi
- Department of Analytical and pollutants Chemistry, Shahid Beheshti University, Tehran, Iran, 1983969411
| | - Mehrnaz Karimi
- Department of Analytical and pollutants Chemistry, Shahid Beheshti University, Tehran, Iran, 1983969411
| | - Farhad Raofie
- Department of Analytical and pollutants Chemistry, Shahid Beheshti University, Tehran, Iran, 1983969411
| |
Collapse
|
12
|
Tran PHL, Lee BJ, Tran TTD. Fast-Dissolving Solid Dispersions for the Controlled Release of Poorly Watersoluble Drugs. Curr Pharm Des 2021; 27:1498-1506. [PMID: 33087026 DOI: 10.2174/1381612826666201021125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Solid dispersions offer many advantages for oral drug delivery of poorly water-soluble drugs over other systems, including an increase in drug solubility and drug dissolution. An improvement in drug absorption and the higher bioavailability of active pharmaceutical ingredients in the gastrointestinal tract have been reported in various studies. In certain circumstances, a rapid pharmacological effect is required for patients. Fastdissolving solid dispersions provide an ideal formulation in such cases. This report will provide an overview of current studies on fast-dissolving solid dispersions, including not only solid dispersion powders with fast dissolution rates but also specific dose form for the controlled release of poorly water-soluble drugs. Specifically, the applications of fast-dissolving solid dispersions will be described in every specific case. Moreover, pharmaceutical approaches and the utilization of polymers will be summarized. The classification and analysis of fastdissolving solid dispersions could provide insight into strategies and potential applications in future drug delivery developments.
Collapse
Affiliation(s)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Micronization and coating of bioflavonoids extracted from Citrus sinensis L. peels to preparation of sustained release pellets using supercritical technique. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [PMCID: PMC8189276 DOI: 10.1007/s13738-021-02262-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract Bioflavonoids such as hesperidin and hesperetin as anticancer and antioxidant agents are widely used in the formulation of many herbal drugs. Recently, promising evidence for the prevention and treatment of COVID 19 using these compounds has been reported. Unfortunately, these compounds are often insoluble in aqueous media and have low stability in gastric acid environment. These factors reduced the bioavailability of related oral dosage forms in digestive system. Reduction of particle size and controlled release delivery system can decline the mentioned problems. In the presented research, extraction of bioflavonoids from Citrus sinensis L. (sweet orange) peels was performed using supercritical carbon dioxide. Experimental central composite design was employed for determination of optimal conditions. Qualification analysis was performed using LC–MS, and hesperidin and hesperetin were identified in herbal extract. Micronization and coating of the flavonoids nanoparticles on sugar spheres have been performed using an inhouse developed supercritical technique. Characterization of coated nanoparticles was done using FESEM and ImageJ software. The in vitro antioxidant activity of coated samples was investigated by ferrous ion chelating activity. According to the extraction results, concentration of ethanol as organic co-solvent has the greatest effect on the extraction yield. Analysis of FESEM images illustrated that nanoparticles of extract components with particle size distribution of 5–100 nm were coated successfully. The solubility and antioxidant activity of nanoparticles in aqueous media have increased significantly compared to original form. This process led to increasing dissolution rate and improving the oral bioavailability of flavonoids. Graphical abstract ![]()
Collapse
|
14
|
Chivate A, Garkal A, Hariharan K, Mehta T. Exploring novel carrier for improving bioavailability of Itraconazole: Solid dispersion through hot-melt extrusion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Uhljar LÉ, Kan SY, Radacsi N, Koutsos V, Szabó-Révész P, Ambrus R. In Vitro Drug Release, Permeability, and Structural Test of Ciprofloxacin-Loaded Nanofibers. Pharmaceutics 2021; 13:pharmaceutics13040556. [PMID: 33921031 PMCID: PMC8071406 DOI: 10.3390/pharmaceutics13040556] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Nanofibers of the poorly water-soluble antibiotic ciprofloxacin (CIP) were fabricated in the form of an amorphous solid dispersion by using poly(vinyl pyrrolidone) as a polymer matrix, by the low-cost electrospinning method. The solubility of the nanofibers as well as their in vitro diffusion were remarkably higher than those of the CIP powder or the physical mixture of the two components. The fiber size and morphology were optimized, and it was found that the addition of the CIP to the electrospinning solution decreased the nanofiber diameter, leading to an increased specific surface area. Structural characterization confirmed the interactions between the drug and the polymer and the amorphous state of CIP inside the nanofibers. Since the solubility of CIP is pH-dependent, the in vitro solubility and dissolution studies were executed at different pH levels. The nanofiber sample with the finest morphology demonstrated a significant increase in solubility both in water and pH 7.4 buffer. Single medium and two-stage biorelevant dissolution studies were performed, and the release mechanism was described by mathematical models. Besides, in vitro diffusion from pH 6.8 to pH 7.4 notably increased when compared with the pure drug and physical mixture. Ciprofloxacin-loaded poly(vinyl pyrrolidone) (PVP) nanofibers can be considered as fast-dissolving formulations with improved physicochemical properties.
Collapse
Affiliation(s)
- Luca Éva Uhljar
- Interdisciplinary Excellence Centre, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (L.É.U.); (P.S.-R.)
| | - Sheng Yuan Kan
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, UK; (S.Y.K.); (N.R.); (V.K.)
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, UK; (S.Y.K.); (N.R.); (V.K.)
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, UK; (S.Y.K.); (N.R.); (V.K.)
| | - Piroska Szabó-Révész
- Interdisciplinary Excellence Centre, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (L.É.U.); (P.S.-R.)
| | - Rita Ambrus
- Interdisciplinary Excellence Centre, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (L.É.U.); (P.S.-R.)
- Correspondence:
| |
Collapse
|
16
|
Kumar R, Butreddy A, Kommineni N, Reddy PG, Bunekar N, Sarkar C, Dutt S, Mishra VK, Aadil KR, Mishra YK, Oupicky D, Kaushik A. Lignin: Drug/Gene Delivery and Tissue Engineering Applications. Int J Nanomedicine 2021; 16:2419-2441. [PMID: 33814908 PMCID: PMC8009556 DOI: 10.2147/ijn.s303462] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Lignin is an abundant renewable natural biopolymer. Moreover, a significant development in lignin pretreatment and processing technologies has opened a new window to explore lignin and lignin-based bionanomaterials. In the last decade, lignin has been widely explored in different applications such as drug and gene delivery, tissue engineering, food science, water purification, biofuels, environmental, pharmaceuticals, nutraceutical, catalysis, and other interesting low-value-added energy applications. The complex nature and antioxidant, antimicrobial, and biocompatibility of lignin attracted its use in various biomedical applications because of ease of functionalization, availability of diverse functional sites, tunable physicochemical and mechanical properties. In addition to it, its diverse properties such as reactivity towards oxygen radical, metal chelation, renewable nature, biodegradability, favorable interaction with cells, nature to mimic the extracellular environment, and ease of nanoparticles preparation make it a very interesting material for biomedical use. Tremendous progress has been made in drug delivery and tissue engineering in recent years. However, still, it remains challenging to identify an ideal and compatible nanomaterial for biomedical applications. In this review, recent progress of lignin towards biomedical applications especially in drug delivery and in tissue engineering along with challenges, future possibilities have been comprehensively reviewed.
Collapse
Affiliation(s)
- Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Hyderabad, Telangana State, 500078, India
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA
| | - Pulikanti Guruprasad Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Naveen Bunekar
- Department of Chemistry, Chung Yuan Christian University, Chung Li, 32023, Taiwan
| | - Chandrani Sarkar
- Department of Chemistry, Mahila College, Kolhan University, Chaibasa, Jharkhand, 833202, India
| | - Sunil Dutt
- Department of Chemistry, Govt. Post Graduate College, Una, Himachal Pradesh, India
| | | | - Keshaw Ram Aadil
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattishgarh, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, 6400, Denmark
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, USA
| |
Collapse
|
17
|
Kenechukwu FC, Dias ML, Ricci-Júnior E. Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs. Carbohydr Polym 2021; 256:117492. [PMID: 33483021 DOI: 10.1016/j.carbpol.2020.117492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
Bio-inspired nanotechnology-based strategies are potential platforms for enhanced dissolution and oral biovailability of poorly water-soluble drugs. In this study, a recently patented green biopolymer (Prosopis africana gum, PG) was compatibilized with microcrystalline cellulose (MCC), a conventional polysaccharide, via thermo-regulated coacervation to obtain PG-MCC (1:0, 1:1, 1:2, 2:1, and 0:1) rational blends and the nanoparticles developed with optimized (1:1) biocomposites (termed "prosopisylated cellulose") by combined homogenization-nanoprecipitation technique was engineered as a high circulating system for improved oral bioavailability of griseofulvin (GF), a model Biopharmaceutics Classification System (BCS) Class-II drug. The effects of biopolymer interaction on morphological and microstructural properties of drug-free biocomposites obtained were investigated by Fourier transform infra-red spectroscopy, scanning electron microscopy and x-ray diffractometry, while the physicochemical properties and in-vivo pharmacokinetics of GF-loaded nanoparticles were also ascertained. Optimized biocomposites revealed inter-molecular and intra-molecular hydrogen bonding between the hydroxyl group of MCC and polar components of PG, as well as reduction in crystallinity of MCC. Griseofulvin-loaded nanoparticles were stable, displayed particles with relatively smooth surfaces and average size of 26.18 ± 0.94 . nm, with zeta potential and polydispersity index of 32.1 ± 0.57 mV and 0.173 ± 0.06, respectively. Additionally, the nanoparticles showed good entrapment efficiency (86.51 ± 0.93 %), and marked improvement in griseofulvin dissolution when compared to free drug, with significantly (p < 0.05) higher GF release in basic than acidic PEG-reinforced simulated bio-microenvironments. Besides, x-ray diffractogram of GF-loaded nanoparticles showed amorphization with few characteristic peaks of GF while infra-red spectrum indicated broader principal peaks of GF and components compatibility. Furthermore, GF-loaded nanoparticles showed low plasma clearance with three-fold increase in systemic bioavailability of griseofulvin compared with free drug. These results showed that prosopisylated cellulose nanoparticles would be a facile approach to improve oral bioavailability of BCS class-II drugs and can be pursued as a new versatile drug delivery platform.
Collapse
Affiliation(s)
- Franklin Chimaobi Kenechukwu
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Instituto de Macromoléculas Professora Eloisa Mano (IMA), Programa de Ciencia e Tecnologia de Polimeros, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil.
| | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Programa de Ciencia e Tecnologia de Polimeros, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Eduardo Ricci-Júnior
- Nanomedicines Unit, Facultade de Pharmacia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil
| |
Collapse
|
18
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
19
|
Insoluble Polymers in Solid Dispersions for Improving Bioavailability of Poorly Water-Soluble Drugs. Polymers (Basel) 2020; 12:polym12081679. [PMID: 32731391 PMCID: PMC7466147 DOI: 10.3390/polym12081679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/14/2023] Open
Abstract
In recent decades, solid dispersions have been demonstrated as an effective approach for improving the bioavailability of poorly water-soluble drugs, as have solid dispersion techniques that include the application of nanotechnology. Many studies have reported on the ability to change drug crystallinity and molecular interactions to enhance the dissolution rate of solid dispersions using hydrophilic carriers. However, numerous studies have indicated that insoluble carriers are also promising excipients in solid dispersions. In this report, an overview of solid dispersion strategies involving insoluble carriers has been provided. In addition to the role of solubility and dissolution enhancement, the perspectives of the use of these polymers in controlled release solid dispersions have been classified and discussed. Moreover, the compatibility between methods and carriers and between drug and carrier is mentioned. In general, this report on solid dispersions using insoluble carriers could provide a specific approach and/or a selection of these polymers for further formulation development and clinical applications.
Collapse
|
20
|
Drop-by-drop solvent hot antisolvent interaction method for engineering nanocrystallization of sulfamethoxazole to enhanced water solubility and bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Affiliation(s)
- Raj Kumar
- School of Basic Sciences and Advanced Materials Research CentreIndian Institute of Technology Mandi Mandi, Himachal Pradesh India- 175005
| |
Collapse
|
22
|
Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|