1
|
Xiao G, Yuan L, Liao D, Dong H, Luo X, Huang Y. A study on the applicability of one-step vortex extraction and purification combined with gas chromatography-tandem mass spectrometry for analysis of four skin penetration enhancers in cosmetics. J Chromatogr A 2023; 1710:464379. [PMID: 37778099 DOI: 10.1016/j.chroma.2023.464379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
Based on one-step vortex extraction and purification combined with gas chromatography-tandem mass spectrometry (GC-MS/MS), we established a simple, rapid, and efficient method for the simultaneous determination of four skin penetration enhancers in cosmetics, including isosorbide dimethyl ether, isopropyl myristate, N-butylsaccharin and Azone. The extraction procedure was performed in a centrifuge tube, allowing extraction and purification in a single step. The cosmetic sample was extracted by n-hexane-ethyl acetate (1:1, V/V), purified by silica gel and anhydrous magnesium sulfate as the solid phase purification agent, separated on a TG-5 ms column (30.0 m × 0.25 mm × 0.25 μ m), confirmed and detected by GC-MS/MS in the selected reaction monitoring (SRM) mode, and quantified by the internal standard method with Di-n‑butyl phthalate-D4(DBP-D4) as the internal standard. The selections of a column, extraction solvent, and solid phase purification agent were optimized. Under the optimized conditions, the four skin penetration enhancers showed good linearities in the range of 0.02∼0.50 mg L - 1. The correlation coefficients (r) were 0.992 ∼ 0.997, exceeding the specifications requirements (r ≥ 0.990); The detection (LODs, S/N = 3) and quantification limits (LOQs, S/N = 10) of the method were 0.08 ∼ 0.12 mg kg-1 and 0.25 ∼ 0.40 mg kg-1, respectively. According to the cosmetic matrix in different formulation systems, the spiked recovery tests were carried out at three levels, i.e., low, medium, and high. The average recoveries of the analytes were 85.3% ∼ 95.6%, and the relative standard deviations (RSDs, n = 6) were 2.1% ∼ 7.8%. The established method was also employed to analyze cosmetics in the market. Azone, isosorbide dimethyl ether, and isopropyl myristate resulted as the most widely used skin penetration enhancers in cosmetics. The method established in this study has the advantages of operational simplicity, high sensitivity, good reproducibility, and low consumption of samples and solvents. Moreover, it can be used to determine skin penetration enhancers in cosmetics.
Collapse
Affiliation(s)
- Gengpeng Xiao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China
| | - Lu Yuan
- Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China
| | - Dandan Liao
- Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China
| | - Huanhuan Dong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiang Luo
- Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China
| | - Yousheng Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Development Research Institute of Testing and Certification Technology, Jiangxi General Institute of Testing and Certification, Nanchang 330039, China.
| |
Collapse
|
2
|
Carreño GF, Álvarez-Figueroa MJ, González-Aramundiz JV. Dextran Nanocapsules with ω-3 in Their Nucleus: An Innovative Nanosystem for Imiquimod Transdermal Delivery. Pharmaceutics 2022; 14:pharmaceutics14112445. [PMID: 36432637 PMCID: PMC9695725 DOI: 10.3390/pharmaceutics14112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Transdermal administration of molecules across the skin has gained interest because it can be considered a non-invasive route compared with traditional ones. However, going through the skin is challenging due to the presence of the stratum corneum, the main barrier of substances. For this reason, the goal of this research was the combination of omega-3 (ω-3) and a dextran sulfate assembly in a nanostructure form, which allows passage through the skin and improves the bioavailability and the therapeutic profiles of active molecules, such as imiquimod. Here we report a new colloidal system, named dextran nanocapsules, with ω-3 in its nucleus and a coat made of dextran sulfate with a size ~150 nm, monomodal distribution, and negative zeta potential (~-33 mV). This nanosystem encapsulates imiquimod with high efficacy (~86%) and can release it in a controlled fashion following Korsmeyer-Peppas kinetics. This formulation is stable under storage and physiological conditions. Furthermore, a freeze-dried product could be produced with different cryoprotectants and presents a good security profile in the HaCaT cell line. Ex vivo assays with newborn pig skin showed that dextran nanocapsules promote transdermal delivery and retention 10 times higher than non-encapsulated imiquimod. These promising results make this nanosystem an efficient vehicle for imiquimod transdermal delivery.
Collapse
Affiliation(s)
- Gisela F. Carreño
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (M.J.Á.-F.); (J.V.G.-A.)
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (M.J.Á.-F.); (J.V.G.-A.)
| |
Collapse
|
3
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. Pharm Dev Technol 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Zhang D, Chen B, Mu Q, Wang W, Liang K, Wang L, Wang Q. Topical delivery of gambogic acid assisted by the combination of low-frequency ultrasound and chemical enhancers for chemotherapy of cutaneous melanoma. Eur J Pharm Sci 2021; 166:105975. [PMID: 34391880 DOI: 10.1016/j.ejps.2021.105975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Anti-cutaneous melanoma activity of the skin-delivered gambogic acid (GA) has been reported in our previous study. However, it is difficult for GA to diffuse passively through intact skin without any enhancement means. In this study, a combination of chemical enhancers (EN: azone and propylene glycol) and physical ultrasound (US) was used to improve the percutaneous permeation of GA and enhance the anti-melanoma activity. The enhancement effect of the combination of EN and US (EN-US) on GA in vitro and in vivo was studied, and the enhancement mechanism and skin irritation were also evaluated. We showed that the parameters of US application at a constant frequency (30 kHz) with a duty cycle of 100% and intensity of 1.75 W/cm2 for 20 min were optimal. In vitro, EN-US showed a considerable enhancement of the permeation of GA, and the enhancement effect was stronger than that with the use of EN or US alone. In vivo antitumor study showed that the tumor growth was significantly inhibited after percutaneous administration of GA by EN-US, more than in the intravenous injection group. The penetration enhancement mechanism revealed that EN-US not only altered the structure of lipid bilayers and keratins to reduce the barrier effect of the stratum corneum but also produced diffusion channels in the skin under the cavitation effect of US, thereby promoting the skin penetration of GA. In addition, there was no observable skin irritation in mice after treatment with EN-US. Our study demonstrated that the combination of EN and US improved the skin permeation and retention of GA to enhance the anti-melanoma activity. This method also provides technical guidance for the future development of topical and transdermal therapeutic system of GA.
Collapse
Affiliation(s)
- Ding Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Boqi Chen
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qingke Mu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Kaili Liang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Liyan Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.
| |
Collapse
|