1
|
Ewedah TM, Abdalla A, Hagag RS, Elhabal SF, Teaima MH, El-Nabarawi MA, Schlatter G, Shoueir KR. Enhancing cellular affinity for skin disorders: Electrospun polyurethane/collagen nanofiber mats coated with phytoceramides. Int J Pharm 2024; 663:124541. [PMID: 39089344 DOI: 10.1016/j.ijpharm.2024.124541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Although the use of thermoplastic polyurethane (Tpu) nanofiber mats as wound dressings is of great interest due to their mechanical properties, they are hindered by their poor wettability and bioavailability. In this study, we aimed to improve the cellular affinity of Tpu nanofiber mats for skin disorders by incorporating extracted collagen (Col) from tendons and physically mixed with a layer of phytoceramides (Phyto) to produce TpuCol@X-Phyto mats in which the weight % of Phyto relatively to the weight of the solution was X = 0.5, 1.0, or 1.5 wt% via facile electrospinning approach. The collective observations strongly indicate the successful incorporation and retention of Phyto within the TpuCol architecture. An increase in the Phyto concentration decreased the water contact angle from 69.4° ± 3.47° to 57.9° ± 2.89°, demonstrating improvement in the hydrophilicity of Tpu and binary blend TpuCol nanofiber mats. The mechanical property of 1.0 wt% Phyto aligns with practical requirements owing to the presence of two hydroxyl groups and the amide linkage likely contributing to various hydrogen bonds, providing mechanical strength to the channel structure and a degree of rigidity essential for transmitting mechanical stress. The proliferation of human skin fibroblast (HSF) peaked significantly 100 % with TpuCol@X-Phyto mats coated for X =1.0 and 1.5 wt% of Phyto. Electrospun scaffolds with the highest Phyto content have shown the lowest degree of hemolysis, demonstrating the high level of compatibility between them and blood. The TpuCol@1.5Phyto mat also demonstrated higher efficacy in antibacterial and antioxidant activities, achieving a rate of DPPH radical scavenging of 83.3 % for this latter property. The most notable wound closure among all tested formulations was attributed to higher Phyto. Thus, the developed TpuCol@1.5Phyto nanofiber formula exhibited enhanced healing in an in vitro epidermal model.
Collapse
Affiliation(s)
- Tassneim M Ewedah
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Ahmed Abdalla
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt.
| | - Radwa Samir Hagag
- Lecturer at Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt.
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Guy Schlatter
- ICPEES, Institut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé, CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Kamel R Shoueir
- ICPEES, Institut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé, CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France; Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
2
|
Mohsen M, Abdel Gaber SA, Shoueir KR, El-Kemary M, Abo El-Yazeed WS. Synthesis of Cross-Linked and Sterilized Water-Soluble Electrospun Nanofiber Biomatrix of Streptomycin-Imbedded PVA/CHN/β-CD for Wound Healing. ACS OMEGA 2024; 9:10058-10068. [PMID: 38463317 PMCID: PMC10918800 DOI: 10.1021/acsomega.3c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The diagnosis and prognosis of chronic wounds are demanding and require objective assessment. Because of their potential medicinal applications, the syntheses of biopolymeric chitosan (CHN) structure and PVA-based mixed electrospun nanofibers with biomimetic features were thoroughly investigated. This study created different formulas, including a guest molecule and capping agent, using supporting PVA as a vehicle. CHN was used as a biomodifier, and beta-cyclodextrin (ß-CD) as a smoother and more efficiently entraps streptomycin (STP) compared with the silver sheet wound dressing. The relevant analyses showed that the size distribution increased with the incorporation of PVA, CHN, and ß-CD to 120.3, 161.9, and 192.02 nm. The webs boosted particle size and released content stability to 96.4% without compromising the nanofiber structure. Examining the synergistic effects of the PVA/CHN/STP/ß-CD nanoformulation against pathogenic strains of S. aureus, P. aeruginosa, and Aspergillus niger, clean zones were 47 ± 3.4, 45 ± 3.0, and 49 ± 3.7 mm were produced. PVA/CHN/STP/ß-CD formula exhibited a 98.9 ± 0.6% cell viability and wound closure of 100% at 72 h. The results reveal that the PVA/CHN/STP/ß-CD formula is promising for medical applications, especially in wound healing, compared with the silver sheet.
Collapse
Affiliation(s)
- Mohamed Mohsen
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Wafaa S Abo El-Yazeed
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura ,Egypt
| |
Collapse
|
3
|
Jiang X, Zeng YE, Li C, Wang K, Yu DG. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications. Front Bioeng Biotechnol 2024; 12:1354286. [PMID: 38375451 PMCID: PMC10875055 DOI: 10.3389/fbioe.2024.1354286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.
Collapse
Affiliation(s)
- Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu-E Zeng
- Department of Neurology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofei Li
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Elmanfaloty R, Shoueir KR, Yousif B. Intriguing and Facile Preparation Approach of CdO Nanorod-Based Abundant Chitosan for Symmetric Supercapacitors. ACS OMEGA 2023; 8:35682-35692. [PMID: 37810675 PMCID: PMC10552095 DOI: 10.1021/acsomega.3c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Abundant chitosan was rationally used for the green fabrication of cadmium oxide nanorods (CdO nanorods) owing to its environmentally benign characteristics, bioavailability, low cost, etc. However, the primary unsubstituted amino group of chitosan interacts with the surface of Cd salt at higher temperatures, resulting in CdO nanorod formation. A one-step hydrothermal technique was adopted in the presence of chitosan. Optical, structural, and morphology techniques characterized CdO nanorods. According to X-ray diffraction crystallography, CdO is well crystallized in the face-centered cubic lattice with an Fm-3m (225) space group. The AC@CdO nanoelectrode demonstrated an outstanding gravimetric capacitance of 320 F g-1 at a current density of 0.5 A g-1, nearly three-fold that of ordinary AC electrodes. The AC electrode and the AC@CdO nanoelectrode retain 90 and 93% of their initial specific capacitance after 10,000 galvanostatic charge discharge cycles. The AC@CdO nanoelectrode has a lower equivalent series resistance value than the AC electrode. Moreover, AC@CdO symmetric supercapacitor devices achieve excellent results in terms of specific energy, specific power, and capacitance retention.
Collapse
Affiliation(s)
- Rania
A. Elmanfaloty
- Department
of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Department
of Electronics and Communications Engineering, Alexandria Higher Institute of Engineering and Technology, Alexandria 21311, Egypt
| | - Kamel R. Shoueir
- Institute
of Nanoscience & Nanotechnology, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Bedir Yousif
- Electrical
Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Electrical
Engineering Department, Faculty of Engineering and Information Technology, Onaizah Colleges, Onaizah, Al Qassim 51911, Saudi Arabia
| |
Collapse
|
5
|
Oliveira C, Sousa D, Teixeira JA, Ferreira-Santos P, Botelho CM. Polymeric biomaterials for wound healing. Front Bioeng Biotechnol 2023; 11:1136077. [PMID: 37576995 PMCID: PMC10415681 DOI: 10.3389/fbioe.2023.1136077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Skin indicates a person's state of health and is so important that it influences a person's emotional and psychological behavior. In this context, the effective treatment of wounds is a major concern, since several conventional wound healing materials have not been able to provide adequate healing, often leading to scar formation. Hence, the development of innovative biomaterials for wound healing is essential. Natural and synthetic polymers are used extensively for wound dressings and scaffold production. Both natural and synthetic polymers have beneficial properties and limitations, so they are often used in combination to overcome overcome their individual limitations. The use of different polymers in the production of biomaterials has proven to be a promising alternative for the treatment of wounds, as their capacity to accelerate the healing process has been demonstrated in many studies. Thus, this work focuses on describing several currently commercially available solutions used for the management of skin wounds, such as polymeric biomaterials for skin substitutes. New directions, strategies, and innovative technologies for the design of polymeric biomaterials are also addressed, providing solutions for deep burns, personalized care and faster healing.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Diana Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
- Department of Chemical Engineering, Faculty of Science, University of Vigo, Ourense, Spain
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Portugal
| |
Collapse
|
6
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|
7
|
Tiwari R, Pathak K. Local Drug Delivery Strategies towards Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15020634. [PMID: 36839956 PMCID: PMC9964694 DOI: 10.3390/pharmaceutics15020634] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
A particular biological process known as wound healing is connected to the overall phenomena of growth and tissue regeneration. Several cellular and matrix elements work together to restore the integrity of injured tissue. The goal of the present review paper focused on the physiology of wound healing, medications used to treat wound healing, and local drug delivery systems for possible skin wound therapy. The capacity of the skin to heal a wound is the result of a highly intricate process that involves several different processes, such as vascular response, blood coagulation, fibrin network creation, re-epithelialisation, collagen maturation, and connective tissue remodelling. Wound healing may be controlled with topical antiseptics, topical antibiotics, herbal remedies, and cellular initiators. In order to effectively eradicate infections and shorten the healing process, contemporary antimicrobial treatments that include antibiotics or antiseptics must be investigated. A variety of delivery systems were described, including innovative delivery systems, hydrogels, microspheres, gold and silver nanoparticles, vesicles, emulsifying systems, nanofibres, artificial dressings, three-dimensional printed skin replacements, dendrimers and carbon nanotubes. It may be inferred that enhanced local delivery methods might be used to provide wound healing agents for faster healing of skin wounds.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur 208020, Uttar Pradesh, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206130, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
8
|
Mirbagheri MS, Akhavan-Mahdavi S, Hasan A, Kharazmi MS, Jafari SM. Chitosan-based electrospun nanofibers for diabetic foot ulcer management; recent advances. Carbohydr Polym 2023; 313:120512. [PMID: 37182929 DOI: 10.1016/j.carbpol.2022.120512] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Diabetic foot ulcer (DFU) healing has long been a major medical challenge. The type of dressing is an essential factor in wound healing, prevention of local infection, and scar formation. Today, smart wound dressings or wound healing patches can precisely control drug delivery to the target tissue and prevent this significant complication. Nanofiber (NF) wound dressings are effective in reducing wound scarring and helping to speed up the healing process for DFU. The electrospun NFs have a suitable surface topography, density, and three-dimensional structure, which can be considered an efficient method to produce a substrate for tissue engineering and wound healing. Chitosan (CS) is one of the most well-known biopolymers in wound healing tissue engineering and drug delivery systems. The unique properties of CS make it suitable for biomedical applications. Based on new studies in the field of hemostatic and antimicrobial effects of CS in controlling bleeding and wound healing and application of NF wound dressings, the purpose of this study is a review relevant works on CS-based NFs to improve the DFU.
Collapse
|
9
|
Almaieli LMA, Khalaf MM, Gouda M, Elmushyakhi A, Abou Taleb MF, Abd El-Lateef HM. Fabrication of Bio-Based Film Comprising Metal Oxide Nanoparticles Loaded Chitosan for Wound Dressing Applications. Polymers (Basel) 2022; 15:polym15010211. [PMID: 36616561 PMCID: PMC9823312 DOI: 10.3390/polym15010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
In the current work, chitosan (CS)-metal oxide nanohybrid (MONH) composites are prepared via combining CS with MONH made of vanadium oxide (V2O5), ytterbium trioxide (Yb2O3), and graphene oxide (GO) to generate promising wound dressing materials using the film-casting method. The developed nanohybrid@CS was examined using techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA). For Yb2O3@CS, the surface morphology was shown to be a rough and porous surface with pores that ranged in size from 3.0 to 5.0 µm. For CS with Yb2O3, Yb2O3/V2O5@CS, and Yb2O3/V2O5/GO@CS, the contact angles were 72.5°, 68.2°, and 46.5°, respectively. When the nanohybrid@CS was in its hydrophilic phase, which is good for absorbing moisture and drugs, there was a notable decrease in angles that tended to rise. Additionally, the inclusion of MONH allowed the cell viability to be confirmed with an IC50 of 1997.2 g/mL and the cell growth to reach 111.3% at a concentration of 7.9 g/mL.
Collapse
Affiliation(s)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.G.); or (H.M.A.E.-L.)
| | - Abraham Elmushyakhi
- Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia
| | - Manal F. Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Polymer Chemistry, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, P.O. Box 7551, Cairo 11762, Egypt
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
- Correspondence: (M.G.); or (H.M.A.E.-L.)
| |
Collapse
|
10
|
Movaffagh J, Nourollahian T, Khalatbari S, Amiri N, Bazzaz BSF, Kalalinia F. Fabrication of Zein-Chitosan-Zein Sandwich-Like Nanofibers Containing Teicoplanin as a Local Antibacterial Drug Delivery System. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Aderibigbe BA. Hybrid-Based Wound Dressings: Combination of Synthetic and Biopolymers. Polymers (Basel) 2022; 14:3806. [PMID: 36145951 PMCID: PMC9502880 DOI: 10.3390/polym14183806] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Most commercialized wound dressings are polymer-based. Synthetic and natural polymers have been utilized widely for the development of wound dressings. However, the use of natural polymers is limited by their poor mechanical properties, resulting in their combination with synthetic polymers and other materials to enhance their mechanical properties. Natural polymers are mostly affordable, biocompatible, and biodegradable with promising antimicrobial activity. They have been further tailored into unique hybrid wound dressings when combined with synthetic polymers and selected biomaterials. Some important features required in an ideal wound dressing include the capability to prevent bacteria invasion, reduce odor, absorb exudates, be comfortable, facilitate easy application and removal as well as frequent changing, prevent further skin tear and irritation when applied or removed, and provide a moist environment and soothing effect, be permeable to gases, etc. The efficacy of polymers in the design of wound dressings cannot be overemphasized. This review article reports the efficacy of wound dressings prepared from a combination of synthetic and natural polymers.
Collapse
|
12
|
Sethuram L, Thomas J, Mukherjee A, Chandrasekaran N. A review on contemporary nanomaterial-based therapeutics for the treatment of diabetic foot ulcers (DFUs) with special reference to the Indian scenario. NANOSCALE ADVANCES 2022; 4:2367-2398. [PMID: 36134136 PMCID: PMC9418054 DOI: 10.1039/d1na00859e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 05/08/2023]
Abstract
Diabetes mellitus (DM) is a predominant chronic metabolic syndrome, resulting in various complications and high mortality associated with diabetic foot ulcers (DFUs). Approximately 15-30% of diabetic patients suffer from DFUs, which is expected to increase annually. The major challenges in treating DFUs are associated with wound infections, alterations to inflammatory responses, angiogenesis and lack of extracellular matrix (ECM) components. Furthermore, the lack of targeted therapy and efficient wound dressings for diabetic wounds often results in extended hospitalization and limb amputations. Hence, it is essential to develop and improve DFU-specific therapies. Nanomaterial-based innovative approaches have tremendous potential for preventing and treating wound infections of bacterial origin. They have greater benefits compared to traditional wound dressing approaches. In this approach, the physiochemical features of nanomaterials allow researchers to employ different methods for diabetic wound healing applications. In this review, the status and prevalence of diabetes mellitus (DM) and amputations due to DFUs in India, the pathophysiology of DFUs and their complications are discussed. Additionally, nanomaterial-based approaches such as the use of nanoemulsions, nanoparticles, nanoliposomes and nanofibers for the treatment of DFUs are studied. Besides, emerging therapeutics such as bioengineered skin substitutes and nanomaterial-based innovative approaches such as antibacterial hyperthermia therapy and gene therapy for the treatment of DFUs are highlighted. The present nanomaterial-based techniques provide a strong base for future therapeutic approaches for skin regeneration strategies in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Lakshimipriya Sethuram
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
13
|
Ferreira MOG, Ribeiro AB, Rizzo MS, de Jesus Oliveira AC, Osajima JA, Estevinho LM, Silva-Filho EC. Potential Wound Healing Effect of Gel Based on Chicha Gum, Chitosan, and Mauritia flexuosa Oil. Biomedicines 2022; 10:biomedicines10040899. [PMID: 35453649 PMCID: PMC9025394 DOI: 10.3390/biomedicines10040899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Wounds are considered a clinically critical issue, and effective treatment will decrease complications, prevent chronic wound formation, and allow rapid healing. The development of products based on naturally occurring materials is an efficient approach to wound healing. Natural polysaccharides can mimic the extracellular matrix and promote cell growth, thus making them attractive for wound healing. In this context, the aim of this work was to produce a gel based on chicha gum, chitosan, and Mauritia flexuosa oil (CGCHO) for wound treatment. TG and DTG analyzed the thermal behavior of the materials, and SEM investigated the surface roughness. The percentages of total phenolic compounds, flavonoids, and antioxidants were determined, presenting a value of 81.811 ± 7.257 µmol gallic acid/g Mauritia flexuosa oil, 57.915 ± 0.305 µmol quercetin/g Mauritia flexuosa oil, and 0.379 mg/mL, respectively. The anti-inflammatory was determined, presenting a value of 10.35 ± 1.46% chicha gum, 16.86 ± 1.00% Mauritia flexuosa oil, 10.17 ± 1.05% CGCHO, and 15.53 ± 0.65% chitosan, respectively. The materials were tested against Gram-negative (Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus) bacteria and a fungus (Candida albicans). The CGCHO formulation showed better antimicrobial activity against Gram-positive bacteria. In addition, an in vivo wound healing study was also performed. After 21 days of treatment, the epidermal re-epithelialization process was observed. CGCHO showed good thermal stability and roughness that can help in cell growth and promote the tissue healing process. In addition to the good results observed for the antimicrobial, antioxidant, anti-inflammatory activities and providing wound healing, they provided the necessary support for the healing process, thus representing a new approach to the wound healing process.
Collapse
Affiliation(s)
- Maria Onaira Gonçalves Ferreira
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
| | - Alessandra Braga Ribeiro
- CBQF–Centre of Biotechnology and Fine Chemistry–Associate Laboratory, Faculty of Biotechnology, Catholic University of Portugal, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Marcia S. Rizzo
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
| | - Antonia Carla de Jesus Oliveira
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
| | - Josy Anteveli Osajima
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
| | - Leticia M. Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (L.M.E.); (E.C.S.-F.)
| | - Edson C. Silva-Filho
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
- Correspondence: (L.M.E.); (E.C.S.-F.)
| |
Collapse
|
14
|
Saddik MS, Elsayed MMA, El-Mokhtar MA, Sedky H, Abdel-Aleem JA, Abu-Dief AM, Al-Hakkani MF, Hussein HL, Al-Shelkamy SA, Meligy FY, Khames A, Abou-Taleb HA. Tailoring of Novel Azithromycin-Loaded Zinc Oxide Nanoparticles for Wound Healing. Pharmaceutics 2022; 14:111. [PMID: 35057019 PMCID: PMC8780377 DOI: 10.3390/pharmaceutics14010111] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Skin is the largest mechanical barrier against invading pathogens. Following skin injury, the healing process immediately starts to regenerate the damaged tissues and to avoid complications that usually include colonization by pathogenic bacteria, leading to fever and sepsis, which further impairs and complicates the healing process. So, there is an urgent need to develop a novel pharmaceutical material that promotes the healing of infected wounds. The present work aimed to prepare and evaluate the efficacy of novel azithromycin-loaded zinc oxide nanoparticles (AZM-ZnONPs) in the treatment of infected wounds. The Box-Behnken design and response surface methodology were used to evaluate loading efficiency and release characteristics of the prepared NPs. The minimum inhibitory concentration (MIC) of the formulations was determined against Staphylococcus aureus and Escherichia coli. Moreover, the anti-bacterial and wound-healing activities of the AZM-loaded ZnONPs impregnated into hydroxyl propyl methylcellulose (HPMC) gel were evaluated in an excisional wound model in rats. The prepared ZnONPs were loaded with AZM by adsorption. The prepared ZnONPs were fully characterized by XRD, EDAX, SEM, TEM, and FT-IR analysis. Particle size distribution for the prepared ZnO and AZM-ZnONPs were determined and found to be 34 and 39 nm, respectively. The mechanism by which AZM adsorbed on the surface of ZnONPs was the best fit by the Freundlich model with a maximum load capacity of 160.4 mg/g. Anti-microbial studies showed that AZM-ZnONPs were more effective than other controls. Using an experimental infection model in rats, AZM-ZnONPs impregnated into HPMC gel enhanced bacterial clearance and epidermal regeneration, and stimulated tissue formation. In conclusion, AZM -loaded ZnONPs are a promising platform for effective and rapid healing of infected wounds.
Collapse
Affiliation(s)
- Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt;
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt;
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Haitham Sedky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Jelan A. Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71516, Egypt;
| | - Ahmed M. Abu-Dief
- Chemistry Department, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mostafa F. Al-Hakkani
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| | - Hazem L. Hussein
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
| | - Samah A. Al-Shelkamy
- Department of Physics, Faculty of Science, New Valley University, El-Kharja 72511, Egypt;
| | - Fatma Y. Meligy
- Department Histology, Faculty of Medicine, Assiut University, Assiut 71524, Egypt;
| | - Ali Khames
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag 82755, Egypt;
| |
Collapse
|