1
|
Favarin A, Becker G, Brum ES, Serafini PT, Marquezin LP, Brusco I, Oliveira SM. Topical diosmetin attenuates nociception and inflammation in a ultraviolet B radiation-induced sunburn model in mice. Inflammopharmacology 2024; 32:2295-2304. [PMID: 38907857 DOI: 10.1007/s10787-024-01507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Burns are a global health problem and can be caused by several factors, including ultraviolet (UV) radiation. Exposure to UVB radiation can cause sunburn and a consequent inflammatory response characterised by pain, oedema, inflammatory cell infiltration, and erythema. Pharmacological treatments available to treat burns and the pain caused by them include nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, antimicrobials and glucocorticoids, which are associated with adverse effects. Therefore, the search for new therapeutic alternatives is needed. Diosmetin, an aglycone of the flavonoid diosmin, has antinociceptive, antioxidant and anti-inflammatory properties. Thus, we evaluated the antinociceptive and anti-inflammatory effects of topical diosmetin (0.01, 0.1 and 1%) in a UVB radiation-induced sunburn model in mice. The right hind paw of the anaesthetised mice was exposed only once to UVB radiation (0.75 J/cm2) and immediately treated with diosmetin once a day for 5 days. The diosmetin antinociceptive effect was evaluated by mechanical allodynia and pain affective-motivational behaviour, while its anti-inflammatory activity was assessed by measuring paw oedema and polymorphonuclear cell infiltration. Mice exposed to UVB radiation presented mechanical allodynia, increased pain affective-motivational behaviour, paw oedema and polymorphonuclear cell infiltration into the paw tissue. Topical Pemulen® TR2 1% diosmetin reduced the mechanical allodynia, the pain affective-motivational behaviour, the paw oedema and the number of polymorphonuclear cells in the mice's paw tissue similar to that presented by Pemulen® TR2 0.1% dexamethasone. These findings indicate that diosmetin has therapeutic potential and may be a promising strategy for treating patients experiencing inflammatory pain, especially those associated with sunburn.
Collapse
Affiliation(s)
- Amanda Favarin
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Patrick Tuzi Serafini
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lara Panazzolo Marquezin
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Indiara Brusco
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Environmental Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Sara Marchesan Oliveira
- Laboratory of Neurotoxicity and Psychopharmacology - Pain Research Group, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Qu Y, Sun X, Wei N, Wang K. Inhibition of cutaneous heat-sensitive Ca 2+ -permeable transient receptor potential vanilloid 3 channels alleviates UVB-induced skin lesions in mice. FASEB J 2023; 37:e23309. [PMID: 37983944 DOI: 10.1096/fj.202301591rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet B (UVB) radiation causes skin injury by trigging excessive calcium influx and signaling cascades in the skin keratinocytes. The heat-sensitive Ca2+ -permeable transient receptor potential vanilloid 3 (TRPV3) channels robustly expressed in the keratinocytes play an important role in skin barrier formation and wound healing. Here, we report that inhibition of cutaneous TRPV3 alleviates UVB radiation-induced skin lesions. In mouse models of ear swelling and dorsal skin injury induced by a single exposure of weak UVB radiation, TRPV3 genes and proteins were upregulated in quantitative real-time PCR and Western blot assays. In accompany with TRPV3 upregulations, the expressions of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were also increased. Knockout of the TRPV3 gene alleviates UVB-induced ear swelling and dorsal skin inflammation. Furthermore, topical applications of two selective TRPV3 inhibitors, osthole and verbascoside, resulted in a dose-dependent attenuation of skin inflammation and lesions. Taken together, our findings demonstrate the causative role of overactive TRPV3 channel function in the development of UVB-induced skin injury. Therefore, topical inhibition of TRPV3 may hold potential therapy or prevention of UVB radiation-induced skin injury.
Collapse
Affiliation(s)
- Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Gatmaitan JG, Lee JH. Challenges and Future Trends in Atopic Dermatitis. Int J Mol Sci 2023; 24:11380. [PMID: 37511138 PMCID: PMC10380015 DOI: 10.3390/ijms241411380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis represents a complex and multidimensional interaction that represents potential fields of preventive and therapeutic management. In addition to the treatment armamentarium available for atopic dermatitis, novel drugs targeting significant molecular pathways in atopic dermatitis biologics and small molecules are also being developed given the condition's complex pathophysiology. While most of the patients are expecting better efficacy and long-term control, the response to these drugs would still depend on numerous factors such as complex genotype, diverse environmental triggers and microbiome-derived signals, and, most importantly, dynamic immune responses. This review article highlights the challenges and the recently developed pharmacological agents in atopic dermatitis based on the molecular pathogenesis of this condition, creating a specific therapeutic approach toward a more personalized medicine.
Collapse
Affiliation(s)
- Julius Garcia Gatmaitan
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Gatmaitan Medical and Skin Center, Baliuag 3006, Bulacan, Philippines
- Skines Aesthetic and Laser Center, Quezon City 1104, Metro Manila, Philippines
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 2021; 21:41-59. [PMID: 34526696 PMCID: PMC8442523 DOI: 10.1038/s41573-021-00268-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are multifunctional signalling molecules with many roles in sensory perception and cellular physiology. Therefore, it is not surprising that TRP channels have been implicated in numerous diseases, including hereditary disorders caused by defects in genes encoding TRP channels (TRP channelopathies). Most TRP channels are located at the cell surface, which makes them generally accessible drug targets. Early drug discovery efforts to target TRP channels focused on pain, but as our knowledge of TRP channels and their role in health and disease has grown, these efforts have expanded into new clinical indications, ranging from respiratory disorders through neurological and psychiatric diseases to diabetes and cancer. In this Review, we discuss recent findings in TRP channel structural biology that can affect both drug development and clinical indications. We also discuss the clinical promise of novel TRP channel modulators, aimed at both established and emerging targets. Last, we address the challenges that these compounds may face in clinical practice, including the need for carefully targeted approaches to minimize potential side-effects due to the multifunctional roles of TRP channels.
Collapse
|
6
|
Burns and biofilms: priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021; 7:73. [PMID: 34504100 PMCID: PMC8429633 DOI: 10.1038/s41522-021-00243-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023] Open
Abstract
Burn wounds can create significant damage to human skin, compromising one of the key barriers to infection. The leading cause of death among burn wound patients is infection. Even in the patients that survive, infections can be notoriously difficult to treat and can cause lasting damage, with delayed healing and prolonged hospital stays. Biofilm formation in the burn wound site is a major contributing factor to the failure of burn treatment regimens and mortality as a result of burn wound infection. Bacteria forming a biofilm or a bacterial community encased in a polysaccharide matrix are more resistant to disinfection, the rigors of the host immune system, and critically, more tolerant to antibiotics. Burn wound-associated biofilms are also thought to act as a launchpad for bacteria to establish deeper, systemic infection and ultimately bacteremia and sepsis. In this review, we discuss some of the leading burn wound pathogens and outline how they regulate biofilm formation in the burn wound microenvironment. We also discuss the new and emerging models that are available to study burn wound biofilm formation in vivo.
Collapse
|
7
|
Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics 2021; 13:pharmaceutics13040450. [PMID: 33810493 PMCID: PMC8067282 DOI: 10.3390/pharmaceutics13040450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain in humans results from an injury or disease of the somatosensory nervous system at the peripheral or central level. Despite the considerable progress in pain management methods made to date, peripheral neuropathic pain significantly impacts patients' quality of life, as pharmacological and non-pharmacological methods often fail or induce side effects. Topical treatments are gaining popularity in the management of peripheral neuropathic pain, due to excellent safety profiles and preferences. Moreover, topical treatments applied locally may target the underlying mechanisms of peripheral sensitization and pain. Recent studies showed that peripheral sensitization results from interactions between neuronal and non-neuronal cells, with numerous signaling molecules and molecular/cellular targets involved. This narrative review discusses the molecular/cellular mechanisms of drugs available in topical formulations utilized in clinical practice and their effectiveness in clinical studies in patients with peripheral neuropathic pain. We searched PubMed for papers published from 1 January 1995 to 30 November 2020. The key search phrases for identifying potentially relevant articles were "topical AND pain", "topical AND neuropathic", "topical AND treatment", "topical AND mechanism", "peripheral neuropathic", and "mechanism". The result of our search was 23 randomized controlled trials (RCT), 9 open-label studies, 16 retrospective studies, 20 case (series) reports, 8 systematic reviews, 66 narrative reviews, and 140 experimental studies. The data from preclinical studies revealed that active compounds of topical treatments exert multiple mechanisms of action, directly or indirectly modulating ion channels, receptors, proteins, and enzymes expressed by neuronal and non-neuronal cells, and thus contributing to antinociception. However, which mechanisms and the extent to which the mechanisms contribute to pain relief observed in humans remain unclear. The evidence from RCTs and reviews supports 5% lidocaine patches, 8% capsaicin patches, and botulinum toxin A injections as effective treatments in patients with peripheral neuropathic pain. In turn, single RCTs support evidence of doxepin, funapide, diclofenac, baclofen, clonidine, loperamide, and cannabidiol in neuropathic pain states. Topical administration of phenytoin, ambroxol, and prazosin is supported by observational clinical studies. For topical amitriptyline, menthol, and gabapentin, evidence comes from case reports and case series. For topical ketamine and baclofen, data supporting their effectiveness are provided by both single RCTs and case series. The discussed data from clinical studies and observations support the usefulness of topical treatments in neuropathic pain management. This review may help clinicians in making decisions regarding whether and which topical treatment may be a beneficial option, particularly in frail patients not tolerating systemic pharmacotherapy.
Collapse
|
8
|
Peripheral Mechanisms of Neuropathic Pain-the Role of Neuronal and Non-Neuronal Interactions and Their Implications for Topical Treatment of Neuropathic Pain. Pharmaceuticals (Basel) 2021; 14:ph14020077. [PMID: 33498496 PMCID: PMC7909513 DOI: 10.3390/ph14020077] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain in humans arises as a consequence of injury or disease of somatosensory nervous system at peripheral or central level. Peripheral neuropathic pain is more common than central neuropathic pain, and is supposed to result from peripheral mechanisms, following nerve injury. The animal models of neuropathic pain show extensive functional and structural changes occurring in neuronal and non-neuronal cells in response to peripheral nerve injury. These pathological changes following damage lead to peripheral sensitization development, and subsequently to central sensitization initiation with spinal and supraspinal mechanism involved. The aim of this narrative review paper is to discuss the mechanisms engaged in peripheral neuropathic pain generation and maintenance, with special focus on the role of glial, immune, and epithelial cells in peripheral nociception. Based on the preclinical and clinical studies, interactions between neuronal and non-neuronal cells have been described, pointing out at the molecular/cellular underlying mechanisms of neuropathic pain, which might be potentially targeted by topical treatments in clinical practice. The modulation of the complex neuro-immuno-cutaneous interactions in the periphery represents a strategy for the development of new topical analgesics and their utilization in clinical settings.
Collapse
|
9
|
Camponogara C, Brum ES, Pegoraro NS, Brusco I, Rocha FG, Brandenburg MM, Cabrini DA, André E, Trevisan G, Oliveira SM. Neuronal and non-neuronal transient receptor potential ankyrin 1 mediates UVB radiation-induced skin inflammation in mice. Life Sci 2020; 262:118557. [PMID: 33035578 DOI: 10.1016/j.lfs.2020.118557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023]
Abstract
AIMS Neuronal and non-neuronal TRPA1 channel plays an active role in the pathogenesis of several skin inflammatory diseases. Although a recent study identified the TRPA1 channel activation upon UVB exposure, its role in inflammatory, oxidative, and proliferative processes underlying UVB radiation-induced sunburn was not yet fully understood. We evaluated the TRPA1 channel contribution in inflammatory, oxidative, and proliferative states on skin inflammation induced by UVB radiation in mice. MAIN METHODS TRPA1 role was evaluated from inflammatory (ear edema, myeloperoxidase, and N-acetyl-β-D-glycosaminidase activities, histological changes, and cytokines levels), proliferative (epidermal hyperplasia, PCNA, and TRPA1 levels), and oxidative (reactive oxygen intermediates measure, H2O2 quantification, and NADPH oxidase activity) parameters caused by UVB radiation single (0.5 J/cm2) or repeated (0.1 J/cm2) exposure. We verified the contribution of non-neuronal and neuronal TRPA1 on UVB radiation-induced inflammatory parameters using RTX-denervation (50 μg/kg s.c.). KEY FINDINGS TRPA1 blockade by the selective antagonist Lanette® N HC-030031 reduced all parameters induced by UVB radiation single (at concentration of 1%) or repeated (at concentration of 0.1%) exposure. We evidenced an up-regulation of the TRPA1 protein after UVB radiation repeated exposure, which was blocked by topical Lanette® N HC-030031 (0.1%). By RTX-denervation, we verified that non-neuronal TRPA1 also interferes in some inflammatory parameters induction. However, cutaneous nerve fibers seem to be most needed in the development of UVB radiation-induced inflammatory processes. SIGNIFICANCE We propose the TRPA1 channel participates in the UVB radiation-induced sunburn in mice, and it could be a promising therapeutic target to treat skin inflammatory disorders.
Collapse
Affiliation(s)
- Camila Camponogara
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne S Brum
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Natháli S Pegoraro
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Indiara Brusco
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda G Rocha
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Margareth M Brandenburg
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Daniela A Cabrini
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Eunice André
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|