1
|
Gunasekaran K, Vasamsetti BMK, Thangavelu P, Natesan K, Mujyambere B, Sundaram V, Jayaraj R, Kim YJ, Samiappan S, Choi JW. Cytotoxic Effects of Nanoliposomal Cisplatin and Diallyl Disulfide on Breast Cancer and Lung Cancer Cell Lines. Biomedicines 2023; 11:biomedicines11041021. [PMID: 37189638 DOI: 10.3390/biomedicines11041021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Dual drug delivery has become the choice of interest nowadays due to its increased therapeutic efficacy in targeting the tumor site precisely. As quoted in recent literature, it has been known to treat several cancers with an acute course of action. Even so, its use is restricted due to the drug’s low pharmacological activity, which leads to poor bioavailability and increases first-pass metabolism. To overcome these issues, a drug delivery system using nanomaterials which would not only encapsulate the drugs of interest but also carry them to the target site of action is needed. Given all these attributes, we have formulated dual drug-loaded nanoliposomes with cisplatin (cis-diamminedichloroplatinum(II) (CDDP)), an effective anti-cancer drug, and diallyl disulfide (DADS), an organosulfur compound derived from garlic. The CDDP and DADS-loaded nanoliposomes (Lipo-CDDP/DADS) exhibited better physical characteristics such as size, zeta potential, polydispersity index, spherical shape, optimal stability, and satisfactory encapsulation percentage. The in vitro anti-cancer activity against MDA-MB-231 and A549 cell lines revealed that Lipo-CDDP/DADS showed significant efficacy against the cancer cell lines, depicted through cell nucleus staining. We conclude that Lipo-CDDP/DADS hold exceptional pharmacological properties with better anti-cancer activity and would serve as a promising formulation to treat various cancers.
Collapse
|
2
|
Banthia P, Gambhir L, Sharma A, Daga D, Kapoor N, Chaudhary R, Sharma G. Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer. 3 Biotech 2022; 12:70. [PMID: 35223356 PMCID: PMC8841383 DOI: 10.1007/s13205-022-03121-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease with different intrinsic subtypes. The conventional treatment of surgical resection, chemotherapy, immunotherapy and radiotherapy has not shown significant improvement in the survival rate of breast cancer patients. The therapeutics used cause bystander toxicities deteriorating healthy tissues. The breakthroughs of nanotechnology have been a promising feat in selective targeting of tumor site thus increasing the therapeutic gain. By the application of nanoenabled carriers, nanomedicines ensure targeted delivery, stability, enhanced cellular uptake, biocompatibility and higher apoptotic efficacy. The present review focuses on breakthrough of nanoscale intervention in targeted drug delivery as novel class of therapeutics. Nanoenabled carriers like polymeric and metallic nanoparticles, dendrimers, quantum dots, liposomes, solid lipid nanoparticles, carbon nanotubes, drug-antibody conjugates and exosomes revolutionized the targeted therapeutic delivery approach. These nanoassemblies have shown additional effect of improving the solubility of drugs such as paclitaxel, reducing the dose and toxicity. The present review provides an insight on the different drug conjugates employed/investigated to curb breast cancer using nanocarrier mediated targeted drug delivery. However, identification of appropriate biomarkers to target, clearer insight of the biological processes, batch uniformity, reproducibility, nanomaterial toxicity and stabilities are the hurdles faced by nanodrugs. The potential of nano-therapeutics delivery necessitates the agglomerated efforts of research community to bridge the route of nanodrugs for scale-up, commercialization and clinical applications.
Collapse
Affiliation(s)
- Poonam Banthia
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Lokesh Gambhir
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan India
| | - Dhiraj Daga
- Department of Radiation Oncology, JLN Medical College, Ajmer, Rajasthan India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| | - Rishabh Chaudhary
- Department of Emergency Medicine, Institute of Bioelectronic Medicine, Feinstein Institute of Medical Research, Northwell Health, New Hyde Park, NY USA
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan India
| |
Collapse
|
3
|
Araújo RS, Cristina Oliveira M, Cardoso VN, Keefe DMK, Stringer AM. The effect of free and encapsulated cisplatin into long-circulating and pH-sensitive liposomes on IEC-6 cells during wound healing in the presence of host-microbiota. J Pharm Pharmacol 2021; 74:711-717. [PMID: 34791381 DOI: 10.1093/jpp/rgab156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/18/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To circumvent cisplatin (CDDP) toxic effects and improve the antitumoural effect, our research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). This study aimed to evaluate whether SpHL-CDDP is associated with intestinal protection under in-vitro conditions in the presence of host-microbiota, compared with free CDDP. METHODS The cytotoxicity of CDDP and SpHL-CDDP were evaluated by colorimetric MTT and sulforhodamine B (SRB) assays. Epithelial proliferation was assessed by using an in-vitro wounding model in the presence of host-microbiota with intestinal epithelial cell line 6 (IEC-6) monolayers. Cytokines were determined by ELISA. KEY FINDINGS Reduced cytotoxicity of SpHL-CDDP in IEC-6 cells (minimum of 1.3-fold according to the IC50 values) was observed when compared with CDDP. The presence of microbiota or CDDP reduced the wound healing. The association of microbiota and SpHL-CDDP improved the wound healing and cell number in IEC-6 cells when compared with control. These beneficial results can be associated with increased IL-6 and IL-10 levels induced by SpHL-CDDP which were affected by the presence of microbiota. CONCLUSIONS These results indicate that the presence of microbiota associated with SpHL-CDDP provided less intestinal cellular damages compared with CDDP and constitutes a promising candidate for clinical use.
Collapse
Affiliation(s)
- Raquel Silva Araújo
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dorothy M K Keefe
- Department of Medicine, Mucositis Research Group, The University of Adelaide, Adelaide, SA, Australia
| | - Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
4
|
Lafi Z, Alshaer W, Hatmal MM, Zihlif M, Alqudah DA, Nsairat H, Azzam H, Aburjai T, Bustanji Y, Awidi A. Aptamer-functionalized pH-sensitive liposomes for a selective delivery of echinomycin into cancer cells. RSC Adv 2021; 11:29164-29177. [PMID: 35479561 PMCID: PMC9040599 DOI: 10.1039/d1ra05138e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/14/2021] [Indexed: 12/11/2022] Open
Abstract
Echinomycin (quinomycin A) is a peptide antibiotic from the quinoxaline family, which has a DNA bifunctional intercalating activity and an inhibitor of hypoxia-inducible factor (HIF1α). Echinomycin was discovered in 1957 as a potent antitumor agent; however, it was not successful in clinical use due to its low water solubility and short half-life. To revitalize this potent drug, it is important to increase its aqueous solubility and bioavailability. In this study, echinomycin was loaded into PEGylated pH-sensitive liposomes (PEGLippH) and functionalized with anti-nucleolin aptamer (AptNCL) for selective targeting and pH-responsive release of echinomycin into cancer cells. Echinomycin was complexed with γ-cyclodextrin (ECγCD) to enhance its water solubility and then encapsulated into pH-sensitive liposomes (PEGLippH-ECγCD). Then, liposomes were functionalized with AptNCL (AptNCL-PEGLippH-ECγCD) and the successful functionalization was confirmed by dynamic light scattering (DLS) measurements and gel electrophoresis. Cellular uptake for AptNCL-PEGLippH was evaluated by flow cytometry analysis using MDA-MB-231, MCF7, A549 cancer cell lines with respect to the normal fibroblast cells. The results showed a higher uptake and selectivity for AptNCL-PEGLippH compared to PEGLippH. The anti-proliferative effects of AptNCL-PEGLippH-ECγCD were more potent than PEGLippH-ECγCD by 3.5, 4, and 5 folds for A549, MDA-MB-231, and MCF7, respectively. Selectivity indices (SI) for AptNCL-PEGLippH-ECγCD for the tumor cell lines compared to the normal cell line after 72 h were MDA-MB-231 (43.3), MCF7 (16.9), and A549 (8.5). Furthermore, SI after 3 h for the three cancer cell lines were 4.7, 2.5, 2.8, respectively. Echinomycin was loaded into PEGylated pH-sensitive liposomes and functionalized with anti-nucleolin aptamer for selective targeting and pH-responsive release of echinomycin into cancer cells.![]()
Collapse
Affiliation(s)
- Zainab Lafi
- Faculty of Pharmacy, The Middle East University, Amman, Jordan
- Department of Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Ma'mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hanan Azzam
- HMCSR, The University of Jordan, Amman 11942, Jordan
| | - Talal Aburjai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
- Department of Internal Medicine, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|