1
|
Rajkumar DS, Padmanaban R. Impact of bisphenol A and analogues eluted from resin-based dental materials on cellular and molecular processes: An insight on underlying toxicity mechanisms. J Appl Toxicol 2025; 45:4-22. [PMID: 38711185 DOI: 10.1002/jat.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
2
|
Rosa V, Silikas N, Yu B, Dubey N, Sriram G, Zinelis S, Lima AF, Bottino MC, Ferreira JN, Schmalz G, Watts DC. Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations. Dent Mater 2024; 40:1773-1785. [PMID: 39129079 DOI: 10.1016/j.dental.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Assessing the biocompatibility of materials is crucial for ensuring the safety and well-being of patients by preventing undesirable, toxic, immune, or allergic reactions, and ensuring that materials remain functional over time without triggering adverse reactions. To ensure a comprehensive assessment, planning tests that carefully consider the intended application and potential exposure scenarios for selecting relevant assays, cell types, and testing parameters is essential. Moreover, characterizing the composition and properties of biomaterials allows for a more accurate understanding of test outcomes and the identification of factors contributing to cytotoxicity. Precise reporting of methodology and results facilitates research reproducibility and understanding of the findings by the scientific community, regulatory agencies, healthcare providers, and the general public. AIMS This article aims to provide an overview of the key concepts associated with evaluating the biocompatibility of biomaterials while also offering practical guidance on cellular principles, testing methodologies, and biological assays that can support in the planning, execution, and reporting of biocompatibility testing.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Nikolaos Silikas
- Dental Biomaterials, Dentistry, The University of Manchester, Manchester, United Kingdom.
| | - Baiqing Yu
- Faculty of Dentistry, National University of Singapore, Singapore.
| | - Nileshkumar Dubey
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore; Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, United States.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Spiros Zinelis
- School of Dentistry National and Kapodistrian University of Athens (NKUA), Greece.
| | - Adriano F Lima
- Dental Research Division, Paulista University, Sao Paulo, Brazil.
| | - Marco C Bottino
- School of Dentistry, University of Michigan, Ann Arbor, USA.
| | - Joao N Ferreira
- Center of Excellence for Innovation for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Thailand.
| | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany; Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - David C Watts
- School of Medical Sciences and Photon Science Institute, University of Manchester, United Kingdom.
| |
Collapse
|
3
|
Caroprese AC, Navarrete ANC, Prieto SJG, Villamil JC, Uribe OAC, Reyes JCS, Pinzón AHAM. Cytotoxic effects on human dental pulp stem Cells after exposure to adhesive bonding agents. Braz Dent J 2024; 35:e245529. [PMID: 38922248 PMCID: PMC11196030 DOI: 10.1590/0103-6440202405529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/18/2023] [Indexed: 06/27/2024] Open
Abstract
Studies regarding cytotoxic effects attributed to the use of adhesive bonding agents on pulp tissue are not conclusive. To point out whether these materials are safe for clinical use, in vivo exposure of dental pulp to adhesive bonding agents was simulated using an experimental setup in which Human Dental Pulp Stem Cells (hDPSC) are exposed to the action of two kinds of adhesives: self-etching adhesives and two-step bonding agents through a dentine barrier. Cytotoxic effects on these cells were evaluated by MTT assay protocol and fluorescence microscopy, and their results were contrasted to those obtained through Raman spectra taken on single hDPSCs. Overall, no significant cytotoxic effects were observed by combining all the techniques, and cell viability close to 90% was achieved for a dentine barrier of at least 1 mm thick. Moreover, Raman spectroscopy was able to detect structural DNA damage in some dental pulp cells when exposed to two-step bonding agents, suggesting that this technique could be considered a complementary tool with the potential to evaluate cell toxicity beyond cell viability.
Collapse
Affiliation(s)
| | | | - Sandra Janeth Gutiérrez Prieto
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, BogotáD.C., Colombia
| | - Jean Carlos Villamil
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, BogotáD.C., Colombia
| | | | - Juan Carlos Salcedo Reyes
- Grupo de Películas delgadas y Nanofotónica, Departamento de Física, Pontificia Universidad Javeriana, BogotáD.C., Colombia
| | | |
Collapse
|
4
|
Zheng L, Zhang Y, Bai Y, Zhang Z, Wu Q. Study on the mechanical and aging properties of an antibacterial composite resin loaded with fluoride-doped nano-zirconia fillers. Front Bioeng Biotechnol 2024; 12:1397459. [PMID: 38846803 PMCID: PMC11153679 DOI: 10.3389/fbioe.2024.1397459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Preventing the occurrence of secondary caries serves as one of the significant issues in dental clinic, thus make it indispensable to improving the properties of conventional composite resin (CR) by developing a novel CR. In present study, two groups of experimental CRs loaded with different contents of fluoride-doped nano-zirconia fillers (25 wt% and 50 wt%) were fabricated. The surface topography, mechanical performance, fluoride release, antibacterial effect, aging property and cytotoxicity of the experimental CRs were evaluated subsequently. A uniform distribution of the F-zirconia fillers over the whole surface of resin matrix could be observed. The experimental CRs showed continuous fluoride release within 28 days, which was positively correlated with the content of F-zirconia fillers. Moreover, the amount of fluoride release increased in the acidic buffer. Addition of F-zirconia fillers could improve the color stability, wear resistance and microhardness of the experimental CRs, without reducing the flexure strength. Furtherly, the fluoride ions released continuously from the experimental CRs resulted in effective contact and antibacterial properties, while they showed no cytotoxicity. As a consequence, considerations can be made to employ this new kind of composite resin loaded with fluoride-doped nano-zirconia fillers to meet clinical requirements when the antimicrobial benefits are desired.
Collapse
Affiliation(s)
- Liyuan Zheng
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Yi Zhang
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Yuming Bai
- Department of Orthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Zhisheng Zhang
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Qianju Wu
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| |
Collapse
|
5
|
Fu X, Kim HS. Dentin Mechanobiology: Bridging the Gap between Architecture and Function. Int J Mol Sci 2024; 25:5642. [PMID: 38891829 PMCID: PMC11171917 DOI: 10.3390/ijms25115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin's unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin's architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin's physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin's physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases.
Collapse
Affiliation(s)
- Xiangting Fu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
6
|
Isil T, Ozlem K, Defne BH, Eray GM, Abdurrahim K. Toxicity evaluation of indocyanine green mediated photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103754. [PMID: 37595656 DOI: 10.1016/j.pdpdt.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND The aim of the study is to determine the cytotoxic, genotoxic and inflammatory effects of indocyanine green (ICG) mediated photodynamic therapy (PDT) in direct contact with L-929 mouse fibroblast cells and over a dentin barrier. METHODS Eight groups were evaluated; control (C), group with a dentin barrier (D), ICG applied directly on the cells (ICG), ICG applied over a dentin barrier (D-ICG), only laser applied (L), laser applied over a dentin barrier (D-L), ICG and laser applied directly on the cells (ICG-L), ICG and laser applied over a dentin barrier (D-ICG-L). Cell viability was evaluated via ATP Assay, DNA damage was evaluated via Comet Assay, and inflammatory markers IL-1β and TNF-α were assessed via ELISA test. RESULTS Cell viability decreased in group ICG (p<0.001). Cell viability decrease was higher in Group ICG-L (p<0.001). Cell viability decrease was lower in group D-ICG-L (p>0.05). Group L caused an increase in cell number (p<0.001). DNA damage was observed in ICG, D-ICG, and ICG-L groups (p<0.05). None of the groups displayed an increase of inflammatory markers IL-1β and TNF-α (p>0.05). CONCLUSIONS The presence of dentin between ICG and cells acted as a barrier and protected the cells. ICG-mediated PDT did not cause any cytotoxic, genotoxic or inflammatory effect. The use of ICG-mediated PDT for cavity disinfection is acceptable, but at this concentration its use in periodontal pocket disinfection is not recommended due to its cytotoxic and genotoxic properties.
Collapse
Affiliation(s)
- Turp Isil
- BezmialemVakif University, Faculty of Dentistry, Department of Prosthodontics, Istanbul, Turkey
| | - Kara Ozlem
- BezmialemVakif University, Faculty of Dentistry, Department of Prosthodontics, Istanbul, Turkey.
| | | | - Guler Metin Eray
- University of Health Sciences Turkey, Hamidiye School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; University of Health Sciences Turkey, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Department of Medical Biochemistry, Istanbul, Turkey
| | - Kocyigit Abdurrahim
- BezmialemVakif University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
7
|
Mulla SA, Kondkari SA, Patil A, Jain A, Mali S, Jaiswal HC, Jakhar A, Ansari ZM, Agarwal S, Yadav P. A Look Into the Cytotoxicity of Composite Fillings: Friend or Foe? Cureus 2023; 15:e46327. [PMID: 37916229 PMCID: PMC10617805 DOI: 10.7759/cureus.46327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
Dental resin composites are widely used restorative materials in dentistry for the treatment of carious and non-carious lesions as well as pit and fissure sealants, cavity liners, and endodontic sealers. They consist of two parts: an organic resin matrix and an inorganic/organic filler. The organic resin matrix phase is made up of multifunctional monomers and light-sensitive initiators, while the inorganic/organic filler phase is made up of micro/nano-sized fillers that primarily serve as reinforcement. Despite being a very promising dental material, its monomeric component has some drawbacks. It is well known for leaching out during incomplete polymerization, which can result in cytotoxicity. Bis-GMA (bisphenol A-glycidyl methacrylate) is the most cytotoxic of all monomeric components that exhibit synthetic estrogenic effects. The purpose of this article is to assess the cytotoxic effects of dental composite, understand the possible mechanism behind them, and explore ways to screen for and reduce this harmful effect, as well as shed light on its future prospects.
Collapse
Affiliation(s)
- Sayem A Mulla
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Saba A Kondkari
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Amit Patil
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Ashish Jain
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Sheetal Mali
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Himmat C Jaiswal
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Ashima Jakhar
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Zoha M Ansari
- Dentistry, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Sumeet Agarwal
- Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| | - Pooja Yadav
- Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, IND
| |
Collapse
|
8
|
Martinez-Gonzalez M, Fidalgo-Pereira RC, Torres O, Silva F, Henriques B, Özcan M, Souza JCM. Toxicity of resin-matrix cements in contact with fibroblast or mesenchymal cells. Odontology 2023; 111:310-327. [PMID: 36370322 DOI: 10.1007/s10266-022-00758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
The main aim of this study was to perform an integrative review on the toxic effects of resin-matrix cements and their products in contact with fibroblasts or mesenchymal cells. A bibliographic search was performed on PubMed using the following search terms: "cytotoxicity" AND "fibroblast" OR "epithelial" OR "mesenchymal" AND "polymerization" OR "degree of conversion" OR "methacrylate" OR "monomer" AND "resin cement" OR "resin-based cement". The initial search in the available database yielded a total of 277 articles of which 21 articles were included in this review. A decrease in the viability of mouse fibroblasts ranged between 13 and 15% that was recorded for different resin-matrix cements after light curing exposure for 20 s. The viability of human fibroblasts was recorded at 83.11% after light curing for 20 s that increased up to 90.9% after light curing exposure for 40 s. Most of the studies linked the highest toxicity levels when the cells were in contact with Bis-GMA followed by UDMA, TEGDMA and HEMA. Resin-matrix cements cause a cytotoxic reaction when in contact with fibroblasts or mesenchymal cells due to the release of monomers from the polymeric matrix. The amount of monomers released from the resin matrix and their cytotoxicity depends on the polymerization parameters.
Collapse
Affiliation(s)
| | - Rita C Fidalgo-Pereira
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
- Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505, Viseu, Portugal
| | - Orlanda Torres
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Filipe Silva
- Center for Micro Electro Mechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal
| | - Bruno Henriques
- Center for Micro Electro Mechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Júlio C M Souza
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal.
- Center for Micro Electro Mechanical Systems (CMEMS-UMINHO), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal.
- Associate Laboratory (LABBELS), University of Minho, 4710-057, Guimarães, Braga, Portugal.
| |
Collapse
|
9
|
Franca CM, Balbinot GDS, Cunha D, Saboia VDPA, Ferracane J, Bertassoni LE. In-vitro models of biocompatibility testing for restorative dental materials: From 2D cultures to organs on-a-chip. Acta Biomater 2022; 150:58-66. [PMID: 35933103 PMCID: PMC9814917 DOI: 10.1016/j.actbio.2022.07.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
Dental caries is a biofilm-mediated, diet-modulated, multifactorial and dynamic disease that affects more than 90% of adults in Western countries. The current treatment for decayed tissue is based on using materials to replace the lost enamel or dentin. More than 500 million dental restorations are placed annually worldwide, and materials used for these purposes either directly or indirectly interact with dentin and pulp tissues. The development and understanding of the effects of restorative dental materials are based on different in-vitro and in-vivo tests, which have been evolving with time. In this review, we first discuss the characteristics of the tooth and the dentin-pulp interface that are unique for materials testing. Subsequently, we discuss frequently used in-vitro tests to evaluate the biocompatibility of dental materials commonly used for restorative procedures. Finally, we present our perspective on the future directions for biological research on dental materials using tissue engineering and organs on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Dental caries is still the most prevalent infectious disease globally, requiring more than 500 million restorations to be placed every year. Regrettably, the failure rates of such restorations are still high. Those rates are partially based on the fact that current platforms to test dental materials are somewhat inaccurate in reproducing critical components of the complex oral microenvironment. Thus, there is a collective effort to develop new materials while evolving the platforms to test them. In this context, the present review critically discusses in-vitro models used to evaluate the biocompatibility of restorative dental materials and brings a perspective on future directions for tissue-engineered and organs-on-a-chip platforms for testing new dental materials.
Collapse
Affiliation(s)
- Cristiane Miranda Franca
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Gabriela de Souza Balbinot
- Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diana Cunha
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Jack Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Luiz E Bertassoni
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States; Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, United States.
| |
Collapse
|
10
|
Jiang R, Xu Y, Wang F, Lin H. Effectiveness and cytotoxicity of two desensitizing agents: a dentin permeability measurement and dentin barrier testing in vitro study. BMC Oral Health 2022; 22:391. [PMID: 36088323 PMCID: PMC9464405 DOI: 10.1186/s12903-022-02424-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background When evaluating the efficacy and safety of various desensitizing products in vitro, their mechanism of action and clinical utility should be considered during test model selection. This study aimed to evaluate the effects of two desensitizers, an in-office use material and an at-home use material, on dentin specimen permeability, and their dentin barrier cytotoxicity with appropriate test models. Methods Two materials, GLUMA desensitizer (GLU) containing glutaraldehyde and remineralizing and desensitizing gel (RD) containing sodium fluoride and fumed silica, were selected. Human dentin specimens were divided into three groups (n = 6): in groups 1 and 2, GLU was applied, and in group 3, RD was applied and immersed in artificial saliva (AS) for 24 h. Dentin specimen permeability before and after each treatment/post-treatment was measured using a hydraulic device under a pressure of 20 cm H2O. The perfusion fluid was deionized water, except in group 2 where 2% bovine serum albumin (BSA) was used. The representative specimens before and after treatment from each group were investigated using scanning electron microscopy. To measure cytotoxicity, test materials were applied to the occlusal surfaces of human dentin disks under which three-dimensional cell scaffolds were placed. After 24-h contact within the test device, cell viability was measured via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Results GLU significantly reduced the dentin permeability and occluded the dentinal tubules when 2% BSA was used as perfusion fluid. RD significantly reduced dentin permeability and occluded the tubules, but permeability rebounded after AS immersion. GLU significantly decreased cell viability, but RD was non-cytotoxic. Conclusions In vitro GLU application induced effective dentinal tubule occlusion only following the introduction of simulated dentinal fluid. RD provided effective tubule occlusion, but its full remineralization potential was not realized after a short period of immersion in AS. GLU may harm the pulp, whereas RD is sufficiently biocompatible.
Collapse
|
11
|
Hu S, Muniraj G, Mishra A, Hong K, Lum JL, Hong CHL, Rosa V, Sriram G. Characterization of silver diamine fluoride cytotoxicity using microfluidic tooth-on-a-chip and gingival equivalents. Dent Mater 2022; 38:1385-1394. [PMID: 35778310 DOI: 10.1016/j.dental.2022.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE This study aims to characterize the cytotoxicity potential of silver diamine fluoride (SDF) on dental pulp stem cells (DPSC) and gingival equivalents. METHODS DPSC cultured on 96-well plates was exposed directly to SDF (0.0001-0.01%) and cell viability (IC50) quantified. Effect of SDF on DPSC viability under flow (with dentin barrier) conditions was evaluated using a custom-designed microfluidic "tooth-on-a-chip". Permeability of dentin discs (0.5-1.5 mm thickness) was evaluated using lucifer yellow permeation assay. Dentin discs were treated with 38% SDF (up to 3 h), and cell viability (live/dead assay) of the DPSC cultured in the inlet (unexposed) and outlet (exposed) regions of the pulp channel was evaluated. To assess the mucosal corrosion potential, gingival equivalents were treated with 38% SDF for 3 or 60 min (OECD test guideline 431) and characterized by MTT assay and histomorphometric analysis. RESULTS DPSC exposed directly to SDF showed a dose-dependent reduction in cell viability (IC50: 0.001%). Inlet channels (internal control) of the tooth-on-a-chip exposed to PBS and SDF-exposed dentin discs showed> 85% DPSC viability. In contrast, the outlet channels of SDF-exposed dentin discs showed a decreased viability of< 31% and 0% (1.5 and ≤1.0 mm thick dentin disc, respectively) (p < 0.01). The gingiva equivalents treated with SDF for 3 and 60 min demonstrated decreased epithelial integrity, loss of intercellular cohesion and corneal layer detachment with significant reduction in intact epithelial thickness (p < 0.05). SIGNIFICANCE SDF penetrated the dentin (≤1 mm thick) inducing significant death of the pulp cells. SDF also disrupted gingival epithelial integrity resulting in mucosal corrosion.
Collapse
Affiliation(s)
- Shijia Hu
- Faculty of Dentistry, National University of Singapore, Singapore.
| | | | - Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Kanglun Hong
- National University Centre for Oral Health Singapore, National University Hospital, Singapore
| | - Jing Li Lum
- National University Centre for Oral Health Singapore, National University Hospital, Singapore
| | | | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Caldas IP, da Silva EM, Lourenço ES, Martins do Nascimento JC, Leite PEC, Leão MP, Alves G, Scelza MZ. The influence of methodology on the comparison of cytotoxicity of total-etch and self-etch adhesive systems. J Dent 2022; 122:104158. [PMID: 35550400 DOI: 10.1016/j.jdent.2022.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES The present study aimed to compare the in vitro cytocompatibility of two etch-and-rinse (Adper Scothbond, Optibond) and two self-etch (Clearfill SE Bond and Single Bond Universal) dental adhesives through a dentin-barrier model with human pulp fibroblasts. METHODS Human fibroblasts were placed on a plastic device containing 500μm human dentin discs treated with each adhesive or without treatment (control). Other groups were directly exposed to media conditioned with adhesive samples according to ISO 10993-5:2009. After 24h exposure, cell viability was assessed by XTT, and released inflammatory mediators were detected with a multiparametric immunoassay. RESULTS The standardized test without barrier indicated both etch-and-rinse adhesives and self-etch as cytotoxic, promoting viabilities under 70% of the control group (p<0.05). The dentin-barrier model identified increased cell viability for self-etch adhesives, with Clearfill SE Bond identified as non-cytotoxic. The immunoassay evidenced high rates of cytokines by cells exposed to the conditioned media of Adper Scotchbond, Optibond S, and Single Bond Universal. CONCLUSIONS The use of a dentin-barrier in vitro model detected a better biocompatibility for self-etching adhesives and, in the case of Clearfill SE Bond, with a reversion from cytotoxic to biocompatible when compared to the indirect standardized test. CLINICAL SIGNIFICANCE The use of a dentin-barrier in vitro model was able to detect a better biocompatibility for self-etching adhesives when compared to the indirect standardized test and presents itself as a predictive in vitro method for assessing the cytotoxicity of dental restorative materials that may simulate the clinical condition more accurately.
Collapse
Affiliation(s)
- Isleine Portal Caldas
- Geriatric Dentistry Department, School of Dentistry, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | - Paulo Emilio Correa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi, RJ, Brazil
| | | | - Gutemberg Alves
- Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi, RJ, Brazil; Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi, Brazil
| | - Miriam Zaccaro Scelza
- Laboratory of Experimental Culture Cell (LECCel), School of Dentistry, Fluminense Federal University (UFF), Niteroi, RJ, Brazil; Endodontics Department, School of Dentistry, Fluminense Federal University (UFF), Niteroi, RJ, Brazil.
| |
Collapse
|
13
|
Influence of ceramic veneer on the transdentinal cytotoxicity, degree of conversion and bond strength of light-cured resin cements to dentin. Dent Mater 2022; 38:e160-e173. [DOI: 10.1016/j.dental.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
|
14
|
Rosa V, Sriram G, McDonald N, Cavalcanti BN. A critical analysis of research methods and biological experimental models to study pulp regeneration. Int Endod J 2022; 55 Suppl 2:446-455. [PMID: 35218576 PMCID: PMC9311820 DOI: 10.1111/iej.13712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
With advances in knowledge and treatment options, pulp regeneration is now a clear objective in clinical dental practice. For this purpose, many methodologies have been developed in attempts to address the putative questions raised both in research and in clinical practice. In the first part of this review, laboratory‐based methods will be presented, analysing the advantages, disadvantages, and benefits of cell culture methodologies and ectopic/semiorthotopic animal studies. This will also demonstrate the need for alignment between two‐dimensional and three‐dimensional laboratory techniques to accomplish the range of objectives in terms of cell responses and tissue differentiation. The second part will cover observations relating to orthotopic animal studies, describing the current models used for this purpose and how they contribute to the translation of regenerative techniques to the clinic.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Neville McDonald
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Bruno Neves Cavalcanti
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Cardoso M, Coelho A, Marto CM, Gonçalves AC, Paula A, Ribeiro ABS, Ferreira MM, Botelho MF, Laranjo M, Carrilho E. Effects of Adper ™ Scotchbond ™ 1 XT, Clearfil ™ SE Bond 2 and Scotchbond ™ Universal in Odontoblasts. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6435. [PMID: 34771964 PMCID: PMC8585417 DOI: 10.3390/ma14216435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/03/2022]
Abstract
This study aimed to assess the cytotoxicity of commercially available adhesive strategies-etch-and-rinse (Adper™ Scotchbond™ 1 XT, 3M ESPE, St. Paul, MN, USA, SB1), self-etch (Clearfil™ SE Bond 2, Kuraray Noritake Dental Inc., Tokyo, Japan, CSE), and universal (Scotchbond™ Universal, 3M Deutschland GmbH, Neuss, Germany, SBU). MDPC-23 cells were exposed to adhesives extracts in different concentrations and exposure times. To access cell metabolic activity, viability, types of cell death, and cell cycle, the MTT assay, SRB assay, double labeling with annexin V and propidium iodide, and labeling with propidium iodide/RNAse were performed, respectively. Cultures were stained with May-Grünwald Giemsa for qualitative cytotoxicity assessment. The SB1, CSE, and SBU extracts determined a significant reduction in cell metabolism and viability. This reduction was higher for prolonged exposures, even for less concentrated extracts. CSE extracts significantly reduced the cell's metabolic activity at higher concentrations (50% and 100%) from 2 h of exposure. After 24 and 96 h, a metabolic activity reduction was verified for all adhesives, even at lower concentrations. These changes were dependent on the adhesive, its concentration, and the incubation time. Regarding cell viability, SBU extracts were the least cytotoxic, and CSE was significantly more cytotoxic than SB1 and SBU. The adhesives determined a reduction in viable cells and an increase in apoptotic, late apoptosis/necrosis, and necrotic cells. Moreover, on cultures exposed to SB1 and CSE extracts, a decrease in the cells in S and G2/M phases and an increase in the cells in G0/G1 phase was observed. Exposure to SBU led to an increase of cells in the S phase. In general, all adhesives determined cytotoxicity. CSE extracts were the most cytotoxic and were classified as having a higher degree of reactivity, leading to more significant inhibition of cell growth and destruction of the cell's layers.
Collapse
Affiliation(s)
- Miguel Cardoso
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (M.L.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
| | - Ana Coelho
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Carlos Miguel Marto
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (M.L.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Anabela Paula
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Bela Sarmento Ribeiro
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel Marques Ferreira
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (M.L.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.F.B.); (M.L.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Eunice Carrilho
- Institute of Integrated Clinical Practice, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; (A.C.); (C.M.M.); (A.P.); (E.C.)
- Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.R.); (M.M.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
16
|
Abou ElReash A, Hamama H, Grawish M, Saeed M, Zaen El-Din AM, Shahin MA, Zhenhuan W, Xiaoli X. A laboratory study to test the responses of human dental pulp stem cells to extracts from three dental pulp capping biomaterials. Int Endod J 2021; 54:1118-1128. [PMID: 33567103 DOI: 10.1111/iej.13495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
AIM This laboratory study aimed to investigate the effects of three endodontic biomaterials; MTA-HP, iRoot-BP-Plus and ACTIVA on the proliferation, adhesion and osteogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). METHODOLOGY The hDPSCs were isolated from the dental pulps of 21 patients scheduled for surgical extraction of their impacted third molars. The MTT assay was used for assessing cellular proliferation. Ninety-six-well plates were used and the experiment was repeated four times under the same condition and the assay was done in triplicate. Four groups were assigned in which the hDPSCs were cultured in complete media only and considered as negative control. Whilst in the 2nd , 3rd and 4th groups, the cells were treated with CM supplemented with 1.5 μl MTA-HP (CM-MTA, iRoot-BP-Plus (CM-BP), and ACTIVA(CM-AC) extracts, respectively. Attachment adhesion and growth morphology of hDPSCs were observed using SEM and the osteogenic differentiation assay was evaluated by Alizarin red stain test (ARS). The data of proliferation and osteogenic differentiation were analysed using two-way ANOVA followed by Tukey's post hoc multiple comparison test. A p-value < 0.05 was considered significant to analyse the differences amongst the means of groups. RESULTS Both CM-MTA and CM-BP groups were associated with a significant increase in hDPSC proliferation in comparison with CM-AC and CM groups (p = 0.001). hDPSCs exhibited a greater cellular attachment to iRoot-BP-Plus surfaces followed by MTA-HP, whilst less attachment was observed in the ACTIVA group. Moreover, at day 7 there was a significant difference in formation of mineralizing nodules; CM-BP, CM-MTA and CM-AC groups respectively (p = 0.001). Whilst there was no significance of difference between CM-AC and CM groups (p > 0.05). CONCLUSIONS In a laboratory setting, ACTIVA, MTA-HP and iRoot-BP-Plus promoted hDPSCs proliferation, mineralization and attachment, which may explain their in-situ success as endodontic biomaterials.
Collapse
Affiliation(s)
- A Abou ElReash
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| | - H Hamama
- Department of Operative Dentistry, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - M Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - M Saeed
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - A M Zaen El-Din
- Restorative Dental Sciences Department, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - M A Shahin
- Electron Microscope Unit, Mansoura University, Mansoura, Egypt
| | - W Zhenhuan
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| | - X Xiaoli
- Department of Endodontics, Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
17
|
Biocompatibility assessment of resin-based cements on vascularized dentin/pulp tissue-engineered analogues. Dent Mater 2021; 37:914-927. [PMID: 33691992 DOI: 10.1016/j.dental.2021.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES A three-dimensional (3D) dentin/pulp tissue analogue, resembling the human natural tissue has been engineered in an in vitro setup, aiming to assess the cytocompatibility of resin-based dental restorative cements. METHODS Stem Cells from Apical Papilla (SCAP) and Human Umbilical Vein Endothelial Cells (HUVEC) were embedded in Collagen-I/Fibrin hydrogels at 1:3 ratio within 24-well plates. Hanging culture inserts were placed over the hydrogels, housing an odontoblast-like cell layer and a human treated-dentin barrier. Shear modulus of the hydrogels at 3.5 and 5 mg/ml was evaluated by dynamic mechanical analysis. Eluates of two resin-based cements, a dual-cure- (Breeze™, Pentron: Cement-1/C1), and a self-adhesive cement (SpeedCEMplus™, Ivoclar-Vivadent: Cement-2/C2) were applied into the dentin/pulp tissue analogue after pre-stimulation with LPS. Cytocompatibility was assessed by MTT assay, live/dead staining and real-time PCR analysis. RESULTS Both hydrogel concentrations showed similar shear moduli to the natural pulp until day (D) 7, while the 5 mg/ml-hydrogel substantially increased stiffness by D14. Both cements caused no significant toxicity to the dentin/pulp tissue analogue. C1 induced stimulation (p < 0.01) of cell viability (158 ± 3%, 72 h), while pre-stimulation with LPS attenuated this effect. C2 (±LPS) caused minor reduction of viability (15-20%, 24 h) that recovered at 72 h for the LPS+ group. Both cements caused upregulation of VEGF, ANGP-1, and downregulation of the respective receptors VEGFR-2 and Tie-1. SIGNIFICANCE Both resin-based cements showed good cytocompatibility and triggered angiogenic response within the dentin/pulp tissue analogue, indicating initiation of pulp repair responses to the released xenobiotics.
Collapse
|
18
|
Detection of Inflammatory and Homeostasis Biomarkers after Selective Removal of Carious Dentin-An In Vivo Feasibility Study. J Clin Med 2021; 10:jcm10051003. [PMID: 33801317 PMCID: PMC7958315 DOI: 10.3390/jcm10051003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Deep carious dentin lesions induce an immune reaction within the pulp-dentin complex, leading to the release of cytokines, which might be suitable biomarkers in pulp diagnostics. This in vivo feasibility study determines the concentration of different cytokines after selective removal of carious infected dentin (SCR). In our methodology, paired samples are obtained from 21 patients—each of them with two deep carious lesions at posterior teeth without clinical symptoms. After SCR, lesions are randomly assigned to treatment strategy: Group 1 (11 patients): Carious dentin is covered either with BiodentineTM (n = 11) or gutta-percha (n = 11) before using the adhesive OptibondTM FL. Group 2 (10 patients): The adhesives ClearfilTM SE Protect Bond (n = 10) or ClearfilTM SE Bond 2 (n = 10) are directly applied. Prepared cavities are rinsed with phosphate buffered saline containing 0.05% Tween 20 (10X) for five minutes immediately after SCR (visit 1) and eight weeks later (visit 2). Rinsing liquid is regained. Concentrations of IL-1β, IL-6, IL-10, C-reactive protein (CRP), TNF-α, IFN-γ, TIMP-1, -2, and MMP-7, -8, -9 are assessed by customized multiplex assays, evaluated with fluorescence analyzer. Non-parametric statistical analysis (Wilcoxon, Mann–Whitney U Test, p < 0.05) is performed (SPSS 25). Our results show that concentrations of CRP, IL-1β, IL-6, TIMP-1, -2, and MMPs were detectable. Median concentrations of CRP, IL-1β und IL-6 were significantly higher in visit 1 (304.9, 107.4, 3.8 pg/mL), compared to visit 2 (67.8, 2.3, 0.0 pg/mL; pi < 0.001). The study revealed that the non-invasive determination of cytokines from prepared dental cavities is possible.
Collapse
|
19
|
Klein-Junior CA, Sobieray K, Zimmer R, Portella FF, Reston EG, Marinowic D, Hosaka K. Effect of heat treatment on cytotoxicity and polymerization of universal adhesives. Dent Mater J 2020; 39:970-975. [PMID: 32611987 DOI: 10.4012/dmj.2019-103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To assess, in vitro, the influence of heat air treatment on cytotoxicity and degree of conversion (DC) of universal self-etch adhesives (Ambar Universal APS, Scotchbond Universal Adhesive, and Tetric N-Bond Universal) in an NIH/3T3 fibroblast cell culture. Samples were divided into three groups: 1) no heat treatment (control), 2) 37°C and 3) 60°C heat treatment before photopolymerization. Cytotoxicity was analyzed by MTT assay and the DC by FTIR. All adhesives heated at 60°C showed reduced cytotoxicity levels when compared with those heated at 37°C. In general, DC of Ambar Universal APS presented the highest DC than Scotchbond Universal Adhesive and Tetric N-Bond Universal, and the hot air treatment do not influence the conversion. Heat treatment at 60°C was able to reduce the cytotoxicity of universal self-etch adhesives, even, the heat treatment does not enhances the DC.
Collapse
Affiliation(s)
| | - Kathleen Sobieray
- Department of Operative Dentistry, School of Dentistry, Universidade Luterana do Brasil (ULBRA)
| | - Roberto Zimmer
- Department of Operative Dentistry, School of Dentistry, Universidade Luterana do Brasil (ULBRA)
| | | | - Eduardo Galia Reston
- Department of Operative Dentistry, School of Dentistry, Universidade Luterana do Brasil (ULBRA)
| | - Daniel Marinowic
- Brain Institute, Neuroscience laboratory, Pontificia Universidade Católica do Rio Grande do Sul (PUC)
| | - Keiichi Hosaka
- Department of Oral Health Science, School of Medical and Dental Science, Tokyo Medical and Dental University
| |
Collapse
|
20
|
Pagano S, Lombardo G, Costanzi E, Balloni S, Bruscoli S, Flamini S, Coniglio M, Valenti C, Cianetti S, Marinucci L. Morpho-functional effects of different universal dental adhesives on human gingival fibroblasts: an in vitro study. Odontology 2020; 109:524-539. [PMID: 33211211 PMCID: PMC7954759 DOI: 10.1007/s10266-020-00569-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
To analyze the effects of four universal adhesives (Optibond Solo Plus—OB, Universal Bond—UB, Prime&Bond Active—PBA, FuturaBond M + —FB) on human gingival fibroblasts in terms of cytotoxicity, morphology and function. After in vitro exposure for up to 48 h, fibroblast viability was determined by the MTT assay determined, morphology by phase-contrast microscopy and migration by the scratch wound assay. Expression levels of IL1β, IL6, IL8, IL10, TNFα and VEGF genes were assessed by RT-PCR and their protein production by Western blot analysis. Apoptosis and cell cycle were analyzed by flow cytometry. OB and UB induced early morphological changes on fibroblasts (3 h) with extended cell death at 24 h/48 h. Gene expression of collagen type I and fibronectin increased fivefold compared with controls, elastin disappeared and elastase increased threefold, indicating gingival tissue tended to become fibrotic. Only UB and OB increased gene expression of inflammatory markers: IL1β at 3 and 48 h (up to about three times), IL6 and IL8 at 3 h (up to almost four times) which corresponded to the increase of the activated form NF-kB. All adhesives showed an effect on the functionality of fibroblasts with cytotoxic effect time and concentration dependent. Among all the OB and UB adhesives, they showed the greatest cell damage. The in-depth analysis of the effects of universal adhesives and possible functional effects represents an important information for the clinician towards choosing the most suitable adhesive system.
Collapse
Affiliation(s)
- Stefano Pagano
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Guido Lombardo
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Egidia Costanzi
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Stefania Balloni
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Stefano Bruscoli
- Department of Medicine, Section of Pharmacology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Sara Flamini
- Department of Medicine, Section of Pharmacology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Maddalena Coniglio
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Chiara Valenti
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Stefano Cianetti
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre: Chair Prof. Stefano Cianetti, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy
| | - Lorella Marinucci
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea Delle Fratte, 06156, Perugia, Italy.
| |
Collapse
|
21
|
Hadjichristou C, About I, Koidis P, Bakopoulou A. Advanced in Vitro Experimental Models for Tissue Engineering-based Reconstruction of a 3D Dentin/pulp Complex: a Literature Review. Stem Cell Rev Rep 2020; 17:785-802. [PMID: 33145672 DOI: 10.1007/s12015-020-10069-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Experimental procedures have been used to monitor cellular responses at the dentin/pulp interface. Aiming to divert from in vivo studies and oversimplified two-dimensional assays, three-dimensional (3D) models have been developed. This review provides an overview of existing literature, regarding 3D in vitro dentin/pulp reconstruction. MATERIAL & METHODS PubMed, Scopus, Cochrane Library and Web of Science- were systematically searched for attributes between 1998 and 2020. The search focused on articles on the development of three-dimensional tools for the reconstruction of a dentin/pulp complex under in vitro conditions, which were then screened and qualitatively assessed. Article grouping according to mode of implementation, resulted in five categories: the customised cell perfusion chamber (CPC) (n = 8), the tooth bud model (TBM) (n = 3), the 3D dentin/pulp complex manufactured by tissue engineering (DPC) (n = 6), the entire tooth culture (ETC) (n = 4) and the tooth slice culture model (TSC) (n = 5). RESULTS A total of 26 publications, applying nine and eight substances for pulp and dentin representation respectively, were included. Natural materials and dentin components were the most widely utilized. The most diverse category was the DPC, while the CPC group was the test with the highest longevity. The most consistent categories were the ETC and TSC models, while the TBM presented as the most complete de novo approach. CONCLUSIONS All studies presented with experimental protocols with potential upgrades. Solving the limitations of each category will provide a complete in vitro testing and monitoring tool of dental responses to exogenous inputs. CLINICAL RELEVANCE The 3D dentin/pulp complexes are valid supplementary tools for in vivo studies and clinical testing. Graphical Abstract.
Collapse
Affiliation(s)
- Christina Hadjichristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124, Thessaloniki, Greece.
| | - Imad About
- Centre National de la Recherche Scientifique, Institute of Movement Sciences, Aix Marseille University, Marseille, France
| | - Petros Koidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124, Thessaloniki, Greece
| |
Collapse
|
22
|
Kovač V, Poljšak B, Primožič J, Jamnik P. Are Metal Ions That Make up Orthodontic Alloys Cytotoxic, and Do They Induce Oxidative Stress in a Yeast Cell Model? Int J Mol Sci 2020; 21:ijms21217993. [PMID: 33121155 PMCID: PMC7662645 DOI: 10.3390/ijms21217993] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Compositions of stainless steel, nickel-titanium, cobalt-chromium and β-titanium orthodontic alloys were simulated with mixtures of Fe, Ni, Cr, Co, Ti and Mo metal ions as potential oxidative stress-triggering agents. Wild-type yeast Saccharomyces cerevisiae and two mutants ΔSod1 and ΔCtt1 were used as model organisms to assess the cytotoxicity and oxidative stress occurrence. Metal mixtures at concentrations of 1, 10, 100 and 1000 µM were prepared out of metal chlorides and used to treat yeast cells for 24 h. Every simulated orthodontic alloy at 1000 µM was cytotoxic, and, in the case of cobalt-chromium alloy, even 100 µM was cytotoxic. Reactive oxygen species and oxidative damage were detected for stainless steel and both cobalt-chromium alloys at 1000 µM in wild-type yeast and 100 µM in the ΔSod1 and ΔCtt1 mutants. Simulated nickel-titanium and β-titanium alloy did not induce oxidative stress in any of the tested strains.
Collapse
Affiliation(s)
- Vito Kovač
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Jasmina Primožič
- Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203-729
| |
Collapse
|
23
|
Carrillo-Cotto R, Etges A, Jardim PS, Torre E, Kaizer MR, Ferrúa CP, Nedel F, Cuevas-Suárez CE, Moraes RR. Cytotoxicity of contemporary resin-based dental materials in contact with dentin. Eur J Oral Sci 2020; 128:436-443. [PMID: 32741041 DOI: 10.1111/eos.12723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 01/09/2023]
Abstract
In this study, the cytotoxicity of different combinations of contemporary resin-based restoratives (adhesives, composites, luting agents) against human keratinocytes (HaCaT) was evaluated under two conditions, whether materials were applied to dentin or not. Adhesives (3-step etch-and-rinse/3ER: OptiBond FL; 2-step self-etch/2SE Clearfil SE Bond; Single Bond Universal/UNI), composites (conventional composite resin/CCR: Filtek Z350XT; flowable/FCR: Filtek Z350XT Flow; self-adhesive composite resin/SACR: Dyad Flow), and luting agents (conventional luting agent/CLA: Variolink-II; self-adhesive luting agent/SLA: RelyXU200) were combined according to their clinical use. Eluates from polymerized specimens applied to dentin were placed in contact with cells grown for 1 and 7 d. The controls were defined by cells without material contact. Cell viability was determined using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] assay. C=C conversion was investigated using Fourier-transform infrared spectroscopy. After 1 d of incubation, when dentin was not present, 2SE yielded the highest cell viability, whereas 3ER, UNI, and SACR showed higher cell viability in the presence of dentin. After 7 d, when dentin was absent, 2SE and CLA achieved significantly higher cell viability. The presence of dentin resulted in a drastically higher cell viability for all materials, except 2SE and CLA. UNI had the lowest C=C conversion. The presence of dentin was a significant factor, which resulted in higher cell viability than what was seen for the material specimens per se. All materials resulted in a lower viability of HaCaT than what was seen under the no-material control conditions, with effects mainly limited to the first 24 h.
Collapse
Affiliation(s)
- Ricardo Carrillo-Cotto
- Department of Restorative Dentistry and Dental Biomaterials, School of Dentistry, University of San Carlos of Guatemala, Guatemala city, Guatemala.,Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana Etges
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | | | - Eliana Torre
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Marina R Kaizer
- Graduate Program in Dentistry, Positivo University, Curitiba, Brazil
| | - Camila P Ferrúa
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Fernanda Nedel
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | - Rafael R Moraes
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
24
|
Wawrzynkiewicz A, Rozpedek-Kaminska W, Galita G, Lukomska-Szymanska M, Lapinska B, Sokolowski J, Majsterek I. The Cytotoxicity and Genotoxicity of Three Dental Universal Adhesives-An In Vitro Study. Int J Mol Sci 2020; 21:ijms21113950. [PMID: 32486393 PMCID: PMC7312029 DOI: 10.3390/ijms21113950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Dental universal adhesives are considered an useful tool in modern dentistry as they can be used in different etching techniques, allow for simplified protocol and provide sufficient bond strength. However, there is still no consensus as to their toxicity towards pulp. Thus, the present study aimed to evaluate the cytotoxicity and genotoxicity of three universal adhesives: OptiBond Universal, Prime&Bond Universal and Adhese in an in vitro experimental model, monocyte/macrophage cell line SC (ATCC CRL-9855). The cytotoxicity was measured by means of XTT assay, whereas the genotoxicity (comet assay) was evaluated based on the percentage of DNA present in the comet tail. Furthermore, the ability of the adhesives to induce apoptosis was analyzed using flow cytometry (FC) with the FITC annexin V/propidium iodide (PI) double staining. The analysis of the cell cycle progression was performed with FC using PI staining. OptiBond Universal presented significant, while Prime&Bond Universal and Adhese Universal had minimal cytotoxicity and genotoxicity towards human SC cells. Moreover, only OptiBond Universal increased the level of apoptosis in SC cell line. None of the adhesives showed significant cell cycle arrest, as revealed by FC analysis. Due to substantial differences in toxicity in in vitro studies of dental adhesives, there is a great need for further research in order to establish more reliable test protocols allowing for standardized methodology.
Collapse
Affiliation(s)
- Adam Wawrzynkiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (W.R.-K.); (G.G.)
| | - Wioletta Rozpedek-Kaminska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (W.R.-K.); (G.G.)
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (W.R.-K.); (G.G.)
| | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.L.-S.); (B.L.); (J.S.)
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.L.-S.); (B.L.); (J.S.)
| | - Jerzy Sokolowski
- Department of General Dentistry, Medical University of Lodz, 90-419 Lodz, Poland; (M.L.-S.); (B.L.); (J.S.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (A.W.); (W.R.-K.); (G.G.)
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|
25
|
Şişmanoğlu S, Demirci M, Schweikl H, Ozen-Eroglu G, Cetin-Aktas E, Kuruca S, Tuncer S, Tekce N. Cytotoxic effects of different self-adhesive resin cements: Cell viability and induction of apoptosis. J Adv Prosthodont 2020; 12:89-99. [PMID: 32377322 PMCID: PMC7183849 DOI: 10.4047/jap.2020.12.2.89] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 02/01/2023] Open
Abstract
PURPOSE The effects of four different self-adhesive resin cement materials on cell viability and apoptosis after direct and indirect exposure were evaluated using different cell culture techniques. MATERIALS AND METHODS Self-adhesive cements were applied to NIH/3T3 mouse fibroblasts by the extract test method, cell culture inserts, and dentin barrier test method. After exposure periods of 24 h and 72 h, the cytotoxicity of these self-adhesive materials was evaluated using the MTT assay (viability) and the Annexin-V-FITC/PI staining (apoptosis). RESULTS The lowest cell viability was found in cells exposed to BeautiCem SA for 24 h in the extract test method. Cell viability was reduced to 70.6% compared to negative controls. After the 72 h exposure period, viability rate of cell cultures exposed to BeautiCem SA decreased more than 2- fold (29.5%) while cells exposed to RelyX U200 showed the highest viability rate of 71.4%. In the dentin barrier test method, BeautiCem SA induced the highest number of cells in apoptosis after a 24 h exposure (4.1%). Panavia SA Cement Plus was the material that caused the lowest number of cells in apoptosis (1.5%). CONCLUSION The used self-adhesive cements have showed different cytotoxic effects based on the evaluation method. As exposure time increased, the materials showed more cytotoxic and apoptotic effects. BeautiCem SA caused significantly more severe cytotoxic and apoptotic effects than other cements tested. Moreover, cements other than BeautiCem SA have caused necrotic cell death rather than apoptotic cell death.
Collapse
Affiliation(s)
- Soner Şişmanoğlu
- Department of Restorative Dentistry, Faculty of Dentistry, Altınbaş University, Istanbul, Turkey
| | - Mustafa Demirci
- Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Helmut Schweikl
- Department of Operative Dentistry and Periodontology, University of Regensburg Medical Centre, Regensburg, Germany
| | - Gunes Ozen-Eroglu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Cetin-Aktas
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Serap Kuruca
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Safa Tuncer
- Department of Restorative Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Neslihan Tekce
- Department of Restorative Dentistry, Faculty of Dentistry, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
26
|
Hadjichristou C, Papachristou E, Bonovolias I, Bakopoulou A. Three-dimensional tissue engineering-based Dentin/Pulp tissue analogue as advanced biocompatibility evaluation tool of dental restorative materials. Dent Mater 2019; 36:229-248. [PMID: 31791732 DOI: 10.1016/j.dental.2019.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Two-dimensional (2D) in vitro models have been extensively utilized for cytotoxicity assessment of dental materials, but with certain limitations in terms of direct in vitro-in vivo extrapolation (IVIVE). Three-dimensional (3D) models seem more appropriate, recapitulating the structure of human tissues. This study established a 3D dentin/pulp analogue, as advanced cytotoxicity assessment tool of dental restorative materials (DentCytoTool). METHODS DentCytoTool comprised two compartments: the upper, representing the dentin component, with a layer of odontoblast-like cells expanded on microporous membrane of a cell culture insert and covered by a treated dentin matrix; and the lower, representing a pulp analogue, incorporating HUVEC/SCAP co-cultures into collagen I/fibrin hydrogels. Representative resinous monomers (HEMA: 1-8mM; TEGDMA: 0.5-5mM) and bacterial components (LPS: 1μg/ml) were applied into the construct. Cytotoxicity was assessed by MTT and LDH assays, live/dead staining and real-time PCR for odontogenesis- and angiogenesis-related markers. RESULTS DentCytoTool supported cell viability and promoted capillary-like network formation inside the pulp analogue. LPS induced expression of odontogenesis-related markers (RUNX2, ALP, DSPP) without compromising viability of the odontoblast-like cells, while co-treatment with LPS and resin monomers induced cytotoxic effects (live/dead staining, MTT and LDH assays) in cells of both upper and lower compartments and reduced expression angiogenesis-related markers (VEGF, VEGFR2, ANGPT-1, Tie-2, PECAM-1) in a concentration- and time- dependent manner. LPS treatment aggravated TEGDMA-induced and -in certain concentrations (2-4mM)- HEMA-induced cytotoxicity. SIGNIFICANCE DentCytoTool represents a promising tissue-engineering-based cytotoxicity assessment tool, providing more insight into the mechanistic aspects of interactions of dental materials to the dentin/pulp complex.
Collapse
Affiliation(s)
- Christina Hadjichristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Ioannis Bonovolias
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece.
| |
Collapse
|
27
|
López-García S, Pecci-Lloret MP, Pecci-Lloret MR, Oñate-Sánchez RE, García-Bernal D, Castelo-Baz P, Rodríguez-Lozano FJ, Guerrero-Gironés J. In Vitro Evaluation of the Biological Effects of ACTIVA Kids BioACTIVE Restorative, Ionolux, and Riva Light Cure on Human Dental Pulp Stem Cells. MATERIALS 2019; 12:ma12223694. [PMID: 31717445 PMCID: PMC6888068 DOI: 10.3390/ma12223694] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
This study aimed to analyze the biological effects of three new bioactive materials on cell survival, migration, morphology, and attachment in vitro. ACTIVA Kids BioACTIVE Restorative (Pulpdent, Watertown, MA, USA) (Activa), Ionolux (Voco, Cuxhaven, Germany), and Riva Light Cure UV (SDI, Bayswater, Australia) (Riva) were handled and conditioned with a serum-free culture medium. Stem cells from human dental pulp (hDPSCs) were exposed to material extracts, and metabolic activity, cell migration, and cell morphology were evaluated. Cell adhesion to the different materials was analyzed by scanning electron microscopy (SEM). The chemical composition of the materials was evaluated by energy-dispersive X-ray (EDX). One-way analysis of variance followed by a Tukey test was performed (p < 0.05). Ionolux promoted a drastic reduction in metabolic activity and wound closure compared to the control (p < 0.05), whereas Activa induced adequate metabolic activity and cell migration. Moreover, SEM and immunofluorescence analysis showed abundant cells exposed to Activa. The materials showed different surface morphologies, and EDX spectra exhibited different peaks of C, O, Si, S, Ca, and F ions in glass ionomer cements. The results showed that Activa induced cell migration, cell attachment, and cell viability to a greater extent than Riva and Ionolux.
Collapse
Affiliation(s)
- Sergio López-García
- Laboratory of Cellular Therapy and Hematopoietic Transplant, Internal Medicine Department, IMIB-Virgen de la Arrixaca, University of Murcia, Avenida Buenavista s/n, 30120 Murcia, Spain; (S.L.-G.)
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - María P. Pecci-Lloret
- Departament of Special Care and Gerodontology, Faculty of Medicine, University of Murcia, 30007 Murcia, Spain; (M.P.P.-L.); (M.R.P.-L.); (R.E.O.-S.); (J.G.-G.)
| | - Miguel R. Pecci-Lloret
- Departament of Special Care and Gerodontology, Faculty of Medicine, University of Murcia, 30007 Murcia, Spain; (M.P.P.-L.); (M.R.P.-L.); (R.E.O.-S.); (J.G.-G.)
| | - Ricardo E. Oñate-Sánchez
- Departament of Special Care and Gerodontology, Faculty of Medicine, University of Murcia, 30007 Murcia, Spain; (M.P.P.-L.); (M.R.P.-L.); (R.E.O.-S.); (J.G.-G.)
| | - David García-Bernal
- Laboratory of Cellular Therapy and Hematopoietic Transplant, Internal Medicine Department, IMIB-Virgen de la Arrixaca, University of Murcia, Avenida Buenavista s/n, 30120 Murcia, Spain; (S.L.-G.)
| | - Pablo Castelo-Baz
- Endodontics Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Francisco Javier Rodríguez-Lozano
- Laboratory of Cellular Therapy and Hematopoietic Transplant, Internal Medicine Department, IMIB-Virgen de la Arrixaca, University of Murcia, Avenida Buenavista s/n, 30120 Murcia, Spain; (S.L.-G.)
- Departament of Special Care and Gerodontology, Faculty of Medicine, University of Murcia, 30007 Murcia, Spain; (M.P.P.-L.); (M.R.P.-L.); (R.E.O.-S.); (J.G.-G.)
- Correspondence: ; Tel.: +0034-868889518
| | - Julia Guerrero-Gironés
- Departament of Special Care and Gerodontology, Faculty of Medicine, University of Murcia, 30007 Murcia, Spain; (M.P.P.-L.); (M.R.P.-L.); (R.E.O.-S.); (J.G.-G.)
| |
Collapse
|
28
|
Li M, Yang Y, Xie J, Xu G, Yu Y. In-vivo and in-vitro tests to assess toxic mechanisms of nano ZnO to earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:71-76. [PMID: 31203009 DOI: 10.1016/j.scitotenv.2019.05.476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Increasing applications of engineered nanomaterials lead to the release of nanoparticles into various environmental media, especially soil. However, the environmental behavior of nano ZnO in soil and the toxic mechanism to terrestrial invertebrates were not fully understood. In this study, the concentrations of nano ZnO in earthworms (Eisenia fetida) were measured to assess its bioaccumulation. The ratio of nano ZnO in earthworms to soil in 250 mg/kg treatment group was lower than that in 10 mg/kg treatment group as the earthworms would not take up too much nano ZnO to protect themselves from the damage. Combination of in-vivo and in-vitro tests was adapted to investigate the toxic mechanism of nano ZnO to earthworms. In in-vivo test, biomarkers including ROS, SOD, and MDA suggested that the toxic effects of nano ZnO to earthworms were caused by the oxidative stress. To further elucidate its toxic mechanism, in-vitro toxicity test was carried out by employing earthworm coelomocytes. The biomarkers, intracellular ROS, extracellular LDH, and cell viability showed concentration-dependent manner with nano ZnO in the culture media, demonstrating that in-vitro toxicity test could be utilized to reveal the toxic mechanism of nano ZnO to earthworms or other organisms.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Department of Architectural Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Jiawei Xie
- School of Food and Environmental Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
29
|
Oguz EI, Hasanreisoglu U, Uctasli S, Özcan M, Kiyan M. Effect of various polymerization protocols on the cytotoxicity of conventional and self-adhesive resin-based luting cements. Clin Oral Investig 2019; 24:1161-1170. [PMID: 31327082 DOI: 10.1007/s00784-019-02980-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/20/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study evaluated the cytotoxicity of resin-based luting cements on fibroblast cells using different polymerization protocols. MATERIALS AND METHODS Two conventional dual-polymerized (RelyX ARC, VariolinkN) and two self-adhesive resin cements (RelyX Unicem, Multilink Speed) specimens were polymerized using four different polymerization protocols: (a) photo-polymerization with direct light application, (b) photo-polymerization over ceramic and (c) resin nano-ceramic discs and (d) auto-polymerization. The specimens were then assigned to four groups to test cytotoxicity at 0, 1, 2 and 7 preincubation days (n = 5). MTT test was performed using NIH/3T3 fibroblast cells. Data were analysed using three- and one-way ANOVA. Multiple comparisons were made using Bonferroni post hoc test (p < 0.05). RESULTS The highest cytotoxic values were recorded at day 2 for conventional resin cements and at day 0 for self-adhesive resin cements. Self-adhesive resin cements showed the most cytotoxic effect at the second day, while conventional resin cements presented immediate cytotoxicity. Auto-polymerized resin specimens and especially Multilink Speed demonstrated the most cytotoxic effect regardless of the preincubation time. Cytotoxicity of cements tested reached the lowest level at day 7. Interposition of ceramic or nano-ceramic restorative material did not significantly affect the cytotoxicity of tested luting cements (p > 0.05). CONCLUSIONS Cytotoxicity of dual-polymerized resin cements was material-dependent and decreased gradually up to 7 days. Photo-polymerization plays an important role in reducing the cytotoxic effects. CLINICAL RELEVANCE When luting ceramic or resin nano-ceramic restorations of which thickness does not exceed 2 mm, the level of cytotoxicity with the tested materials is not significant. Luting of restorative materials that do not allow for light transmission such as metal-fused porcelain, clinicians should be cautious in the use of dual-polymerized conventional resin cements as only auto-polymerization of resin cements takes place under such materials.
Collapse
Affiliation(s)
- Ece Irem Oguz
- Faculty of Dentistry, Department of Prosthodontics, Ankara University, Ankara, Turkey.
| | - Ufuk Hasanreisoglu
- Faculty of Dentistry, Department of Prosthodontics, Ankara University, Ankara, Turkey
| | - Sadullah Uctasli
- Faculty of Dentistry, Department of Prosthodontics, Ankara University, Ankara, Turkey
| | - Mutlu Özcan
- Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, University of Zurich, Zurich, Switzerland
| | - Mehmet Kiyan
- Faculty of Medicine, Department of Medical Microbiology, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Li M, Xu G, Yu R, Wang Y, Yu Y. Bioaccumulation and toxicity of pentachloronitrobenzene to earthworm (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:429-434. [PMID: 30852307 DOI: 10.1016/j.ecoenv.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Pentachloronitrobenzene (PCNB) has been widely utilized as a fungicide to control diseases. However, toxic effect data of PCNB on terrestrial invertebrate are not available till now. Herein, the earthworms (Eisenia fetida) were exposed to soil containing different levels of PCNB. Mortality, weight, accumulation, and physiological indexes of earthworms were determined on certain days. PCNB inhibited the growth of earthworms and induced a significant increase in the activity of antioxidative enzymes. ROS, SOD, and MDA of earthworms in the highest treatment group were 6.8, 4.4, and 3.8 times higher than those in the control group, respectively. In addition, earthworm coelomocytes were successfully extracted, cultured, and innovatively employed in in-vitro toxicity test to evaluate the toxic effect of PCNB. The biomarkers utilized in in-vitro toxicity test, including cell viability, intracellular ROS and extracellular LDH showed significant correlations with the PCNB in the culture media, indicating that the in-vitro toxicity test may serve as a useful tool for toxic assessment of pollutants to earthworms and other organisms.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
31
|
Pagano S, Lombardo G, Balloni S, Bodo M, Cianetti S, Barbati A, Montaseri A, Marinucci L. Cytotoxicity of universal dental adhesive systems: Assessment in vitro assays on human gingival fibroblasts. Toxicol In Vitro 2019; 60:252-260. [PMID: 31195088 DOI: 10.1016/j.tiv.2019.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 01/20/2023]
Abstract
Universal adhesives are the most important innovation in restorative dentistry. They are composed of different monomers, solvents and fillers. The potential cytotoxic effect of these materials is an important scientific aspect in recent literature. The aim of this study was to determine, using different in vitro techniques, the cytotoxicity evaluation of seven universal enamel-dental adhesives on human gingival fibroblasts. For this purpose, seven universal dental enamel adhesives have been evaluated by in vitro cytotoxicity tests using direct contact tests (an unpolymerized and a polymerized method) and an indirect contact test: preparation of extracts. The polymerized method showed a cytotoxicity range from 36% (G-PremioBond, GPB) to 79% (FuturaBond M+, FB). With the unpolymerized direct methods the range was from 4% (Prime&Bond Active, PBA) to 40% (Ibond Universal, IB) for undiluted adhesives; generally passing to the major dilutions the test showed a strong inhibitory activity by all the adhesives. Whereas with the indirect method by diluting the extracts of all dental adhesives the cell viability increased. The data obtained from the work has shown a lower cytotoxic effect of Optibond Solo Plus (OB) and Adhesive Universal (AU) with more reliable results with the extracts technique. The choice of reliable in vitro cytotoxic technique could represent, in dental practice, an important aid for clinical procedures in the use of adhesive systems.
Collapse
Affiliation(s)
- Stefano Pagano
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Guido Lombardo
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Stefania Balloni
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - Maria Bodo
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Stefano Cianetti
- School of Medicine, Department of Biomedical and Surgical Sciences, Odontostomatological University Centre, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Antonella Barbati
- Department of Biomedical and Surgical Sciences, Section of Obstetrics and Gynecology, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Azadeh Montaseri
- Tissue Engineering Department, Advanced Medical Sciences Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Lorella Marinucci
- Department of Experimental Medicine, Section of Biosciences and Medical Embriology, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| |
Collapse
|
32
|
Modena KCDS, Calvo AM, Sipert CR, Dionísio TJ, Navarro MFDL, Atta MT, Santos CF. Dental Pulp Fibroblasts Response after Stimulation with HEMA and Adhesive System. Braz Dent J 2018; 29:419-426. [PMID: 30517439 DOI: 10.1590/0103-6440201802558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022] Open
Abstract
This study evaluated in vitro cell viability and metabolism, nitric oxide release and production of chemokines by cultured human dental pulp fibroblasts (DPF) under contact with HEMA and Single Bond. Cultures of DPF were established by means of an explant technique. Once plated, cells were kept under contact with increasing concentrations of HEMA (10, 100 and 1000 nM) or Single Bond (SB) [10-fold serially diluted in culture medium (10-4, 10-3 and 10-2 v/v)] and also with polymerized SB components. Cytotoxicity was assessed by Trypan Blue exclusion method and MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Nitric oxide release on cell supernatant was detected by Griess Method whereas chemokines (CXCL12 and CXCL8) were detected by ELISA. RT-qPCR was employed for chemokines gene expression analysis. Cytotoxic tests showed significant differences for SB 10-2. None of the tested materials significantly altered NO levels. Protein levels of CXCL12 were significantly decreased only by HEMA. On the other hand, while CXCL12 mRNA remained unaltered, gene expression of CXCL8 had significant decrease with all materials, except for polymerized SB. In conclusion, Single Bond and HEMA at various concentrations, decreased expression and production of molecules involved in inflammatory processes and, therefore, the use of adhesive systems such as pulp capping materials must be viewed with caution due to its large cytotoxic effect when in close contact with the pulp.
Collapse
Affiliation(s)
- Karin Cristina da Silva Modena
- Department of Restorative Dentistry, Endodontics and Dental Materials, USP - Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Adriana Maria Calvo
- Department of Biological Sciences, Bauru School of Dentistry, USP - Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Carla Renata Sipert
- Department of Restorative Dentistry, School of Dentistry, USP - Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, USP - Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Maria Fidela de Lima Navarro
- Department of Restorative Dentistry, Endodontics and Dental Materials, USP - Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Maria Teresa Atta
- Department of Restorative Dentistry, Endodontics and Dental Materials, USP - Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, USP - Universidade de São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
33
|
Caldas IP, Alves GG, Barbosa IB, Scelza P, de Noronha F, Scelza MZ. In vitro cytotoxicity of dental adhesives: A systematic review. Dent Mater 2018; 35:195-205. [PMID: 30527507 DOI: 10.1016/j.dental.2018.11.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The increased demand for esthetics and minimally invasive tooth restorations resulted in a rapid development of adhesive dentistry. However, much controversy remains about the safe use and cytotoxic effects of different groups of dental adhesives. The present study performed a systematic review to identify the answer to the following question: are self-etch adhesives more cytotoxic than those employing the etch-and-rinse system? METHODS This systematic review was performed in accordance with the PRISMA statement; a quality assessment for in vitro studies was conducted using the ToxRTool. Specific search strategies were developed and performed in the electronic databases MEDLINE via PubMed, Cochrane Library, Scopus, Web of Science, and LILACS/BBO. After removal of duplicated studies and application of the exclusion criteria, ten eligible articles were selected and submitted to a qualitative descriptive analysis comparing both groups of dental adhesives. Most in vitro test systems employed pulp cells or gingival fibroblasts. RESULTS The methodologies presented great variability regarding the exposure to the test materials. Only four studies assessed the role of the degree of conversion of the materials in their toxicity, with conflicting results. SIGNIFICANCE While the lack of methodological standardization among the studies still hinders the establishment of a relationship between type of dental adhesive and toxicity, studies employing dentin barrier systems indicate greater cytotoxicity for etch-and-rinse adhesives.
Collapse
Affiliation(s)
- Isleine Portal Caldas
- Doctoral Program in Dentistry of University Federal Fluminense (UFF), Niteroi, RJ, Brazil
| | - Gutemberg Gomes Alves
- Professor, Molecular and Cell Biology Department, Institute of Biology, University Federal Fluminense (UFF), Niteroi, RJ, Brazil
| | - Igor Bastos Barbosa
- Geriatric Dentistry Department, Faculty of Dentistry of University Federal Fluminense (UFF), Niteroi, RJ, Brazil
| | - Pantaleo Scelza
- Geriatric Dentistry Department, Faculty of Dentistry of University Federal Fluminense (UFF), Niteroi, RJ, Brazil
| | - Fernando de Noronha
- Geriatric Dentistry Department, Faculty of Dentistry of University Federal Fluminense (UFF), Niteroi, RJ, Brazil
| | - Miriam Zaccaro Scelza
- Full Professor, Endodontics and Geriatric Dentistry Department, Laboratory Experimental of Culture Cell (LECCel), Faculty of Dentistry, University Federal Fluminense (UFF), Niteroi, RJ, Brazil.
| |
Collapse
|
34
|
Effects of two disinfection/sterilization methods for dentin specimens on dentin permeability. Clin Oral Investig 2018; 23:899-904. [PMID: 29948279 DOI: 10.1007/s00784-018-2513-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
OBJECTIVES To investigate the effects of two disinfection/sterilization methods on the permeability of dentin specimens. MATERIALS AND METHODS Forty intact human third molars were freshly extracted and cut, close to the pulp chamber, into dentin disks with a 500-μm thickness. The disks were randomized (n = 20 each) into a 70% ethanol group (acid-etched dentin disks soaked in 70% ethanol for 15 min) and a steam autoclaving group (acid-etched dentin disks autoclaved for 25 min). The permeability (Lp) of each dentin disk was measured before and after either treatment using a hydraulic device, and intra- and inter-group differences in values before and after treatment were analyzed using t tests. Field emission scanning electron microscopy (FE-SEM) micrographs of the dentin surface were acquired and examined. FE-SEM samples were prepared using the critical point drying (CPD) method. RESULTS Immersion in 70% ethanol increased the Lp values of dentin specimens by 17%, which was not statistically significant. Steam autoclaving significantly reduced dentin permeability by 66% because the dentin collagen mesh became compact and collapsed, as detected by FE-SEM. CONCLUSIONS The disinfection of acid-etched dentin disks using 70% ethanol for 15 min does not significantly affect dentin permeability, whereas sterilization of acid-etched dentin disks via autoclaving significantly reduces dentin permeability. CLINICAL RELEVANCE Considering the influences of dentin permeability by disinfection/sterilization methods, the disinfection of the acid-etched dentin disks using 70% ethanol for 15 min could be used for the study related to dentin permeability, while the sterilization of autoclaving could not.
Collapse
|
35
|
Hu ML, Lin H, Jiang RD, Dong LM, Huang L, Zheng G. Porous zirconia ceramic as an alternative to dentin for in vitro dentin barriers cytotoxicity test. Clin Oral Investig 2017; 22:2081-2088. [PMID: 29260326 DOI: 10.1007/s00784-017-2302-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This study assessed the potential of porous zirconia ceramic as an alternative to dentin via an in vitro dentin barrier cytotoxicity test. METHODS The permeability of dentin and porous zirconia ceramic was measured using a hydraulic-conductance system, and their permeability was divided into two groups: high and low. Using an in vitro dentin barrier test, the cytotoxicity of dental materials by dentin and porous zirconia ceramic was compared within the same permeability group. The L-929 cell viability was assessed by MTT assay. RESULTS The mean (SD) permeability of the high and low group for dentin was 0.334 (0.0873) and 0.147 (0.0377) μl min-1 cm-2 cm H2O-1 and for zirconia porous ceramic was 0.336 (0.0609) and 0.146 (0.0340) μl min-1 cm-2 cm H2O-1. The cell viability of experimental groups which are the low permeability group was higher than that of the high permeability group for both dentin and porous zirconia ceramic as a barrier except for Maxcem Elite™ by porous zirconia ceramic. There was no significant difference between dentin and porous zirconia ceramic in cell viability, within either the high or low permeability group for all materials. The SD for cell viability of the porous zirconia ceramic was less than that of the dentin, across all materials within each permeability group, except for Maxcem Elite™ in the high permeability group. CONCLUSIONS Porous zirconia ceramic, having similar permeability to dentin at the same thickness, can be used as an alternative to dentin for in vitro dentin barrier cytotoxicity tests. CLINICAL RELEVANCE In vitro dentin barrier cytotoxicity tests when a standardized porous zirconia ceramic was used as a barrier could be useful for assessing the potential toxicity of new dental materials applied to dentin before applying in clinical and may resolve the issue of procuring human teeth when testing proceeds.
Collapse
Affiliation(s)
- Meng-Long Hu
- Dental Medical Devices Testing Center, Dental Materials Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Hong Lin
- Dental Medical Devices Testing Center, Dental Materials Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ruo-Dan Jiang
- Dental Medical Devices Testing Center, Dental Materials Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Li-Min Dong
- Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology of Tsinghua University, Beijing, 102201, China
| | - Lin Huang
- Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology of Tsinghua University, Beijing, 102201, China
| | - Gang Zheng
- Dental Medical Devices Testing Center, Dental Materials Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
36
|
Matin I, Hadzistevic M, Vukelic D, Potran M, Brajlih T. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 146:27-35. [PMID: 28688487 DOI: 10.1016/j.cmpb.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 03/28/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. METHODS The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. RESULTS The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. CONCLUSIONS The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The manufacture of the substructure shows that the proposed ES allows the improvement of the design process while reducing the manufacturing time.
Collapse
Affiliation(s)
- Ivan Matin
- University of Novi Sad, Faculty of Technical Sciences, Department of Production Engineering, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia.
| | - Miodrag Hadzistevic
- University of Novi Sad, Faculty of Technical Sciences, Department of Production Engineering, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Djordje Vukelic
- University of Novi Sad, Faculty of Technical Sciences, Department of Production Engineering, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Michal Potran
- University of Novi Sad, Medical Faculty, Department of Dentistry, Hajduk Veljkova 12, 21000 Novi Sad, Serbia
| | - Tomaz Brajlih
- University of Maribor, Faculty of Mechanical Engineering, Institute for Production Engineering, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|