1
|
Bîrcă AC, Chircov C, Niculescu AG, Hildegard H, Baltă C, Roșu M, Mladin B, Gherasim O, Mihaiescu DE, Vasile BȘ, Grumezescu AM, Andronescu E, Hermenean AO. H2O2-PLA-(Alg)2Ca Hydrogel Enriched in Matrigel® Promotes Diabetic Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030857. [PMID: 36986719 PMCID: PMC10057140 DOI: 10.3390/pharmaceutics15030857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hydrogel-based dressings exhibit suitable features for successful wound healing, including flexibility, high water-vapor permeability and moisture retention, and exudate absorption capacity. Moreover, enriching the hydrogel matrix with additional therapeutic components has the potential to generate synergistic results. Thus, the present study centered on diabetic wound healing using a Matrigel-enriched alginate hydrogel embedded with polylactic acid (PLA) microspheres containing hydrogen peroxide (H2O2). The synthesis and physicochemical characterization of the samples, performed to evidence their compositional and microstructural features, swelling, and oxygen-entrapping capacity, were reported. For investigating the three-fold goal of the designed dressings (i.e., releasing oxygen at the wound site and maintaining a moist environment for faster healing, ensuring the absorption of a significant amount of exudate, and providing biocompatibility), in vivo biological tests on wounds of diabetic mice were approached. Evaluating multiple aspects during the healing process, the obtained composite material proved its efficiency for wound dressing applications by accelerating wound healing and promoting angiogenesis in diabetic skin injuries.
Collapse
Affiliation(s)
- Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Adelina Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Herman Hildegard
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Cornel Baltă
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Marcel Roșu
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Anca Oana Hermenean
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| |
Collapse
|
2
|
Rao SS, Venkatesan J, Yuvarajan S, Rekha PD. Self-assembled polyelectrolyte complexes of chitosan and fucoidan for sustained growth factor release from PRP enhance proliferation and collagen deposition in diabetic mice. Drug Deliv Transl Res 2022; 12:2838-2855. [PMID: 35445942 DOI: 10.1007/s13346-022-01144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
Diabetic wound management is a serious health care challenge due to higher rates of relapse, expensive treatment approaches, and poor healing outcomes. Among cell-based therapies, use of platelet-rich plasma (PRP) has been shown to be effective for diabetic wounds, but its poor shelf-life limits its clinical use. Here, we demonstrate a simple but effective polymer system to increase the shelf-life of PRP by developing a polyelectrolyte complex with dropwise addition of chitosan solution containing PRP by simple mixing at room temperature. Thus, prepared chitosan-fucoidan (CF) carrier complex encapsulated more than 95% of the loaded PRP. The resulting CF/PRP colloids were spherical in shape and ensured extended PRP release up to 72 h at 37 °C. Routine characterization (FT-IR, XRD, SEM) showed the material properties. The biological assays showed that CF complexes were biocompatible while CF/PRP enhanced the proliferation of fibroblasts and keratinocytes via higher Ki67 expression and fibroblast migration. Further investigations using a diabetic mouse model demonstrated significantly higher wound contraction and histopathological observations showed increased fibroblast migration, and collagen and cytokeratin deposition in treatment groups. The results are suggestive of the efficacy of CF/PRP as a cost-effective topical formulation for the sustained delivery of growth factors in treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Sneha Subramanya Rao
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Jayachandran Venkatesan
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Subramaniyan Yuvarajan
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Punchappady-Devasya Rekha
- Yenepoya Research Centre, Yenepoya (Deemed To Be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
3
|
Pruett L, Jenkins C, Singh N, Catallo K, Griffin D. Heparin Microislands in Microporous Annealed Particle Scaffolds for Accelerated Diabetic Wound Healing. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2104337. [PMID: 34539306 PMCID: PMC8447473 DOI: 10.1002/adfm.202104337] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 05/04/2023]
Abstract
Mimicking growth factor-ECM interactions for promoting cell migration is a powerful technique to improve tissue integration with biomaterial scaffolds for the regeneration of damaged tissues. This has been attempted by scaffold-mediated controlled delivery of exogenous growth factors; however, the predetermined nature of this delivery can limit the scaffold's ability to meet each wound's unique spatiotemporal regenerative needs and presents translational hurdles. To address this limitation, we present a new approach to growth factor presentation by incorporating heparin microislands, which are spatially isolated heparin-containing microparticles that can reorganize and protect endogenous local growth factors via heterogeneous sequestration at the microscale in vitro and result in functional improvements in wound healing. More specifically, we incorporated our heparin microislands within microporous annealed particle (MAP) scaffolds, which allows facile tuning of microenvironment heterogeneity through ratiometric mixing of microparticle sub-populations. In this manuscript, we demonstrate the ability of heparin microislands to heterogeneously sequester applied growth factor and control downstream cell migration in vitro. Further, we present their ability to significantly improve wound healing outcomes (epidermal regeneration and re-vascularization) in a diabetic wound model relative to two clinically relevant controls.
Collapse
Affiliation(s)
- Lauren Pruett
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, VA 22908
| | - Christian Jenkins
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, VA 22908
| | - Neharika Singh
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, VA 22908
| | - Katarina Catallo
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, VA 22908
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, VA 22908
| |
Collapse
|
4
|
Abstract
Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. Derangement in wound-linked cellular behaviours, as occurs with diabetes and ageing, can lead to healing impairment and the formation of chronic, non-healing wounds. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence. Thus, there is an urgent requirement for the improved biological and clinical understanding of the mechanisms that underpin wound repair. Here, we review the cellular basis of tissue repair and discuss how current and emerging understanding of wound pathology could inform future development of efficacious wound therapies.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull HU6 7RX, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
5
|
Ge L, Yang L, Bron R, Burgess JK, van Rijn P. Topography-Mediated Fibroblast Cell Migration Is Influenced by Direction, Wavelength, and Amplitude. ACS APPLIED BIO MATERIALS 2020; 3:2104-2116. [DOI: 10.1021/acsabm.0c00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lu Ge
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Liangliang Yang
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Reinier Bron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Hanzeplein 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|