1
|
Hu L, Zheng C, Kong Y, Luo Z, Huang F, Zhu Z, Li Q, Liang M. Cathepsin G promotes arteriovenous fistula maturation by positively regulating the MMP2/MMP9 pathway. Ren Fail 2024; 46:2316269. [PMID: 38362707 PMCID: PMC10878333 DOI: 10.1080/0886022x.2024.2316269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Arteriovenous fistula (AVF) is currently the preferred vascular access for hemodialysis patients. However, the low maturation rate of AVF severely affects its use in patients. A more comprehensive understanding and study of the mechanisms of AVF maturation is urgently needed. METHODS AND RESULTS In this study, we downloaded the publicly available datasets (GSE119296 and GSE220796) from the Gene Expression Omnibus (GEO) and merged them for subsequent analysis. We screened 84 differentially expressed genes (DEGs) and performed the functional enrichment analysis. Next, we integrated the results obtained from the degree algorithm provided by the Cytohubba plug-in, Molecular complex detection (MCODE) plug-in, weighted gene correlation network analysis (WGCNA), and Least absolute shrinkage and selection operator (LASSO) logistic regression. This integration allowed us to identify CTSG as a hub gene associated with AVF maturation. Through the literature search and Pearson's correlation analysis, the genes matrix metalloproteinase 2 (MMP2) and MMP9 were identified as potential downstream effectors of CTSG. We then collected three immature clinical AVF vein samples and three mature samples and validated the expression of CTSG using immunohistochemistry (IHC) and double-immunofluorescence staining. The IHC results demonstrated a significant decrease in CTSG expression levels in the immature AVF vein samples compared to the mature samples. The results of double-immunofluorescence staining revealed that CTSG was expressed in both the intima and media of AVF veins. Moreover, the expression of CTSG in vascular smooth muscle cells (VSMCs) was significantly higher in the mature samples compared to the immature samples. The results of Masson's trichrome and collagen I IHC staining demonstrated a higher extent of collagen deposition in the media of immature AVF veins compared to the mature. By constructing an in vitro CTSG overexpression model in VSMCs, we found that CTSG upregulated the expression of MMP2 and MMP9 while downregulating the expression of collagen I and collagen III. Furthermore, CTSG was found to inhibit VSMC migration. CONCLUSIONS CTSG may promote AVF maturation by stimulating the secretion of MMP2 and MMP9 from VSMCs and reducing the extent of medial fibrosis in AVF veins by inhibiting the secretion of collagen I and collagen III.
Collapse
Affiliation(s)
- Lemei Hu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, PRChina
- School of Medicine, South China University of Technology, Guangzhou, PRChina
| | - Changqing Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PRChina
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
| | - Ying Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PRChina
| | - Zhiqing Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PRChina
| | - Fengzhang Huang
- Department of Nephrology, Guangzhou First People’s Hospital, Guangzhou, PRChina
| | - Zhigang Zhu
- Department of Geriatrics, Division of Hematology and Oncology, Second Affiliated Hospital, Guangzhou First People’s Hospital, College of Medicine, South China University of Technology, Guangzhou, PRChina
| | - Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, PR China
| | - Ming Liang
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, PRChina
- Department of Nephrology, Guangzhou First People’s Hospital, Guangzhou, PRChina
| |
Collapse
|
2
|
Jia J, Wang Y, Li M, Wang F, Peng Y, Hu J, Li Z, Bian Z, Yang S. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Mol Cancer 2024; 23:200. [PMID: 39277750 PMCID: PMC11401288 DOI: 10.1186/s12943-024-02107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Metastasis has been one of the primary reasons for the high mortality rates associated with tumours in recent years, rendering the treatment of current malignancies challenging and representing a significant cause of recurrence in patients who have undergone surgical tumour resection. Halting tumour metastasis has become an essential goal for achieving favourable prognoses following cancer treatment. In recent years, increasing clarity in understanding the mechanisms underlying metastasis has been achieved. The concept of premetastatic niches has gained widespread acceptance, which posits that tumour cells establish a unique microenvironment at distant sites prior to their migration, facilitating their settlement and growth at those locations. Neutrophils serve as crucial constituents of the premetastatic niche, actively shaping its microenvironmental characteristics, which include immunosuppression, inflammation, angiogenesis and extracellular matrix remodelling. These characteristics are intimately associated with the successful engraftment and subsequent progression of tumour cells. As our understanding of the role and significance of neutrophils in the premetastatic niche deepens, leveraging the presence of neutrophils within the premetastatic niche has gradually attracted the interest of researchers as a potential therapeutic target. The focal point of this review revolves around elucidating the involvement of neutrophils in the formation and shaping of the premetastatic niche (PMN), alongside the introduction of emerging therapeutic approaches aimed at impeding cancer metastasis.
Collapse
Affiliation(s)
- Jiachi Jia
- Zhengzhou University, Zhengzhou, 450000, China
| | - Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengjia Li
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingnan Peng
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhilei Bian
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Cai J, Nielsen MW, Kalogeropoulos K, auf dem Keller U, van der Plas MJ. Peptidomic analysis of endogenous and bacterial protease activity in human plasma and wound fluids. iScience 2024; 27:109005. [PMID: 38333691 PMCID: PMC10850760 DOI: 10.1016/j.isci.2024.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Endogenous and bacterial proteases play important roles in wound healing and infection. Analysis of alterations in the low-molecular-weight peptidome by individual enzymes could therefore provide insight into proteolytic events occurring in wounds and may aid in the discovery of biomarkers. Using liquid chromatography with tandem mass spectrometry, we characterized the peptidome of plasma and acute wound fluids digested ex vivo with human (neutrophil elastase and cathepsin G) and bacterial proteases (Pseudomonas aeruginosa LasB and Staphyloccocus aureus V8). We identified over 100 protein targets for each enzyme and characterized enzyme specific peptides and cleavage patterns. Moreover, we found unique peptide regions in V8 digested samples that were also present in dressing extracts from S. aureus infected wounds. Finally, the work indicates that peptidomic analysis of qualitative differences of proteolytic activity of individual enzymes may aid in the discovery of potential diagnostic biomarkers for wound healing status.
Collapse
Affiliation(s)
- Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Maike W. Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mariena J.A. van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Pineda-Cortel MR, Suarez C, Cabrera JT, Daya M, Bernardo-Bueno MM, Vergara RC, Villavieja A. Biotherapeutic Applications of Platelet-Rich Plasma in Regenerative Medicine. Tissue Eng Regen Med 2023; 20:811-828. [PMID: 37651090 PMCID: PMC10519926 DOI: 10.1007/s13770-023-00560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP), a blood-based product containing platelets and growth factors, is being utilized to treat numerous non-hemostatic disorders. Studies have explored the use of PRP to provide rapid repair, healing, and recovery from various injuries; some studies mentioned the effectiveness of PRP as compared with other forms of treatment like the use of hyaluronic acid. Commercially available PRP systems are available now, and each varies from one another depending on how it is prepared, thus causing variations in platelet concentration and growth factor content. These variations also implicated different therapeutic applications. METHODS The paper reviews the various applications of PRP, including factors to consider before using PRP therapy, and provides an extensive list of PRP applications. RESULTS The administration of PRP as a standalone treatment or as a co-therapy results in observed positive outcomes. However, there is a lack of standardization for PRP preparation, increasing the risks for heterogeneity and bias amongst results. CONCLUSION The use of PRP is indeed an option for regenerative therapy, but more research is needed before it can fully be recommended as a primary treatment modality.
Collapse
Affiliation(s)
- Maria Ruth Pineda-Cortel
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Consuelo Suarez
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Jan-Tyrone Cabrera
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Minerva Daya
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | | | - Renz Cleve Vergara
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Adrian Villavieja
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.
| |
Collapse
|
5
|
Cheng P, He S, Zhang C, Liu J, Pu K. A Tandem-Locked Fluorescent NETosis Reporter for the Prognosis Assessment of Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202301625. [PMID: 37099322 DOI: 10.1002/anie.202301625] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 04/27/2023]
Abstract
NETosis, the peculiar type of neutrophil death, plays important roles in pro-tumorigenic functions and inhibits cancer immunotherapy. Non-invasive real-time imaging is thus imperative for prognosis of cancer immunotherapy yet remains challenging. Herein, we report a Tandem-locked NETosis Reporter 1 (TNR1 ) that activates fluorescence signals only in the presence of both neutrophil elastase (NE) and cathepsin G (CTSG) for the specific imaging of NETosis. In the aspect of molecular design, the sequence of biomarker-specific tandem peptide blocks can largely affect the detection specificity towards NETosis. In live cell imaging, the tandem-locked design allows TNR1 to differentiate NETosis from neutrophil activation, while single-locked reporters fail to do so. The near-infrared signals from activated TNR1 in tumor from living mice were consistent with the intratumoral NETosis levels from histological results. Moreover, the near-infrared signals from activated TNR1 negatively correlated with tumor inhibition effect after immunotherapy, thereby providing prognosis for cancer immunotherapy. Thus, our study not only demonstrates the first sensitive optical reporter for noninvasive monitoring of NETosis levels and evaluation of cancer immunotherapeutic efficacy in tumor-bearing living mice, but also proposes a generic approach for tandem-locked probe design.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore, Singapore
| |
Collapse
|
6
|
Afosah DK, Fayyad RM, Puliafico VR, Merrell S, Langmia EK, Diagne SR, Al-Horani RA, Desai UR. Homogeneous, Synthetic, Non-Saccharide Glycosaminoglycan Mimetics as Potent Inhibitors of Human Cathepsin G. Biomolecules 2023; 13:760. [PMID: 37238630 PMCID: PMC10216581 DOI: 10.3390/biom13050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Cathepsin G (CatG) is a pro-inflammatory neutrophil serine protease that is important for host defense, and has been implicated in several inflammatory disorders. Hence, inhibition of CatG holds much therapeutic potential; however, only a few inhibitors have been identified to date, and none have reached clinical trials. Of these, heparin is a well-known inhibitor of CatG, but its heterogeneity and bleeding risk reduce its clinical potential. We reasoned that synthetic small mimetics of heparin, labeled as non-saccharide glycosaminoglycan mimetics (NSGMs), would exhibit potent CatG inhibition while being devoid of bleeding risks associated with heparin. Hence, we screened a focused library of 30 NSGMs for CatG inhibition using a chromogenic substrate hydrolysis assay and identified nano- to micro-molar inhibitors with varying levels of efficacy. Of these, a structurally-defined, octasulfated di-quercetin NSGM 25 inhibited CatG with a potency of ~50 nM. NSGM 25 binds to CatG in an allosteric site through an approximately equal contribution of ionic and nonionic forces. Octasulfated 25 exhibits no impact on human plasma clotting, suggesting minimal bleeding risk. Considering that octasulfated 25 also potently inhibits two other pro-inflammatory proteases, human neutrophil elastase and human plasmin, the current results imply the possibility of a multi-pronged anti-inflammatory approach in which these proteases are likely to simultaneously likely combat important conditions, e.g., rheumatoid arthritis, emphysema, or cystic fibrosis, with minimal bleeding risk.
Collapse
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rawan M. Fayyad
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Valerie R. Puliafico
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Spencer Merrell
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Eltice K. Langmia
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Sophie R. Diagne
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
7
|
The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int J Mol Sci 2022; 23:ijms231810546. [PMID: 36142454 PMCID: PMC9500641 DOI: 10.3390/ijms231810546] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in extracellular matrix remodeling through the degradation of extracellular matrix components and are also involved in the inflammatory response by regulating the pro-inflammatory cytokines TNF-α and IL-1β. Dysregulation in the inflammatory response and changes in the extracellular matrix by MMPs are related to the development of various diseases including lung and cardiovascular diseases. Therefore, numerous studies have been conducted to understand the role of MMPs in disease pathogenesis. MMPs are involved in the pathogenesis of infectious diseases through a dysregulation of the activity and expression of MMPs. In this review, we discuss the role of MMPs in infectious diseases and inflammatory responses. Furthermore, we present the potential of MMPs as therapeutic targets in infectious diseases.
Collapse
|
8
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
9
|
Interplay between Extracellular Matrix and Neutrophils in Diseases. J Immunol Res 2021; 2021:8243378. [PMID: 34327245 PMCID: PMC8302397 DOI: 10.1155/2021/8243378] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic and complex network structure, which exists in almost all tissues and is the microenvironment that cells rely on for survival. ECM interacts with cells to regulate diverse functions, including differentiation, proliferation, and migration. Neutrophils are the most abundant immune cells in circulation and play key roles in orchestrating a complex series of events during inflammation. Neutrophils can also mediate ECM remodeling by providing specific matrix-remodeling enzymes (such as neutrophil elastase and metalloproteinases), generating neutrophil extracellular traps, and releasing exosomes. In turn, ECM can remodel the inflammatory microenvironment by regulating the function of neutrophils, which drives disease progression. Both the presence of ECM and the interplay between neutrophils and their extracellular matrices are considered an important and outstanding mechanistic aspect of inflammation. In this review, the importance of ECM will be considered, together with the discussion of recent advances in understanding the underlying mechanisms of the intricate interplay between ECM and neutrophils. A better comprehension of immune cell-matrix reciprocal dependence has exciting implications for the development of new therapeutic options for neutrophil-associated infectious and inflammatory diseases.
Collapse
|
10
|
Garreto L, Charneau S, Mandacaru SC, Nóbrega OT, Motta FN, de Araújo CN, Tonet AC, Modesto FMB, Paula LM, de Sousa MV, Santana JM, Acevedo AC, Bastos IMD. Mapping Salivary Proteases in Sjögren's Syndrome Patients Reveals Overexpression of Dipeptidyl Peptidase-4/CD26. Front Immunol 2021; 12:686480. [PMID: 34220840 PMCID: PMC8247581 DOI: 10.3389/fimmu.2021.686480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune exocrinopathy characterized by the progressive damage of salivary and lacrimal glands associated with lymphocytic infiltration. Identifying new non-invasive biomarkers for SS diagnosis remains a challenge, and alterations in saliva composition reported in patients turn this fluid into a source of potential biomarkers. Among these, proteases are promising candidates since they are involved in several key physio-pathological processes. This study evaluated differentially expressed proteases in SS individuals' saliva using synthetic fluorogenic substrates, zymography, ELISA, and proteomic approaches. Here we reported, for the first time, increased activity of the serine protease dipeptidyl peptidase-4/CD26 (DPP4/CD26) in pSS saliva, the expression level of which was corroborated by ELISA assay. Gelatin zymograms showed that metalloproteinase proteolytic band profiles differed significantly in intensity between control and SS groups. Focusing on matrix metalloproteinase-9 (MMP9) expression, an increased tendency in pSS saliva (p = 0.0527) was observed compared to the control group. Samples of control, pSS, and sSS were analyzed by mass spectrometry to reveal a general panorama of proteases in saliva. Forty-eight protein groups of proteases were identified, among which were the serine proteases cathepsin G (CTSG), neutrophil elastase (ELANE), myeloblastin (PRTN3), MMP9 and several protease inhibitors. This work paves the way for proteases to be explored in the future as biomarkers, emphasizing DPP4 by its association in several autoimmune and inflammatory diseases. Besides its proteolytic role, DPP4/CD26 acts as a cell surface receptor, signal transduction mediator, adhesion and costimulatory protein involved in T lymphocytes activation.
Collapse
Affiliation(s)
- Laís Garreto
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | | | - Flávia N. Motta
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - Carla N. de Araújo
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - Audrey C. Tonet
- Laboratory of Immune Gerontology, Catholic University of Brasília, Brasília, Brazil
| | | | - Lilian M. Paula
- Laboratory of Oral Histopathology, Department of Odontology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Jaime M. Santana
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Department of Odontology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Izabela M. D. Bastos
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| |
Collapse
|
11
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
12
|
Rosa BA, Ahmed M, Singh DK, Choreño-Parra JA, Cole J, Jiménez-Álvarez LA, Rodríguez-Reyna TS, Singh B, Gonzalez O, Carrion R, Schlesinger LS, Martin J, Zúñiga J, Mitreva M, Kaushal D, Khader SA. IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. Commun Biol 2021; 4:290. [PMID: 33674719 PMCID: PMC7935909 DOI: 10.1038/s42003-021-01829-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
SARS-CoV-2 virus has infected more than 92 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Using a rhesus macaque model of SARS-CoV-2 infection, we have characterized the transcriptional signatures induced in the lungs of juvenile and old macaques following infection. Genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated, as also seen in lungs of macaques with tuberculosis. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. Together, our transcriptomic studies have delineated disease pathways that improve our understanding of the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olga Gonzalez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ricardo Carrion
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John Martin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Makedonka Mitreva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Akgun E, Tuzuner MB, Sahin B, Kilercik M, Kulah C, Cakiroglu HN, Serteser M, Unsal I, Baykal AT. Proteins associated with neutrophil degranulation are upregulated in nasopharyngeal swabs from SARS-CoV-2 patients. PLoS One 2020; 15:e0240012. [PMID: 33079950 PMCID: PMC7575075 DOI: 10.1371/journal.pone.0240012] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appeared throughout the World and currently affected more than 9 million people and caused the death of around 470,000 patients. The novel strain of the coronavirus disease is transmittable at a devastating rate with a high rate of severe hospitalization even more so for the elderly population. Naso-oro-pharyngeal swab samples as the first step towards detecting suspected infection of SARS-CoV-2 provides a non-invasive method for PCR testing at a high confidence rate. Furthermore, proteomics analysis of PCR positive and negative naso-oropharyngeal samples provides information on the molecular level which highlights disease pathology. Samples from 15 PCR positive cases and 15 PCR negative cases were analyzed with nanoLC-MS/MS to identify the differentially expressed proteins. Proteomic analyses identified 207 proteins across the sample set and 17 of them were statistically significant. Protein-protein interaction analyses emphasized pathways like Neutrophil degranulation, Innate Immune System, Antimicrobial Peptides. Neutrophil Elastase (ELANE), Azurocidin (AZU1), Myeloperoxidase (MPO), Myeloblastin (PRTN3), Cathepsin G (CTSG) and Transcobalamine-1 (TCN1) were found to be significantly altered in naso-oropharyngeal samples of SARS-CoV-2 patients. The identified proteins are linked to alteration in the innate immune system specifically via neutrophil degranulation and NETosis.
Collapse
Affiliation(s)
- Emel Akgun
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem University, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | | | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Meltem Kilercik
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem University, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Canan Kulah
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | | | - Mustafa Serteser
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem University, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ibrahim Unsal
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem University, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| |
Collapse
|
14
|
Rosa BA, Ahmed M, Singh DK, Choreño-Parra JA, Cole J, Jiménez-Álvarez LA, Rodríguez-Reyna TS, Singh B, Gonzalez O, Carrion R, Schlesinger LS, Martin J, Zúñiga J, Mitreva M, Khader SA, Kaushal D. IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32793903 PMCID: PMC7418717 DOI: 10.1101/2020.08.06.239798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The novel virus SARS-CoV-2 has infected more than 14 million people worldwide resulting in the Coronavirus disease 2019 (COVID-19). Limited information on the underlying immune mechanisms that drive disease or protection during COVID-19 severely hamper development of therapeutics and vaccines. Thus, the establishment of relevant animal models that mimic the pathobiology of the disease is urgent. Rhesus macaques infected with SARS-CoV-2 exhibit disease pathobiology similar to human COVID-19, thus serving as a relevant animal model. In the current study, we have characterized the transcriptional signatures induced in the lungs of juvenile and old rhesus macaques following SARS-CoV-2 infection. We show that genes associated with Interferon (IFN) signaling, neutrophil degranulation and innate immune pathways are significantly induced in macaque infected lungs, while pathways associated with collagen formation are downregulated. In COVID-19, increasing age is a significant risk factor for poor prognosis and increased mortality. We demonstrate that Type I IFN and Notch signaling pathways are significantly upregulated in lungs of juvenile infected macaques when compared with old infected macaques. These results are corroborated with increased peripheral neutrophil counts and neutrophil lymphocyte ratio in older individuals with COVID-19 disease. In contrast, pathways involving VEGF are downregulated in lungs of old infected macaques. Using samples from humans with SARS-CoV-2 infection and COVID-19, we validate a subset of our findings. Finally, neutrophil degranulation, innate immune system and IFN gamma signaling pathways are upregulated in both tuberculosis and COVID-19, two pulmonary diseases where neutrophils are associated with increased severity. Together, our transcriptomic studies have delineated disease pathways to improve our understanding of the immunopathogenesis of COVID-19 to facilitate the design of new therapeutics for COVID-19.
Collapse
Affiliation(s)
- Bruce A Rosa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - José Alberto Choreño-Parra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Olga Gonzalez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Ricardo Carrion
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| | - John Martin
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Joaquín Zúñiga
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Makedonka Mitreva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245
| |
Collapse
|
15
|
Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells 2020; 9:cells9071679. [PMID: 32668602 PMCID: PMC7407943 DOI: 10.3390/cells9071679] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cathepsins are the most abundant lysosomal proteases that are mainly found in acidic endo/lysosomal compartments where they play a vital role in intracellular protein degradation, energy metabolism, and immune responses among a host of other functions. The discovery that cathepsins are secreted and remain functionally active outside of the lysosome has caused a paradigm shift. Contemporary research has unraveled many versatile functions of cathepsins in extralysosomal locations including cytosol and extracellular space. Nevertheless, extracellular cathepsins are majorly upregulated in pathological states and are implicated in a wide range of diseases including cancer and cardiovascular diseases. Taking advantage of the differential expression of the cathepsins during pathological conditions, much research is focused on using cathepsins as diagnostic markers and therapeutic targets. A tailored therapeutic approach using selective cathepsin inhibitors is constantly emerging to be safe and efficient. Moreover, recent development of proteomic-based approaches for the identification of novel physiological substrates offers a major opportunity to understand the mechanism of cathepsin action. In this review, we summarize the available evidence regarding the role of cathepsins in health and disease, discuss their potential as biomarkers of disease progression, and shed light on the potential of extracellular cathepsin inhibitors as safe therapeutic tools.
Collapse
|
16
|
Zamolodchikova TS, Tolpygo SM, Svirshchevskaya EV. Cathepsin G-Not Only Inflammation: The Immune Protease Can Regulate Normal Physiological Processes. Front Immunol 2020; 11:411. [PMID: 32194574 PMCID: PMC7062962 DOI: 10.3389/fimmu.2020.00411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tatyana S Zamolodchikova
- Physiology of Motivation Laboratory, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Svetlana M Tolpygo
- Physiology of Motivation Laboratory, P. K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Elena V Svirshchevskaya
- Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
17
|
The N125S polymorphism in the cathepsin G gene (rs45567233) is associated with susceptibility to osteomyelitis in a Spanish population. PLoS One 2019; 14:e0220022. [PMID: 31647805 PMCID: PMC6812796 DOI: 10.1371/journal.pone.0220022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/06/2019] [Indexed: 11/19/2022] Open
Abstract
Background Osteomyelitis is a bone infection, most often caused by Staphylococcus aureus, in which neutrophils play a key role. Cathepsin G (CTSG) is a bactericidal serine protease stored in the neutrophil azurophilic granules. CTSG regulates inflammation, activating matrix metalloproteinases (MMPs), and coagulation. Lactoferrin (LF), a neutrophil glycoprotein, increases CTSG catalytic activity and induces inflammation. The aim of this study was to analyze a potential association between a CTSG gene polymorphism (Asn125Ser or N125S, rs45567233), that modifies CTSG activity, and could affect susceptibility to, or outcome of, bacterial osteomyelitis. Methods CTSG N125S polymorphism was genotyped in 329 osteomyelitis patients and 415 controls), Blood coagulation parameters, serum CTSG activity, LF, MMP-1, MMP-13, and soluble receptor activator for nuclear factor κ B ligand (sRANKL) levels were assessed in carriers of the different CTSG genotypes. Results CTSG N125S (AG) genotype was significantly more frequent among osteomyelitis patients than controls (15.5% vs. 9.4%, p = 0.014). CTSG N125S variant G allele (AG +GG) was also more frequent among osteomyelitis patients (8.1% vs. 4.7%, p = 0.01). Serum CTSG activity and LF levels were significantly higher in osteomyelitis patients carrying the G allele compared to those with the AA genotype, (p<0.04). Serum MMP-1 was lower in the G allele carriers (p = 0.01). There was no association between these genotypes and clinical characteristics of osteomyelitis, or coagulation parameters, MMP-13, and sRANKL serum levels. Conclusions Differences in the CTSG gene might enhance osteomyelitis susceptibility by increasing CTSG activity and LF levels.
Collapse
|
18
|
Kusumaningrum N, Oh JH, Lee DH, Shin CY, Jang JH, Kim YK, Chung JH. Topical treatment with a cathepsin G inhibitor, β-keto-phosphonic acid, blocks ultraviolet irradiation-induced basement membrane damage in hairless mouse skin. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:148-156. [PMID: 30414203 DOI: 10.1111/phpp.12438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ultraviolet light (UV) exposure contributes various effects to skin including damage of the basement membrane. Cathepsin G (CTSG) belongs to serine protease family, and its upregulation is involved in wrinkle formation by chronic UV irradiation. However, the effect of CTSG on the basement membrane damage in skin remains unclear. PURPOSE To investigate the effects of topical treatment with a CTSG inhibitor, β-keto-phosphonic acid (KPA), on basement membrane damage in chronically UV-irradiated hairless mouse skin. METHODS The dorsal skin of hairless mice was exposed to UV three times per week for 8 weeks. KPA was applied immediately after each session of UV irradiation. The basement membrane components, CTSG expression, and neutrophil infiltration were analyzed by immunofluorescence staining. The basement membrane structures were visualized by transmission electron microscope. CTSG and MMP-13 protein levels were analyzed by Western blotting. Assessment of wrinkle formation was examined using a skin replica assay. RESULTS β-keto-phosphonic acid prevented UV irradiation-induced decrease in type VII collagen, laminin 332, and perlecan at the basement membrane zone and prevented UV-induced breakage of lamina densa and UV-induced shortening of hemidesmosome. KPA prevented UV-induced CTSG and MMP-13 expressions in chronically UV-irradiated hairless mice. Increase in neutrophil infiltration by UV irradiation and UV-induced wrinkle formation was also prevented by KPA. CONCLUSION Our present study showed the possible involvement of CTSG in UV-induced basement membrane damage in skin through topical treatment with a CTSG inhibitor, KPA. Thus, inhibition of CTSG may be a useful strategy for the prevention of UV-induced basement membrane damage and photoaging.
Collapse
Affiliation(s)
- Novi Kusumaningrum
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Dong Hun Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Chang-Yup Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jee-Hee Jang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Yeon Kyung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Institute on Aging, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Jun HK, Jung YJ, Ji S, An SJ, Choi BK. Caspase-4 activation by a bacterial surface protein is mediated by cathepsin G in human gingival fibroblasts. Cell Death Differ 2017; 25:380-391. [PMID: 29077095 DOI: 10.1038/cdd.2017.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/22/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022] Open
Abstract
Caspase-4 is an inflammatory caspase; however, its mechanism of activation is poorly understood. In this study, we demonstrate that Td92, a surface protein of the periodontal pathogen Treponema denticola and a homolog of the Treponema pallidum surface protein Tp92, activates caspase-4 and induces pyroptosis in primary cultured human gingival fibroblasts (HGFs) via cathepsin G activation. Cathepsin G inhibition or siRNA knockdown of cathepsin G inhibited Td92-induced caspase-4 activation and cell death. Td92-induced cell death was significantly inhibited by siRNA knockdown of gasdermin D. Td92 treatment resulted in the binding of cathepsin G to caspase-4 and the coaggregation of these two molecules. In addition, Td92 induced IL-1α expression and secretion, and this was inhibited by caspase-4 knockdown. Cytochalasin D did not block Td92-induced caspase-4 activation, suggesting that Td92 internalization is not required for caspase-4 activation. Our results demonstrate that cathepsin G is directly engaged in caspase-4 activation by a bacterial ligand, which is responsible for cell death and IL-1α secretion in HGFs.
Collapse
Affiliation(s)
- Hye-Kyoung Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Young-Jung Jung
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Suk Ji
- Department of Periodontology, Ajou University Hospital, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Sun-Jin An
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.,Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
20
|
Kim JE, Song D, Kim J, Choi J, Kim JR, Yoon HS, Bae JS, Han M, Lee S, Hong JS, Song D, Kim SJ, Son MJ, Choi SW, Chung JH, Kim TA, Lee KW. Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin. J Invest Dermatol 2016; 136:1012-1021. [DOI: 10.1016/j.jid.2015.11.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 11/30/2022]
|
21
|
Wang J, Sjöberg S, Tang TT, Oörni K, Wu W, Liu C, Secco B, Tia V, Sukhova GK, Fernandes C, Lesner A, Kovanen PT, Libby P, Cheng X, Shi GP. Cathepsin G activity lowers plasma LDL and reduces atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2174-83. [PMID: 25092171 DOI: 10.1016/j.bbadis.2014.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Cathepsin G (CatG), a serine protease present in mast cells and neutrophils, can produce angiotensin-II (Ang-II) and degrade elastin. Here we demonstrate increased CatG expression in smooth muscle cells (SMCs), endothelial cells (ECs), macrophages, and T cells from human atherosclerotic lesions. In low-density lipoprotein (LDL) receptor-deficient (Ldlr(-/-)) mice, the absence of CatG reduces arterial wall elastin degradation and attenuates early atherosclerosis when mice consume a Western diet for 3months. When mice consume this diet for 6months, however, CatG deficiency exacerbates atherosclerosis in aortic arch without affecting lesion inflammatory cell content or extracellular matrix accumulation, but raises plasma total cholesterol and LDL levels without affecting high-density lipoprotein (HDL) or triglyceride levels. Patients with atherosclerosis also have significantly reduced plasma CatG levels that correlate inversely with total cholesterol (r=-0.535, P<0.0001) and LDL cholesterol (r=-0.559, P<0.0001), but not with HDL cholesterol (P=0.901) or triglycerides (P=0.186). Such inverse correlations with total cholesterol (r=-0.504, P<0.0001) and LDL cholesterol (r=-0.502, P<0.0001) remain significant after adjusting for lipid lowering treatments among this patient population. Human CatG degrades purified human LDL, but not HDL. This study suggests that CatG promotes early atherogenesis through its elastinolytic activity, but suppresses late progression of atherosclerosis by degrading LDL without affecting HDL or triglycerides.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sara Sjöberg
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ting-Ting Tang
- Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Katariina Oörni
- Wihuri Research Institute, Biomedicum Helsinki 1, 00290 Helsinki, Finland
| | - Wenxue Wu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Conglin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Blandine Secco
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Viviane Tia
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cleverson Fernandes
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Adam Lesner
- Department of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, 00290 Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiang Cheng
- Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Wang J, Sukhova GK, Liu J, Ozaki K, Lesner A, Libby P, Kovanen PT, Shi GP. Cathepsin G deficiency reduces periaortic calcium chloride injury-induced abdominal aortic aneurysms in mice. J Vasc Surg 2014; 62:1615-24. [PMID: 25037606 DOI: 10.1016/j.jvs.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/10/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cathepsin G (CatG) is a serine protease that mediates angiotensin I to angiotensin II (Ang-II) conversion and is highly expressed in human abdominal aortic aneurysms (AAAs). However, it remains untested whether this protease participates in the pathogenesis of AAA. METHODS AND RESULTS Immunofluorescent double staining demonstrated the expression of CatG in smooth muscle cells (SMCs), macrophages, and endothelial cells in human AAA lesions (n = 12) but not in AAA-free aortas (n = 10). Whereas inflammatory cytokines induced CatG expression, high glucose concentration increased CatG activity in producing Ang-II and angiotensin-converting enzyme in SMCs, which could be fully blocked by a CatG-selective inhibitor or its small interfering RNA. To test whether CatG contributes to AAA development, we generated CatG and low-density lipoprotein receptor double deficient (Ldlr(-/-)Ctsg(-/-)) mice and their littermate controls (Ldlr(-/-)Ctsg(+/+)). Absence of CatG did not affect Ang-II infusion-induced AAAs. In contrast, in Ang-II-independent AAAs induced by periaortic CaCl2 injury (n = 12 per group), CatG deficiency significantly reduced aortic diameter increase (58.33% ± 6.83% vs 31.67% ± 5.75%; P = .007), aortic lesion area (0.35 ± 0.04 mm(2) vs 0.21 ± 0.02 mm(2); P = .005), and aortic wall elastin fragmentation grade (2.75 ± 0.18 vs 1.58 ± 0.17; P = .002) along with reduced lesion collagen content grade (2.80 ± 0.17 vs 2.12 ± 0.17; P = .009) without affecting indices of lesion inflammation, angiogenesis, cell proliferation, or apoptosis. In vitro elastin degradation assays demonstrated that CaCl2-induced AAA lesions from Ldlr(-/-)Ctsg(-/-) mice contained much lower elastinolytic activity than in those from littermate control mice. Gelatin gel zymogram assay suggested that absence of CatG in CaCl2-induced AAA lesions also reduced the activity of elastinolytic matrix metalloproteinases 2 and 9. CONCLUSIONS CatG may contribute to CaCl2-induced experimental AAAs directly through its elastinolytic activity and indirectly by regulating lesion matrix metalloproteinases 2 and 9 activities. Increased expression of CatG in vascular and inflammatory cells of human AAAs and its increased activity in producing Ang-II and angiotensin-converting enzyme by SMCs suggest an additional mechanism by which CatG contributes to AAA lesion progression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jian Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Keith Ozaki
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Adam Lesner
- Department of Chemistry, University of Gdansk, Gdansk, Poland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, Helsinki, Finland
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
23
|
Kim EY, Song HY, Kim JC, Yoon YS, Ye BD, Nam DH, Shin SJ. Mmp-9 expression after metallic stent placement in patients with colorectal cancer: association with in-stent restenosis. Radiology 2014; 271:901-8. [PMID: 24475847 DOI: 10.1148/radiol.13121794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To verify the expression of matrix metalloproteinase (MMP)-9 in stent-induced hyperplastic tissue from patients with colorectal cancer who received colorectal stents as a bridge to surgery. MATERIALS AND METHODS This prospective study was institutional review board-approved, and informed consent was obtained from all patients. Eleven patients (nine men, two women; mean age, 67 years; age range, 53-82 years) with malignant colorectal obstructions who received a colorectal stent between May and December 2010 were included. Tissue specimens were analyzed for MMP-9 and MMP-2 expression. After resection, the tissue was segmented into three parts: tumor tissue, stent-induced tissue hyperplasia, and normal colon tissue. MMP-9 and MMP-2 expression were determined by using zymography, Western blot analysis, and real-time reverse-transcription (qRT) polymerase chain reaction (PCR). Significance of differences between groups was evaluated with Friedman analysis of variance test. Signed-rank test was used to determine differences between malignant tumor tissue and stent-induced hyperplastic tissue groups. RESULTS Stent placement was technically successful in all 11 patients. Stent-induced hyperplastic tissues were found in all patients. Zymography (P = .003) and Western blot analysis (P = .008) showed that expression of MMP-9 was higher in malignant tumor tissue and stent-induced hyperplastic tissue groups compared with normal colorectal tissue group, demonstrating significant differences between groups but no significant differences between malignant tumor and stent-induced hyperplastic tissues. As for results of qRT PCR analysis, the stent-induced hyperplastic tissue group showed increases in messenger RNA expression level of MMP-9 compared with the malignant tumor tissue group (50.42-fold ± 66.30 higher). CONCLUSION High expression of MMP-9 is closely associated with stent-induced colorectal tissue hyperplasia in patients with colorectal cancer.
Collapse
Affiliation(s)
- Eun-Young Kim
- From the Medical Device Development Center, Osong Medical Innovation Foundation, Cheongwon-gun, Chungbuk, Korea (E.Y.K.); Departments of Radiology and Research Institute of Radiology (H.Y.S.), Surgery (J.C.K., Y.S.Y.), and Gastroenterology (B.D.Y.), University of Ulsan College of Medicine, Asan Medical Center, Asanbyeongwon-gil, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736, Korea; Department of Radiology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Republic of Korea (D.H.N.); and Department of Pathology, Asan Medical Center, Seoul, Korea (S.J.S.)
| | | | | | | | | | | | | |
Collapse
|
24
|
Cathepsins: a new culprit behind abdominal aortic aneurysm. Regen Med Res 2013; 1:5. [PMID: 25984324 PMCID: PMC4431531 DOI: 10.1186/2050-490x-1-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/19/2013] [Indexed: 01/17/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a fatal disease defined as an abdominal aortic diameter of 3.0 cm or more, where the abdominal aorta exceeds the normal diameter by more than 50%. Histopathological changes of AAA mainly include extracellular matrix (ECM) remodeling at the abdominal aorta wall, but there is lack of specific drugs to treat AAA. Recent studies have reported that lysosomal cathepsins could induce vascular remodeling and AAA formation by regulating vascular inflammation, medial smooth muscle cell apoptosis, neovascularization, and protease expression. Thus, cathepsins are expected to become a new therapeutic target for AAA treatment.
Collapse
|
25
|
Son E, Shim J, Choi H, Kim H, Lim K, Chung J, Byun S, Lee T. Cathepsin G Inhibitor Prevents Ultraviolet B- Induced Photoaging in Hairless Mice via Inhibition of Fibronectin Fragmentation. Dermatology 2012; 224:352-60. [DOI: 10.1159/000339337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
|
26
|
Shin JH, Sung KB, Kim EY, Shin DH, Song HY. A Rat Tracheal Model to Investigate Stent-induced Tissue Hyperplasia: A Pilot Study. J Vasc Interv Radiol 2010; 21:1878-83. [DOI: 10.1016/j.jvir.2010.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 08/08/2010] [Accepted: 09/01/2010] [Indexed: 11/28/2022] Open
|