1
|
Pimple P, Shah J, Singh P. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Curr Drug Deliv 2025; 22:15-40. [PMID: 38299275 DOI: 10.2174/0115672018270434240105110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual's quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Jenny Shah
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| |
Collapse
|
2
|
Corrêa-Filho LC, Santos Junior JRD, Ramos AV, Martinazzo AP, Habert AC, Carvalho CWPD, Soares AG, Tonon RV, Cabral LMC. Chitosan-based nanocomposite films with carnauba wax, rosin resin, and zinc oxide nanoparticles. Food Res Int 2024; 188:114475. [PMID: 38823838 DOI: 10.1016/j.foodres.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.
Collapse
Affiliation(s)
| | | | - Andresa Viana Ramos
- Nanotechnology Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | - Ana Paula Martinazzo
- Department of Agribusiness Engineering, Federal Fluminense University, 27255-125 Volta Redonda, RJ, Brazil
| | - Alberto Claudio Habert
- Nanotechnology Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil; Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
3
|
Zhu L, Xue Y, Feng J, Wang Y, Lu Y, Chen X. Tetrahydrocurcumin as a stable and highly active curcumin derivative: A review of synthesis, bioconversion, detection and application. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
da Rocha EMT, Bracht L, Gonçalves OH, Leimann FV, Ames FQ, Schneider LCL, Duda JV, Cardia GFE, Bonetti CI, Cuman RKN, Bersani-Amado CA. Development and characterization of trans-anethole-containing solid lipid microparticles: antiinflammatory and gastroprotective effects in experimental inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:469-484. [PMID: 36385686 DOI: 10.1007/s00210-022-02323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
The present study prepared, optimized, and characterized solid lipid microparticles that contained trans-anethole (SLMAN), evaluated their antiinflammatory activity in acute and chronic inflammation models, and investigated their effects on the gastric mucosa in arthritic rats. The microparticles were obtained by a hot homogenization process and characterized by physicochemical analyses. The acute inflammatory response was induced by an intradermal injection of 0.1 ml of carrageenan solution (200 μg) in the hind paw. The rats were treated orally with a single dose of SLMAN 1 h before induction of the inflammatory response. The chronic inflammatory response was induced by the subcutaneous application of 0.1 ml of complete Freund's adjuvant suspension (500 µg) in the hind paw. SLMAN was orally administered, starting on the day of arthritis induction, and continued for 21 days. The results showed that SLMAN was obtained with good encapsulation efficiency. Treatment with SLMAN at doses of 25 and 50 mg/kg was as effective as trans-anethole (AN) at a dose of 250 mg/kg on acute and chronic inflammatory responses. Histological analyses showed that treatment with SLMAN did not aggravate lesions in the gastric mucosa in arthritic rats. These results indicated that treatment with SLMAN at a dose that was 5-10 times lower than non-encapsulated AN exerted an inhibitory effect on acute and chronic inflammatory responses, suggesting the better bioavailability and efficacy of microencapsulated AN without aggravating lesions in the gastric mucosa in arthritic rats.
Collapse
Affiliation(s)
- Edvalkia Magna Teobaldo da Rocha
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), BR 369, Km 0.5, POBox 271, Campo Mourão, PR, 87301-006, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), BR 369, Km 0.5, POBox 271, Campo Mourão, PR, 87301-006, Brazil
| | - Franciele Queiroz Ames
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Larissa Carla Lauer Schneider
- Department of Morphological Sciences, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - João Victor Duda
- Department of Morphological Sciences, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Gabriel Fernando Esteves Cardia
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| | - Carla Indianara Bonetti
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, Maringá, PR, 87020-900, Brazil
| | - Roberto Kenji Nakamura Cuman
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil.
| | - Ciomar Aparecida Bersani-Amado
- Department of Pharmacology and Therapeutics, Bloco K68, State University of Maringá (UEM), Avenue Colombo, 5790, Jd. Universitário, 87020-900, Maringá, Brazil
| |
Collapse
|
5
|
Susmita Devi L, Kalita S, Mukherjee A, Kumar S. Carnauba wax-based composite films and coatings: recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Paulazzi AR, Alves BO, Zilli GAL, Dos Santos AE, Petry F, Soares KD, Danielli LJ, Pedroso J, Apel MA, Aguiar GPS, Siebel AM, Oliveira JV, Müller LG. Curcumin and n-acetylcysteine cocrystal produced with supercritical solvent: characterization, solubility, and preclinical evaluation of antinociceptive and anti-inflammatory activities. Inflammopharmacology 2022; 30:327-341. [PMID: 35006455 DOI: 10.1007/s10787-021-00917-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Curcumin presents a promising anti-inflammatory potential, but its low water-solubility and bioavailability hinder its application. In this sense, cocrystallization represents a tool for improving physicochemical properties, solubility, permeability, and bioavailability of new drug candidates. Thus, the aim of this work was to produce curcumin cocrystals (with n-acetylcysteine as coformer, which possesses anti-inflammatory and antioxidant activities), by the anti-solvent gas technique using supercritical carbon dioxide, and to test its antinociceptive and anti-inflammatory potential. The cocrystal was characterized by differential scanning calorimetry, powder X-ray diffraction and scanning electron microscopy. The cocrystal solubility and antichemotaxic activity were also assessed in vitro. Antinociceptive and anti-inflammatory activities were carried out in vivo using the acetic acid-induced abdominal writhing and carrageenan-induced paw oedema assays in mice. The results demonstrated the formation of a new crystalline structure, thereby confirming the successful formation of the cocrystal. The higher solubility of the cocrystal compared to pure curcumin was verified in acidic and neutral pH, and the cocrystal inhibited the chemotaxis of neutrophils in vitro. In vivo assays showed that cocrystal presents increased antinociceptive and anti-inflammatory potency when compared to pure curcumin, which could be related to an improvement in its bioavailability.
Collapse
Affiliation(s)
- Alessandro R Paulazzi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Bianca O Alves
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Gabriela A L Zilli
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Aline E Dos Santos
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Fernanda Petry
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Krissie D Soares
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Letícia J Danielli
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jefferson Pedroso
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Miriam A Apel
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gean Pablo S Aguiar
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil.,Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, nº 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Anna M Siebel
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil.,Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, nº 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Liz Girardi Müller
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil. .,Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, nº 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil.
| |
Collapse
|
7
|
da Silva TBV, de Oliveira A, Moreira TFM, da Silva KC, Zanin RC, Bona E, Gonçalves OH, Shirai MA, Peron AP, Leimann FV. Analytical validation of an ultraviolet-visible procedure for determining vitamin D 3 in vitamin D 3-loaded microparticles and toxigenetic studies for incorporation into food. Food Chem 2021; 360:129979. [PMID: 33984561 DOI: 10.1016/j.foodchem.2021.129979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Vitamin D is a water-insoluble compound presented in two main forms (D2 and D3), susceptible to environmental conditions. Microencapsulation is an alternative to supplements and preserve vitamin D properties in foods. Entrapment efficiency (EE) is the main property to evaluate the encapsulation effectiveness and therefore it is of interest the study of analytical methods for the identification and quantification of this compound within the particle. This paper describes a low cost UV-Vis methodology validation to the identification and quantification of vitamin D3 in microparticles produced by hot homogenization. The method was validated following the International Conference on Harmonization (ICH) guidelines. To guarantee safe application in foodstuff, microparticles toxigenicity was evaluated with Allium cepa L. in vivo model, showing no cytotoxic nor genotoxic potential. High entrapment efficiency was obtained, the results also demonstrated that the concentration of vitamin D3 in microparticles can be safely accessed by the validated method.
Collapse
Affiliation(s)
- Tamires Barlati Vieira da Silva
- Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR-CM), via Rosalina Maria Dos Santos, 1233 CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Anielle de Oliveira
- Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR-CM), via Rosalina Maria Dos Santos, 1233 CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Thaysa Fernandes Moya Moreira
- Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR-CM), via Rosalina Maria Dos Santos, 1233 CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Kelly Cristina da Silva
- Program of Food Technology (PPGTAL), Federal University of Technology-- Paraná (UTFPR-LD), Avenida dos Pioneiros 3131, CEP 86036-370, Londrina Paraná, Brazil
| | - Rodolfo Campos Zanin
- Program of Food Technology (PPGTAL), Federal University of Technology-- Paraná (UTFPR-LD), Avenida dos Pioneiros 3131, CEP 86036-370, Londrina Paraná, Brazil
| | - Evandro Bona
- Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR-CM), via Rosalina Maria Dos Santos, 1233 CEP 87301-899, Campo Mourão, Paraná, Brazil
| | - Odinei Hess Gonçalves
- Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR-CM), via Rosalina Maria Dos Santos, 1233 CEP 87301-899, Campo Mourão, Paraná, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Marianne Ayumi Shirai
- Program of Food Technology (PPGTAL), Federal University of Technology-- Paraná (UTFPR-LD), Avenida dos Pioneiros 3131, CEP 86036-370, Londrina Paraná, Brazil
| | - Ana Paula Peron
- Department of Biodiversity and Nature Conservation (DABIC), Federal University of Technology - Paraná (UTFPR-CM), via Rosalina Maria Dos Santos 123 CEP 87301-899 POBox 271, Campo Mourão, Paraná, Brazil
| | - Fernanda Vitória Leimann
- Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR-CM), via Rosalina Maria Dos Santos, 1233 CEP 87301-899, Campo Mourão, Paraná, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
8
|
Nahum V, Domb AJ. Recent Developments in Solid Lipid Microparticles for Food Ingredients Delivery. Foods 2021; 10:foods10020400. [PMID: 33670356 PMCID: PMC7917609 DOI: 10.3390/foods10020400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Health food has become a prominent force in the market place, influencing many food industries to focus on numerous bioactive compounds to reap benefits from its properties. Use of these compounds in food matrices has several limitations. Most of the food bio-additives are sensitive compounds that may quickly decompose in both food and within the gastrointestinal tract. Since most of these bioactives are highly or partially lipophilic molecules, they possess very low water solubility and insufficient dispersibility, leading to poor bioavailability. Thus, various methods of microencapsulation of large number of food bioactives have been studied. For encapsulation of hydrophobic compounds several lipid carriers and lipid platforms have been studied, including emulsions, microemulsions, micelles, liposomes, and lipid nano- and microparticles. Solid lipid particles (SLP) are a promising delivery system, can both deliver bioactive compounds, reduce their degradation, and permit slow and sustained release. Solid lipid particles have important advantages compared to other polymer carriers in light of their simple production technology, including scale up ability, higher loading capacity, extremely high biocompatibility, and usually low cost. This delivery system provides improved stability, solubility in various matrixes, bioavailability, and targeting properties. This article reviews recent studies on microencapsulation of selected bioactive food ingredients in solid lipid-based carriers from a point of view of production methods, characteristics of obtained particles, loading capability, stability, and release profile.
Collapse
|
9
|
Lima EP, Gonçalves OH, Ames FQ, Castro-Hoshino LV, Leimann FV, Cuman RKN, Comar JF, Bersani-Amado CA. Anti-inflammatory and Antioxidant Activity of Nanoencapsulated Curcuminoids Extracted from Curcuma longa L. in a Model of Cutaneous Inflammation. Inflammation 2020; 44:604-616. [PMID: 33164160 DOI: 10.1007/s10753-020-01360-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
The present study evaluated the anti-inflammatory effect of nanoencapsulated curcuminoid preparations of poly(vinyl pyrrolidone) (Nano-cur) and free curcuminoids (Cur) in an experimental model of croton oil-induced cutaneous inflammation. Male Swiss mice, weighing 25-30 g, received oral treatment by gavage 1 h before CO application or topical treatment immediately after CO application (200 μg diluted in 70% acetone) with a single dose of Cur and Nano-cur. After 6 h, the animals were anesthetized and euthanized. The ears were sectioned into disks (6.0 mm diameter) and used to determine edema, myeloperoxidase (MPO) activity, and oxidative stress. Photoacoustic spectroscopy (PAS) was used to evaluate the percutaneous penetration of Cur and Nano-cur. Topical treatment with both preparations had a similar inhibitory effect on the development of edema, MPO activity, and the oxidative response. The PAS technique showed that the percutaneous permeation of both topically applied preparations was similar. Oral Nano-cur administration exerted a higher anti-inflammatory effect than Cur. Topical Cur and Nano-cur application at the same dose similarly inhibited the inflammatory and oxidative responses. Oral Nano-cur administration inhibited such responses at doses that were eight times lower than Cur, suggesting the better bioavailability of Nano-cur compared with Cur.Graphical abstract.
Collapse
Affiliation(s)
- Emanuele P Lima
- Department of Pharmacology and Therapeutic, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Odinei H Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), P O Box 271, BR 369, km 0.5, Campo Mourão, PR, 87301-006, Brazil
| | - Franciele Q Ames
- Department of Pharmacology and Therapeutic, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Lidiane V Castro-Hoshino
- Department of Physics, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Fernanda V Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná (UTFPR), P O Box 271, BR 369, km 0.5, Campo Mourão, PR, 87301-006, Brazil
| | - Roberto K N Cuman
- Department of Pharmacology and Therapeutic, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil
| | - Ciomar A Bersani-Amado
- Department of Pharmacology and Therapeutic, State University of Maringá (UEM), Avenue Colombo, 5790, Maringa, PR, 87020-900, Brazil.
| |
Collapse
|