1
|
El-Fitiany RA, AlBlooshi A, Samadi A, Khasawneh MA. Phytosynthesis, Characterization, Phenolic and Biological Evaluation of Leptadenia pyrotechnica-Based Zn and Fe Nanoparticles Utilizing Two Different Extraction Techniques. Int J Nanomedicine 2024; 19:11003-11021. [PMID: 39502631 PMCID: PMC11537101 DOI: 10.2147/ijn.s480716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Phyto-nanotechnology offers a sustainable method for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. The diverse medicinal flora in the UAE, particularly Leptadenia pyrotechnica (LP), provides a vital resource for advancing this research area. This plant is historically valued in the region for its wide medicinal applications due to its abundance of bioactive compounds. Methods In this study, eco-friendly, straightforward, and low-temperature hydrothermal synthesis methods were applied to synthesize potentially therapeutic Zn and Fe NPs using LP extracts. The generated NPs were characterized using UV-VIS, FT-IR, SEM, EDX, XRD and DLS. Moreover, they were investigated for their total phenolic and flavonoid contents, along with their antioxidant and skin anticancer effects. Results The UV-Vis spectra disclosed absorption band at about 275 nm, and the FT-IR confirmed the successful coating of the NPs with the plants' phytochemicals, thus ensuring the successful bio-fabrication of the proposed NPs. SEM/EDX outcomes suggest a more potent reducing effect of the aqueous extract, while a more effective coating of the alcoholic extract. DLS revealed monodispersed NPs, with average sizes ranging from 43.82 to 207.8 nm. LFeC demonstrated the highest phenolic and flavonoid contents (49.96±4.76 μg of GAE/mg of DW and 43.89±2.89 μg of Qu/mg of DW, respectively) and the greatest potency against skin cancer cell lines (IC50=263.56 µg/mL). However, LZnC exhibited the strongest radical scavenging effect against DPPH and ABTS radicals (IC50=139.45µg/mL and 35.1µg/mL, respectively). Discussion The results of this study demonstrated that both extracts of LP are effective in the green synthesis of Fe and Zn nanoparticles for biomedical applications, with alcoholic extracts providing superior coating, capping, and stabilizing properties, leading to lower agglomeration, higher carbon content, total phenolic and flavonoid contents, along with enhanced anticancer and antioxidant effects. This work gives a showcase of sustainable materials that are promising for therapeutic applications.
Collapse
Affiliation(s)
- Rana Ahmed El-Fitiany
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Afra AlBlooshi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad A Khasawneh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
El-Fitiany RA, AlBlooshi A, Samadi A, Khasawneh MA. Biogenic synthesis and physicochemical characterization of metal nanoparticles based on Calotropis procera as promising sustainable materials against skin cancer. Sci Rep 2024; 14:25154. [PMID: 39448765 PMCID: PMC11502920 DOI: 10.1038/s41598-024-76422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The UAE harbors a rich diversity of wild medicinal plants, such as Calotropis procera (CP), that are renowned for their extensive use in traditional medicine due to their abundance of bioactive phytochemicals. Zinc and iron metals possess significant pharmacological effects including antioxidant and anticancer properties. In this study, nanoparticles (NPs) containing zinc and iron were green synthesized utilizing ethanolic and aqueous extracts of CP aerial parts. UV-Vis spectra revealed absorption peaks around 270-275 nm, while FT-IR analysis confirmed successful coating of the NPs with plant's phytochemicals. SEM/EDX analysis indicated a more potent reducing effect of the aqueous extract, whereas the alcoholic extract demonstrated more effective coating of the NPs. DLS showed monodispersed NPs with average sizes of 32.67-202 nm. The alcoholic extract-based zinc and iron NPs exhibited the highest phenolic and flavonoid contents (51.06 ± 2.82 µg of GAE/mg of DW and 66.26 ± 1.12 µg of Qu/mg of DW, respectively) and the strongest antioxidant effect against ABTS and DPPH radicals (IC50 = 52.81 and 148.46 µg/mL, respectively). The aqueous extract-based zinc NPs demonstrated the greatest cytotoxicity against A-431 cell lines (IC50 = 188.97 µg/mL). The findings highlight promising potential of these sustainable materials for therapeutic applications, indicating a need for continued research and development in this area.
Collapse
Affiliation(s)
- Rana Ahmed El-Fitiany
- Department of Chemistry, College of Science, United Arab Emirates University, Sheikh Khalifa Bin Zayed St, Asharij, P.O. Box No. 15551, Al Ain, UAE
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Afra AlBlooshi
- Department of Chemistry, College of Science, United Arab Emirates University, Sheikh Khalifa Bin Zayed St, Asharij, P.O. Box No. 15551, Al Ain, UAE
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Sheikh Khalifa Bin Zayed St, Asharij, P.O. Box No. 15551, Al Ain, UAE
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science, United Arab Emirates University, Sheikh Khalifa Bin Zayed St, Asharij, P.O. Box No. 15551, Al Ain, UAE.
| |
Collapse
|
3
|
Alqahtani LS, Alosaimi ME, Abdel-Rahman Mohamed A, Abd-Elhakim YM, Khamis T, Noreldin AE, El-Far AH, Alotaibi BS, Hakami MA, Dahran N, Babteen NA. Acrylamide-targeting renal miR-21a-5p/Fibrotic and miR122-5p/ inflammatory signaling pathways and the role of a green approach for nano-zinc detected via in silico and in vivo approaches. Front Pharmacol 2024; 15:1413844. [PMID: 39086388 PMCID: PMC11289894 DOI: 10.3389/fphar.2024.1413844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction: Any disruption in renal function can have cascading effects on overall health. Understanding how a heat-born toxicant like acrylamide (ACR) affects kidney tissue is vital for realizing its broader implications for systemic health. Methods: This study investigated the ACR-induced renal damage mechanisms, particularly focusing on the regulating role of miR-21a-5p/fibrotic and miR-122-5p/inflammatory signaling pathways via targeting Timp-3 and TP53 proteins in an In silico preliminary study. Besides, renal function assessment, oxidative status, protein profile, and the expression of renal biomarkers (Timp-1, Keap-1, Kim-1, P53, TNF-α, Bax, and Caspase3) were assessed in a 60-day experiment. The examination was additionally extended to explore the potential protective effects of green-synthesized zinc oxide nanoparticles (ZNO-MONPs). A four-group experiment including control, ZNO-MONPs (10 mg/kg b.wt.), ACR (20 mg/kg b.wt.), and ZNO-MONPs + ACR was established encompassing biochemical, histological, and molecular levels. The study further investigated the protein-binding ability of ZNO and MONPs to inactivate caspase-3, Keap-1, Kim-1, and TNFRS-1A. Results: ZNO-MONPs significantly reduced ACR-induced renal tissue damage as evidenced by increased serum creatinine, uric acid, albumin, and oxidative stress markers. ACR-induced oxidative stress, apoptosis, and inflammationare revealed by biochemical tests, gene expression, and the presence of apoptotic nuclei microscopically. Also, molecular docking revealed binding affinity between ACR-BCL-2 and glutathione-synthetase, elucidating the potential mechanisms through which ACR induces renal damage. Notably, ZNO-MONPs revealed a protective potential against ACR-induced damage. Zn levels in the renal tissues of ACR-exposed rats were significantly restored in those treated with ACR + ZNO-MONPs. In conclusion, this study establishes the efficacy of ZNO-MONPs in mitigating ACR-induced disturbances in renal tissue functions, oxidative stress, inflammation, and apoptosis. The findings shed light on the potential renoprotective activity of green-synthesized nanomaterials, offering insights into novel therapeutic approaches for countering ACR-induced renal damage.
Collapse
Affiliation(s)
- Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Manal E. Alosaimi
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E. Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ali H. El-Far
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf A. Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Agrawal R, Jurel P, Deshmukh R, Harwansh RK, Garg A, Kumar A, Singh S, Guru A, Kumar A, Kumarasamy V. Emerging Trends in the Treatment of Skin Disorders by Herbal Drugs: Traditional and Nanotechnological Approach. Pharmaceutics 2024; 16:869. [PMID: 39065566 PMCID: PMC11279890 DOI: 10.3390/pharmaceutics16070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Since the earliest days, people have been employing herbal treatments extensively around the world. The development of phytochemical and phytopharmacological sciences has made it possible to understand the chemical composition and biological properties of a number of medicinal plant products. Due to certain challenges like large molecular weight and low bioavailability, some components of herbal extracts are not utilized for therapeutic purposes. It has been suggested that herbal medicine and nanotechnology can be combined to enhance the benefits of plant extracts by lowering dosage requirements and adverse effects and increasing therapeutic activity. Using nanotechnology, the active ingredient can be delivered in an adequate concentration and transported to the targeted site of action. Conventional therapy does not fulfill these requirements. This review focuses on different skin diseases and nanotechnology-based herbal medicines that have been utilized to treat them.
Collapse
Affiliation(s)
- Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura 281001, Uttar Pradesh, India; (R.A.); (A.G.)
| | - Priyanka Jurel
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Ranjit Kumar Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura 281001, Uttar Pradesh, India; (R.A.); (A.G.)
| | - Ashwini Kumar
- Research and Development Cell, Department of Mechanical Engineering, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad 121003, Haryana, India;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201306, Uttar Pradesh, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Naiel B, Fawzy M, Mahmoud AED, Halmy MWA. Sustainable fabrication of dimorphic plant derived ZnO nanoparticles and exploration of their biomedical and environmental potentialities. Sci Rep 2024; 14:13459. [PMID: 38862646 PMCID: PMC11167042 DOI: 10.1038/s41598-024-63459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.
Collapse
Affiliation(s)
- Bassant Naiel
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Marwa Waseem A Halmy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
6
|
Green Synthesized Zinc Oxide Nanoparticles Using Moringa olifera Ethanolic Extract Lessens Acrylamide-Induced Testicular Damage, Apoptosis, and Steroidogenesis-Related Gene Dysregulation in Adult Rats. Antioxidants (Basel) 2023; 12:antiox12020361. [PMID: 36829920 PMCID: PMC9952201 DOI: 10.3390/antiox12020361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study assessed the possible protective role of green synthesized zinc oxide nanoparticles using Moringa olifera leaf extract (MO-ZNPs) in acrylamide (ACR)-induced reproductive dysfunctions in male rats. ACR (20 mg/kg b.wt/day) and/or MO-ZNPs (10 mg/kg b.wt/day) were given orally by gastric gavage for 60 days. Then, sperm parameters; testicular enzymes; oxidative stress markers; reproductive hormones including testosterone, luteinizing hormone (LH)-estradiol, and follicle-stimulating hormone (FSH) concentration; testis histology; steroidogenesis-related gene expression; and apoptotic markers were examined. The findings revealed that MO-ZNPs significantly ameliorated the ACR-induced decline in the gonadosomatic index and altered the pituitary-gonadal axis, reflected by decreased serum testosterone and FSH with increased estradiol and LH, and sperm analysis disruption. Furthermore, a notable restoration of the tissue content of antioxidants (catalase and reduced glutathione) but depletion of malondialdehyde was evident in MO-ZNPs+ACR-treated rats compared to ACR-exposed ones. In addition, MO-ZNPs oral dosing markedly rescued the histopathological changes and apoptotic caspase-3 reactions in the testis resulting from ACR exposure. Furthermore, in MO-ZNPs+ACR-treated rats, ACR-induced downregulation of testicular steroidogenesis genes and proliferating cell nuclear antigen (PCNA) immune-expression were reversed. Conclusively, MO-ZNPs protected male rats from ACR-induced reproductive toxicity by suppressing oxidative injury and apoptosis while boosting steroidogenesis and sex hormones.
Collapse
|
7
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
8
|
Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci Rep 2022; 12:20370. [PMID: 36437355 PMCID: PMC9701696 DOI: 10.1038/s41598-022-24805-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, a green, sustainable, simple and low-cost method was adopted for the synthesis of ZnO NPs, for the first time, using the aqueous extract of sea lavender, Limonium pruinosum (L.) Chaz., as a reducing, capping, and stabilizing agent. The obtained ZnO NPs were characterized using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The UV-Vis spectra of the green synthesized ZnO NPs showed a strong absorption peak at about 370 nm. Both electron microscopy and XRD confirmed the hexagonal/cubic crystalline structure of ZnO NPs with an average size ~ 41 nm. It is worth noting that the cytotoxic effect of the ZnO NPs on the investigated cancer cells is dose-dependent. The IC50 of skin cancer was obtained at 409.7 µg/ml ZnO NPs. Also, the phyto-synthesized nanoparticles exhibited potent antibacterial and antifungal activity particularly against Gram negative bacteria Escherichia coli (ATCC 8739) and the pathogenic fungus Candida albicans (ATCC 10221). Furthermore, they showed considerable antioxidant potential. Thus, making them a promising biocompatible candidate for pharmacological and therapeutic applications.
Collapse
|
9
|
Marzi M, Osanloo M, Vakil MK, Mansoori Y, Ghasemian A, Dehghan A, Zarenezhad E. Applications of Metallic Nanoparticles in the Skin Cancer Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2346941. [PMID: 36420097 PMCID: PMC9678447 DOI: 10.1155/2022/2346941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 04/03/2024]
Abstract
Skin cancer is one of leading cancers globally, divided into two major categories including melanoma and nonmelanoma. Skin cancer is a global concern with an increasing trend, hence novel therapies are essential. The local treatment strategies play a key role in skin cancer therapy. Nanoparticles (NPs) exert potential applications in medicine with huge advantages and have the ability to overcome common chemotherapy problems. Recently, NPs have been used in nanomedicine as promising drug delivery systems. They can enhance the solubility of poorly water-soluble drugs, improve pharmacokinetic properties, modify bioavailability, and reduce drug metabolism. The high-efficient, nontoxic, low-cost, and specific cancer therapy is a promising goal, which can be achieved by the development of nanotechnology. Metallic NPs (MNPs) can act as important platforms. MNPs development seeks to enhance the therapeutic efficiency of medicines through site specificity, prevention of multidrug resistance, and effective delivery of therapeutic factors. MNPs are used as potential arms in the case of cancer recognition, such as Magnetic Resonance Imaging (MRI) and colloidal mediators for magnetic hyperthermia of cancer. The applications of MNPs in the cancer treatment studies are mostly due to their potential to carry a large dose of drug, resulting in a high concentration of anticancer drugs at the target site. Therefore, off-target toxicity and suffering side effects caused by high concentration of the drug in other parts of the body are avoided. MNPs have been applied as drug carriers for the of improvement of skin cancer treatment and drug delivery. The development of MNPs improves the results of many cancer treatments. Different types of NPs, such as inorganic and organic NPs have been investigated in vitro and in vivo for the skin cancer therapy. MNPs advantages mostly include biodegradability, electrostatic charge, good biocompatibility, high drug payload, and low toxicity. However, the use of controlled-release systems stimulated by electromagnetic waves, temperature, pH, and light improves the accumulation in tumor tissues and improves therapeutic outcomes. This study (2019-2022) is aimed at reviewing applications of MNPs in the skin cancer therapy.
Collapse
Affiliation(s)
- Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- Department of Internal Medicine, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Azizallah Dehghan
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
10
|
Effects of Waste-Derived ZnO Nanoparticles against Growth of Plant Pathogenic Bacteria and Epidermoid Carcinoma Cells. CRYSTALS 2022. [DOI: 10.3390/cryst12060779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Green synthesis of zinc oxide nanoparticles (ZnO NPs) has recently gained considerable interest because it is simple, environmentally friendly, and cost-effective. This study therefore aimed to synthesize ZnO NPs by utilizing bioactive compounds derived from waste materials, mangosteen peels, and water hyacinth crude extracts and investigated their antibacterial and anticancer activities. As a result, X-ray diffraction analysis confirmed the presence of ZnO NPs without impurities. An ultraviolet–visible absorption spectrum showed a specific absorbance peak around 365 nm with an average electronic band gap of 2.79 eV and 2.88 eV for ZnO NPs from mangosteen peels and a water hyacinth extract, respectively. An SEM analysis displayed both spherical shapes of ZnO NPs from the mangosteen peel extract (dimension of 154.41 × 172.89 nm) and the water hyacinth extract (dimension of 142.16 × 160.30 nm). Fourier transform infrared spectroscopy further validated the occurrence of bioactive molecules on the produced ZnO NPs. By performing an antibacterial activity assay, these green synthesized ZnO NPs significantly inhibited the growth of Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. citri, and Ralstonia solanacearum. Moreover, they demonstrated potent anti-skin cancer activity in vitro. Consequently, this study demonstrated the possibility of using green-synthesized ZnO NPs in the development of antibacterial or anticancer agents. Furthermore, this research raised the prospect of increasing the value of agricultural waste.
Collapse
|
11
|
Fan ZX, Zhang J, Wang X, Miao GY. Convergent Fabrication of Allicin Loaded Polymeric Nanoparticles for Treatment of In Vitro Squamous Carcinoma Cells and Systemic Toxicity. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Chelladurai M, Margavelu G, Vijayakumar S, González-Sánchez ZI, Vijayan K, Sahadevan R. Preparation and characterization of amine-functionalized mupirocin-loaded zinc oxide nanoparticles: A potent drug delivery agent in targeting human epidermoid carcinoma (A431) cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|