1
|
Singh A, Fatima Z, Srivastava D. A Comprehensive Review on Polyphenols based Nanovesicular System for Topical Delivery. Curr Drug Deliv 2025; 22:123-139. [PMID: 38279739 DOI: 10.2174/0115672018265118231213094410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Polyphenols are naturally occurring compounds having more than one hydroxy functional group. They are ubiquitous secondary plant metabolites possessing a wide range of pharmacological activity. Brightly colored fruits and vegetables are the natural source of polyphenols. Majorly, they possess antioxidant, anti-inflammatory and antimicrobial properties which make them suitable candidates to target skin related disorders. OBJECTIVE This study is focused to explore the potential of polyphenols loaded nanovesicles for skin related disorders. The aim of the study is to review the applicability and efficacy of different vesicular systems encapsulated with various classes of polyphenols for skin related disorders, thus opening the opportunity for future studies based on these drug delivery systems. METHODS Web of Science, PubMed, Scopus database, and the search engine Google Scholar were accessed for the literature search. The results were then filtered based on the titles, abstracts, and accessibility of the complete texts. RESULTS The expository evaluation of the literature revealed that various nanovesicles like liposomes, niosomes, ethosomes and transferosomes incorporating polyphenol have been formulated to address issues pertaining to delivery across the skin. These developed nano vesicular systems have shown improvement in the physicochemical properties and pharmacological action. CONCLUSION Polyphenol based nano-vesicular formulations have proved to be an effective system for topical delivery and henceforth, they might curtail the use of other skin therapies having limited applicability.
Collapse
Affiliation(s)
- Anshu Singh
- Department of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Lucknow, Noida, 201313, India
| | - Zeeshan Fatima
- Department of Pharmacy, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Lucknow, Noida, 201313, India
| | - Dipti Srivastava
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
2
|
Mangla B, Kumar P, Ahamad Z, Javed S, Ahsan W, Aggarwal G. Development and evaluation of berberine-loaded bigel for the treatment of hyperpigmentation on B16F10 melanoma cell line. Nanomedicine (Lond) 2024; 19:1659-1673. [PMID: 39056145 PMCID: PMC11389747 DOI: 10.1080/17435889.2024.2370759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Aim: The aim of this study was to optimize, develop, characterize and evaluate a topical nanobigel (BG) formulation containing Berberine (BRB) that exhibits anti-melanogenic properties.Materials & methods: The Berberine-loaded bigel (BRB@BG) formulation was prepared by homogenously mixing the optimized hydrogel and oleogel. BRB@BG was characterized in vitro and cytotoxicity study was conducted to evaluate its effects on murine skin melanoma B16F10 cell lines.Results: The optimized BRB@BG exhibited uniform texture with nanometric size, desirable spreadability and extrudability, suitable for topical applications. Cytotoxicity studies revealed that BRB@BG had a lower IC50 value (4.84 μg/ml) on B16F10 cell lines compared with drug alone.Conclusion: In conclusion, the developed BRB@BG formulation showed good potential as safe and effective topical treatment for hyperpigmentation.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Pankaj Kumar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Zuber Ahamad
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| |
Collapse
|
3
|
Farooq U, Mirza MA, Alshetaili A, Mohapatra S, Jain P, Hassan N, Iqbal Z, Ali A. In silico and in vitro assessment of an optimized QbD-guided myoinositol and metformin-loaded mucus-penetrating particle-based gel for the amelioration of PCOS. NANOSCALE ADVANCES 2024; 6:648-668. [PMID: 38235090 PMCID: PMC10791119 DOI: 10.1039/d3na00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a multi-factorial endocrine disorder affecting women of reproductive age. However, its high prevalence and the unsuccessful translation of conventional modalities have made PCOS a pharmaco-therapeutic challenge. In the present study, we explored bi-formulations (comprising metformin-loaded mucus-penetrating nanoparticles, MTF-MPPs, and myoinositol-loaded mucus-penetrating particles, MI-MPPs) incorporated in a carbomer gel tailored for intravaginal administration. For the development and optimization of the MPPs-gel, a QbD (quality by design) approach was employed, including the initial and final risk assessment, central composite design of experts, and method validation. The optimized MTF-MPPs and MI-MPPs possessed an optimum nanometric particle size (195.0 nm and 178.8 nm, respectively) and a PDI of 0.150 and 0.123, respectively, together with a negligible negative zeta potential (-5.19 mV and -6.19 mV, respectively) through the vaginal mucus. It was observed that the MPPs are small and monodisperse with a neutral surface charge. It was observed that the MPPs-gel formulations released approximately 69.86 ± 4.65% of MTF and 67.14 ± 5.74% of MI within 120 h (5 days), which was observed to be sustained unlike MFT-MI-gel with approximately 94.89 ± 4.17% of MTF and 90.91 ± 15% of MI drugs released within 12 h. The confocal microscopy study of rhodamine-loaded MPPs indicated that they possessed a high fluorescence intensity at a depth of 15 μm, while as the penetration trajectory in the vaginal tissue increased to 35 μm, their intensity was reduced, appearing to be more prominent in the blood vessels. The analyzed data of MPPs-gel suggest that the optimized MPPs-gel formulation has potential to reach the targeted area via the uterovaginal mucosa, which has a wide network of blood vessels. Subsequently, in vivo studies were conducted and the results revealed that the proposed MPPs-gel formulation could regulate the estrous cycle of the reproductive system compared to the conventional formulation. Moreover, the formulation significantly reduced the weight of the ovaries compared to the control and conventional vaginal gel. Biochemical estimation showed improved insulin and sex hormone levels. Thus, the obtained data revealed that the deep penetration and deposition of MTF and MI on the targeted area through intravaginal delivery resulted in better therapeutic effects than the conventional vaginal gel. The obtained results confirmed the amelioration of PCOS upon treatment using the prepared MPPs-gel formulation. According to the relevant evaluation studies, it was concluded that MPPs-gel was retained in the vaginal cavity for systemic effects. Also, the sustained and non-irritating therapeutic effect meets the safety aspects. This work serves as a promising strategy for intravaginal drug delivery.
Collapse
Affiliation(s)
- Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj Saudi Arabia
| | - Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| |
Collapse
|
4
|
Mohseni-Motlagh SF, Dolatabadi R, Baniassadi M, Baghani M. Application of the Quality by Design Concept (QbD) in the Development of Hydrogel-Based Drug Delivery Systems. Polymers (Basel) 2023; 15:4407. [PMID: 38006131 PMCID: PMC10674248 DOI: 10.3390/polym15224407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Hydrogel-based drug delivery systems are of interest to researchers for many reasons, such as biocompatibility, high diversity, and the possibility of administration from different routes. Despite these advantages, there are challenges, such as controlling the drug release rate and their mechanical properties during the manufacturing of these systems. For this reason, there is a need for the production and development of such drug delivery systems with a scientific strategy. For this reason, the quality by design (QbD) approach is used for the development of drug delivery systems. This approach, by identifying the most effective factors in the manufacturing of pharmaceutical products and controlling them, results in a product with the desired quality with the least number of errors. In this review article, an attempt is made to discuss the application and method of applying this approach in the development of hydrogel-based drug delivery systems. So that for the development and production of these systems, according to the type of drug delivery system, what target characteristics should be considered (QTPP) and what factors, such as material properties (CMA) or process parameters (CPP), should be taken into account to reach the critical quality attributes of the product (CQA).
Collapse
Affiliation(s)
- S. Farid Mohseni-Motlagh
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439814151, Iran
| | - Roshanak Dolatabadi
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran 1419943471, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439814151, Iran
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439814151, Iran
| |
Collapse
|
5
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Hasan N, Imran M, Sheikh A, Tiwari N, Jaimini A, Kesharwani P, Jain GK, Ahmad FJ. Advanced multifunctional nano-lipid carrier loaded gel for targeted delivery of 5-flurouracil and cannabidiol against non-melanoma skin cancer. ENVIRONMENTAL RESEARCH 2023; 233:116454. [PMID: 37343751 DOI: 10.1016/j.envres.2023.116454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Non-melanoma skin cancer is one of the most common malignancies reported around the globe. Current treatment therapies fail to meet the desired therapeutic efficacy due to high degree of drug resistance. Thus, there is prominent demand in advancing the current conventional therapy to achieve desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The current investigation has been designed to evaluate the safety and efficacy of developed 5-Flurouracil and cannabidiol loaded combinatorial lipid-based nanocarrier (FU-CBD NLCs) gel for the effective treatment of skin cancer. Initially, confocal microscopy study results showed excellent uptake and deposition at epidermal and the dermal layer. Irritation studies performed by IR camera and HET cam shows FU-CBD NLCs was much more tolerated and less irritant compared to conventional treatment. Furthermore, gamma scintigraphy evaluation shows the skin retention behavior of the formulation. Later, in-ovo tumor remission studies were performed, and it was found that prepared FU-CBD NLCs was able to reduce tumor volume significantly compared to conventional formulation. Thus, obtained results disclosed that permeation and disposition of 5-FU and CBD into different layers of the skin FU-CBD NLCs gel could be more potential carrier than conventional gel. Furthermore, prepared formulation showed greater tumor remission, better survival rate, reduction in tumor number, area, and volume with improved biochemical profile. Thus, prepared gel could serve as a promising formulation approach for the skin cancer treatment.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nidhi Tiwari
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, 1100654, Delhi, India; Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, 110017, India
| | - Abhinav Jaimini
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, 1100654, Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, 110017, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
7
|
Gupta A, Nadaf A, Ahmad S, Hasan N, Imran M, Sahebkar A, Jain GK, Kesharwani P, Ahmad FJ. Dasatinib: a potential tyrosine kinase inhibitor to fight against multiple cancer malignancies. Med Oncol 2023; 40:173. [PMID: 37165283 DOI: 10.1007/s12032-023-02018-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
Dasatinib is the 2nd generation TKI (Tyrosine Kinase Inhibitor) having the potential to treat numerous forms of leukemic and cancer patients and it is 300 times more potent than imatinib. Cancer is the major cause of death globally and need to enumerate novel strategies to coping with it. Various novel therapeutics introduced into the market for ease in treating various forms of cancer. We reviewed and evaluated all the related aspects of dasatinib, which can enhance the knowledge about dasatinib therapeutics methodology, pharmacodynamic and pharmacokinetics, side effects, advantages, disadvantages, various kinds of interactions and its novel formulations as well.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
8
|
Hasan N, Imran M, Nadeem M, Jain D, Haider K, Moshahid Alam Rizvi M, Sheikh A, Kesharwani P, Kumar Jain G, Jalees Ahmad F. Formulation and development of novel lipid-based combinatorial advanced nanoformulation for effective treatment of non-melanoma skin cancer. Int J Pharm 2023; 632:122580. [PMID: 36608807 DOI: 10.1016/j.ijpharm.2022.122580] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Non-melanoma skin cancer is one of the most common malignancies reported with high number of morbidities, demanding an advanced treatment option with superior chemotherapeutic effects. Due to high degree of drug resistance, conventional therapy fails to meet the desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The NLCs were optimized using central composite design that showed an average particle size of 206 nm and a zeta potential of -34 mV. In addition, in vitro and ex vivo drug permeations studies demonstrated the effective delivery of both drugs in the skin layers via lipid structured nanocarriers. Also, the prepared FU-CBD-NLCs showed promising effect in-vitro cell studies including MTT assays, wound healing and cell cycle as compared to the conventional formulation. Moreover, dermatokinetic studies shows there was superior deposition of drugs at epidermal and the dermal layer when treated with FU-CBD-NLCs. In the end, overall study offered a novel combinatorial chemotherapy that could be an option for the treatment of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Masood Nadeem
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Dhara Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi 110017, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
10
|
Ahmad S, Hasan N, Fauziya, Gupta A, Nadaf A, Ahmad L, Aqil M, Kesharwani P. Review on 3D printing in dentistry: conventional to personalized dental care. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2292-2323. [PMID: 35796720 DOI: 10.1080/09205063.2022.2099666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The CAD (Computer-aided design) and CAM (computer-aided manufacturing) have most applications in the manufacturing of fully automated, personalized dental devices and tailor-made treatment plans. 3D printing is one of the most rapidly expanding and new methods of manufacturing different things because of its on-demand and high productivity within the cost-effective manner which have a variety of applications in healthcare, pharmaceuticals, orthopaedics, engineered tissue models, medical devices, defence industries, automotive and aerospace sectors. Due to its emerging applications in the various sectors, the healthcare, Industries, and academic sectors are attracted towards the 3D printed materials. This review talks about the dental implants, polymers that are employed in concocting dental implants, critical parameters, and challenges which are to be considered while preparing these implants, advantages of 3D printing in the field of dentistry and the current trends. it discusses the variety of applications of 3D printed materials in the field of dentistry. Along with their method of fabrication, their critical process parameters (CPPs) are also discussed.
Collapse
Affiliation(s)
- Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fauziya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Lubna Ahmad
- Department of Conservative Dentistry and Endodontics, Sudha Rustagi College of Dental Sciences & Research, Faridabad, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
11
|
Nadaf A, Gupta A, Hasan N, Fauziya, Ahmad S, Kesharwani P, Ahmad FJ. Recent update on electrospinning and electrospun nanofibers: current trends and their applications. RSC Adv 2022; 12:23808-23828. [PMID: 36093244 PMCID: PMC9396637 DOI: 10.1039/d2ra02864f] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022] Open
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made in techniques for creating electro-spun and non-electro-spun nanofibers. Nanofibers were the center of attention for industries and researchers due to their simplicity in manufacture and setup. The review discusses a thorough overview of both electrospinning and non-electrospinning processes, including their setup, fabrication process, components, and applications. The review starts with an overview of the field of nanotechnology, the background of electrospinning, the surge in demand for nanofiber production, the materials needed to make nanofibers, and the critical process variables that determine the characteristics of nanofibers. Additionally, the diverse applications of electrospun nanofibers, such as smart mats, catalytic supports, filtration membranes, energy storage/heritage components, electrical devices (batteries), and biomedical scaffolds, are then covered. Further, the review concentrates on the most recent and pertinent developments in nanofibers that are connected to the use of nanofibers, focusing on the most illustrative cases. Finally, challenges and their possible solutions, marketing, and the future prospects of nanofiber development are discussed. Electrospinning is a versatile and viable technique for generating ultrathin fibers.![]()
Collapse
Affiliation(s)
- Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Fauziya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Farhan J. Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|