1
|
Echanur VA, Matadh AV, Pragathi SG, Sarasija S, Thean Y, Badruddoza AZ, Shah J, Kulkarni V, Ajjarapu S, Reena NM, Shivakumar HN, Murthy SN. Continuous Manufacturing of Oil in Water (O/W) Emulgel by Extrusion Process. AAPS PharmSciTech 2023; 24:76. [PMID: 36899180 DOI: 10.1208/s12249-023-02530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Pharmaceutical industries and drug regulatory agencies are inclining towards continuous manufacturing due to better control over the processing conditions and in view to improve product quality. In the present work, continuous manufacturing of O/W emulgel by melt extrusion process was explored using lidocaine as an active pharmaceutical ingredient. Emulgel was characterized for pH, water activity, globule size distribution, and in vitro release rate. Additionally, effect of temperature (25°C and 60°C) and screw speed (100, 300, and 600 rpm) on the globule size and in vitro release rate was studied. Results indicated that at a given temperature, emulgel prepared under screw speed of 300 rpm resulted in products with smaller globules and faster drug release.
Collapse
Affiliation(s)
- V Anusha Echanur
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - Anusha V Matadh
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - S G Pragathi
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - S Sarasija
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | | | | | | | | | | | - N M Reena
- Topical Products Testing, LLC, 9 Industrial Park Drive, Oxford, Mississippi, 38655, USA
| | - H N Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bangalore, India.,KLE College of Pharmacy, Bangalore, India
| | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bangalore, India. .,Topical Products Testing, LLC, 9 Industrial Park Drive, Oxford, Mississippi, 38655, USA.
| |
Collapse
|
2
|
Conceição M, Beserra FP, Aldana Mejia JA, Caldas GR, Tanimoto MH, Luzenti AM, Gaspari PDM, Evans ND, Bastos JK, Pellizzon CH. Guttiferones: An insight into occurrence, biosynthesis, and their broad spectrum of pharmacological activities. Chem Biol Interact 2023; 370:110313. [PMID: 36566914 DOI: 10.1016/j.cbi.2022.110313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Guttiferones belong to the polyisoprenylated benzophenone, a class of compounds, a very restricted group of natural plant products, especially in the Clusiaceae family. They are commonly found in bark, stem, leaves, and fruits of plants of the genus Garcinia and Symphonia. Guttiferones have the following classifications according to their chemical structure: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, and T. All of them have received growing attention due to its multiple biological activities. This review provides a first comprehensive approach to plant sources, phytochemical profile, specific pharmacological effects, and mechanisms of guttiferones already described. Studies indicate a broad spectrum of pharmacological activities, such as: anti-inflammatory, immunomodulatory, antioxidant, antitumor, antiparasitic, antiviral, and antimicrobial. Despite the low toxicity of these compounds in healthy cells, there is a lack of studies in the literature related to toxicity in general. Given their beneficial effects, guttiferones are expected to be great potential drug candidates for treating cancer and infectious and transmissible diseases. However, further studies are needed to elucidate their toxicity, specific molecular mechanisms and targets, and to perform more in-depth pharmacokinetic studies. This review highlights chemical properties, biological characteristics, and mechanisms of action so far, offering a broad view of the subject and perspectives for the future of guttiferones in therapeutics.
Collapse
Affiliation(s)
- Mariana Conceição
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fernando Pereira Beserra
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - Jennyfer Andrea Aldana Mejia
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Rocha Caldas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Hikaru Tanimoto
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Andréia Marincek Luzenti
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Priscyla Daniely Marcato Gaspari
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Nicholas David Evans
- Human Development and Health, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cláudia Helena Pellizzon
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
3
|
Khan R, Mirza MA, Aqil M, Hassan N, Zakir F, Ansari MJ, Iqbal Z. A Pharmaco-Technical Investigation of Thymoquinone and Peat-Sourced Fulvic Acid Nanoemulgel: A Combination Therapy. Gels 2022; 8:733. [PMID: 36354641 PMCID: PMC9689985 DOI: 10.3390/gels8110733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
Thymoquinone has a multitude of pharmacological effects and has been researched for a wide variety of indications, but with limited clinical success. It is associated with pharmaco-technical caveats such as hydrophobicity, high degradation, and a low oral bioavailability. A prudent approach warrants its usage through an alternative dermal route in combination with functional excipients to harness its potential for treating dermal afflictions, such as psoriasis. Henceforth, the present study explores a nanoformulation approach for designing a fulvic acid (peat-sourced)-based thymoquinone nanoemulsion gel (FTQ-NEG) for an enhanced solubility and improved absorption. The excipients, surfactant/co-surfactant, and oil selected for the o/w nanoemulsion (FTQ-NE) are Tween 80/Transcutol-P and kalonji oil. The formulation methodology includes high-energy ultrasonication complemented with a three-dimensional/factorial Box-Behnken design for guided optimization. The surface morphology assessment through scanning/transmission electron microscopy and fluorescence microscopy revealed a 100 nm spherical, globule-like structure of the prepared nanoemulsion. Furthermore, the optimized FTQ-NE had a zeta potential of -2.83 ± 0.14 Mv, refractive index of 1.415 ± 0.036, viscosity of 138.5 ± 3.08 mp, and pH of 5.8 ± 0.16, respectively. The optimized FTQ-NE was then formulated as a gel using Carbopol 971® (1%). The in vitro release analysis of the optimized FTQ-NEG showed a diffusion-dominant drug release (Higuchi model) for 48 h. The drug permeation flux observed for FTQ-NEG (3.64 μg/cm2/h) was much higher compared to that of the pure drug (1.77 mg/cm2/h). The results were further confirmed by confocal microscopy studies, which proved the improved penetration of thymoquinone through mice skin. Long-term stability studies of the purported formulation were also conducted and yielded satisfactory results.
Collapse
Affiliation(s)
- Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Foziyah Zakir
- Department of B. Pharm (Ayurveda), School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Formulation and Evaluation of Nano Lipid Carrier-Based Ocular Gel System: Optimization to Antibacterial Activity. Gels 2022; 8:gels8050255. [PMID: 35621552 PMCID: PMC9140781 DOI: 10.3390/gels8050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
The present research work was designed to prepare Azithromycin (AM)-loaded nano lipid carriers (NLs) for ocular delivery. NLs were prepared by the emulsification–homogenization method and further optimized by the Box Behnken design. AM-NLs were optimized using the independent constraints of homogenization speed (A), surfactant concentration (B), and lipid concentration (C) to obtain optimal NLs (AM-NLop). The selected AM-NLop was further converted into a sol-gel system using a mucoadhesive polymer blend of sodium alginate and hydroxyl propyl methyl cellulose (AM-NLopIG). The sol-gel system was further characterized for drug release, permeation, hydration, irritation, histopathology, and antibacterial activity. The prepared NLs showed nano-metric size particles (154.7 ± 7.3 to 352.2 ± 15.8 nm) with high encapsulation efficiency (48.8 ± 1.1 to 80.9 ± 2.9%). AM-NLopIG showed a more prolonged drug release (98.6 ± 4.6% in 24 h) than the eye drop (99.4 ± 5.3% in 3 h). The ex vivo permeation result depicted AM-NLopIG, AM-IG, and eye drop. AM-NLopIG exhibited significant higher AM permeation (60.7 ± 4.1%) than AM-IG (33.46 ± 3.04%) and eye drop (23.3 ± 3.7%). The corneal hydration was found to be 76.45%, which is within the standard limit. The histopathology and HET-CAM results revealed that the prepared formulation is safe for ocular use. The antibacterial study revealed enhanced activity from the AM-NLopIG.
Collapse
|
5
|
Formulation and Evaluation of Topical Nano-Lipid-Based Delivery of Butenafine: In Vitro Characterization and Antifungal Activity. Gels 2022; 8:gels8020133. [PMID: 35200513 PMCID: PMC8872403 DOI: 10.3390/gels8020133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
The present research work was designed to prepare butenafine (BN)-loaded bilosomes (BSs) by the thin-film hydration method. BN is a sparingly water-soluble drug having low permeability and bioavailability. BSs are lipid-based nanovesicles used to entrap water-insoluble drugs for enhanced permeation across the skin. BSs were prepared by the thin-film hydration method and optimized by the Box-Behnken design (BBD) using lipid (A), span 60 (B), and sodium deoxycholate (C) as independent variables. The selected formulation (BN-BSo) was converted into the gel using Carbopol 940 as a gelling agent. The prepared optimized gel (BN-BS-og) was further evaluated for the gel characterization, drug release, drug permeation, irritation, and anti-fungal study. The optimized bilosomes (BN-BSo) showed a mean vesicle size of 215 ± 6.5 nm and an entrapment efficiency of 89.2 ± 1.5%. The DSC study showed that BN was completely encapsulated in the BS lipid matrix. BN-BSog showed good viscosity, consistency, spreadability, and pH. A significantly (p < 0.05) high release (81.09 ± 4.01%) was achieved from BN-BSo compared to BN-BSog (65.85 ± 4.87%) and pure BN (17.54 ± 1.37 %). The permeation study results revealed that BN-BSo, BN-BSog, and pure BN exhibited 56.2 ± 2.7%, 39.2 ± 2.9%, and 16.6 ± 2.3%. The enhancement ratio of permeation flux was found to be 1.4-fold and 3.4-fold for the BN-BS-og and pure BN dispersion. The HET-CAM study showed that BN-BSog was found to be nonirritant as the score was found within the limit. The antifungal study revealed a significant (p < 0.05) enhanced antifungal activity against C. albicans and A. niger. The findings of the study revealed that BS is an important drug delivery system for transdermal delivery.
Collapse
|
6
|
Calderón-chiu C, Calderón-santoyo M, Damasceno-gomes S, Ragazzo-Sánchez JA. Use of jackfruit leaf ( Artocarpus heterophyllus L.) protein hydrolysates as a stabilizer of the nanoemulsions loaded with extract-rich in pentacyclic triterpenes obtained from Coccoloba uvifera L. leaf. Food Chem X 2021; 12:100138. [PMID: 34693274 PMCID: PMC8517541 DOI: 10.1016/j.fochx.2021.100138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to evaluate the encapsulating potential of a jackfruit leaf protein hydrolysate, through obtaining pentacyclic triterpenes-rich extract loaded nanoemulsion. Response surface methodology (RSM) was used to optimize the conditions to obtain an optimal nanoemulsion (NE-Opt). The effect of protein hydrolysate concentration (0.5-2%), oil loaded with extract (2.5-7.5%), and ultrasound time (5-15 min) on the polydispersity index (PDI) and droplet size of the emulsion (D[3,2] and D[4,3]) was evaluated. RSM revealed that 1.25% protein hydrolysate, 2.5% oil, and ultrasound time of 15 min produced the NE-Opt with the lowest PDI (0.85), D[3,2] (330 nm), and D[4,3] (360 nm). Encapsulation efficiency and extract loading of the NE-Opt was of 40.15 ± 1.46 and 18.03 ± 2.78% respectively. The NE-Opt was relatively stable during storage (at 4 and 25 °C), pH, temperature, and ionic strength. Then, the protein hydrolysate could be used as an alternative to conventional emulsifiers.
Collapse
Affiliation(s)
- Carolina Calderón-chiu
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, Col. Lagos del Country, Tepic, Nayarit C.P. 63175, México
| | - Montserrat Calderón-santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, Col. Lagos del Country, Tepic, Nayarit C.P. 63175, México
| | - Simone Damasceno-gomes
- Center of Exact and Technological Sciences, State University of West Paraná (UNIOESTE), Cascavel, Brazil
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, Col. Lagos del Country, Tepic, Nayarit C.P. 63175, México
- Corresponding author.
| |
Collapse
|
7
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
8
|
Wang M, Li L, Wan M, Lin Y, Tong Y, Cui Y, Deng H, Tan C, Kong Y, Meng X. Preparing, optimising, and evaluating chitosan nanocapsules to improve the stability of anthocyanins from Aronia melanocarpa. RSC Adv 2021; 11:210-218. [PMID: 35423040 PMCID: PMC8690385 DOI: 10.1039/d0ra08162k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
During in vitro digestion and enviromental storage, the chitosan nanocapsulation was successfully improved the physical and oxidative stability of anthocyanins from Aronia melanocarpa.
Collapse
Affiliation(s)
- Mingyue Wang
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Li Li
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Meizhi Wan
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Yang Lin
- Department of Food Science and Technology
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Yuqi Tong
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Yanmin Cui
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Haotian Deng
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Chang Tan
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Yanwen Kong
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Xianjun Meng
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| |
Collapse
|
9
|
Correa L, de Carvalho Meirelles G, Balestrin L, de Souza PO, Moreira JCF, Schuh RS, Bidone J, von Poser GL, Teixeira HF. In vitro protective effect of topical nanoemulgels containing Brazilian red propolis benzophenones against UV-induced skin damage. Photochem Photobiol Sci 2020; 19:1460-1469. [PMID: 33026028 DOI: 10.1039/d0pp00243g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The overexposure of the skin to ultraviolet (UV) radiation may lead to oxidative stress, resulting in severe damage. The prevention of skin injuries through the topical application of natural compounds rich in antioxidants, such as propolis extracts, has shown promising results. In Brazil, the "red propolis" extract has stood out due to its complex constitution, based mainly on polyprenylated benzophenones (BZP). However, although the use of red propolis extracts has been shown to be encouraging, their addition in topical formulations is limited by the low solubility of BZP. For this reason, this study aimed to develop topical nanoemulgels containing Brazilian red propolis (BRP) extract to increase the potential of topical application, and the evaluation of skin protection against UVA/UVB radiation damage by means of protein carbonylation, protein thiol content and TBARS assays. The nanoemulgels were obtained by adding gelling polymer to nanoemulsions that were previously prepared by spontaneous emulsification. In this sense, a nanoemulgel containing BRP extract-loaded nanoemulsions (H-NE) and a nanoemulgel containing BRP extract-loaded nanoemulsions with DOTAP (H-NE/DT) were prepared. The physicochemical characterization of nanoemulgels showed monodisperse populations of 200-300 nm. The H-NE zeta potential was -38 mV, while that of H-NE/DT was +36 mV. BZP content in the formulations was around 0.86 mg g-1. These parameters remained stable for 90 days under cold storage. H/NE and H-NE/DT presented a non-Newtonian pseudoplastic rheological behavior. Permeation/retention studies, through porcine ear skin, showed the highest BZP retention (18.11 μg cm-2 after 8 h) for H-NE/DT, which also demonstrated, in an in vitro study, the highest ability to protect skin against oxidative damage after UVA/UVB radiation exposure. The results concerning the antioxidant activity revealed that formulations containing the BRP n-hexane extract were the most promising in combating oxidative stress, probable due to the presence of polyprenylated BZP. Altogether, the outcomes of this study suggest that nanoemulgels have suitable characteristics for topical application, and may be an alternative for the prevention of oxidative skin damage caused by UVA/UVB radiation.
Collapse
Affiliation(s)
- Lucíria Correa
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Gabriela de Carvalho Meirelles
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Lucélia Balestrin
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Priscila Oliveira de Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Juliana Bidone
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos da Universidade Federal de Pelotas, Pelotas, RS 96160-000, Brazil
| | - Gilsane Lino von Poser
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| | - Helder Ferreira Teixeira
- Programa de Pós-graduação em Ciências Farmacêuticas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
10
|
Roselan MA, Ashari SE, Faujan NH, Mohd Faudzi SM, Mohamad R. An Improved Nanoemulsion Formulation Containing Kojic Monooleate: Optimization, Characterization and In Vitro Studies. Molecules 2020; 25:molecules25112616. [PMID: 32512808 PMCID: PMC7321202 DOI: 10.3390/molecules25112616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Tyrosinase inhibitors have become increasingly important targets for hyperpigmentation disease treatment. Kojic monooleate (KMO), synthesized from the esterification of kojic acid and oleic acid, has shown a better depigmenting effect than kojic acid. In this study, the process parameters include the speed of high shear, the time of high shear and the speed of the stirrer in the production of nanoemulsion containing KMO was optimized using Response Surface Methodology (RSM), as well as evaluated in terms of its physicochemical properties, safety and efficacy. The optimized condition for the formulation of KMO nanoemulsion was 8.04 min (time of high shear), 4905.42 rpm (speed of high shear), and 271.77 rpm (speed of stirrer), which resulted in a droplet size of 103.97 nm. An analysis of variance (ANOVA) showed that the fitness of the quadratic polynomial fit the experimental data with large F-values (148.79) and small p-values (p < 0.0001) and an insignificant lack of fit. The optimized nanoemulsion containing KMO with a pH value of 5.75, showed a high conductivity value (3.98 mS/cm), which indicated that the nanoemulsion containing KMO was identified as an oil-in-water type of nanoemulsion. The nanoemulsion remains stable (no phase separation) under a centrifugation test and displays accelerated stability during storage at 4, 25 and 45 °C over 90 days. The cytotoxicity assay showed that the optimized nanoemulsion was less toxic, with a 50% inhibition of cell viability (IC50) > 500 μg/mL, and that it can inhibit 67.12% of tyrosinase activity. This study reveals that KMO is a promising candidate for the development of a safe cosmetic agent to prevent hyperpigmentation.
Collapse
Affiliation(s)
- Muhammad Azimuddin Roselan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.R.); (N.H.F.); (S.M.M.F.)
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Efliza Ashari
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.R.); (N.H.F.); (S.M.M.F.)
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nur Hana Faujan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.R.); (N.H.F.); (S.M.M.F.)
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.R.); (N.H.F.); (S.M.M.F.)
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|