1
|
Lim DZJ, Chun YY, Tan FNSY, Monteiro AY, Cheng HM, Lee JY, Tan Y, Tan TTY, Tey HL. Small interfering RNA microneedle patches versus silicone sheets in reducing postoperative scars: a randomized single-blinded intraindividually controlled clinical trial. Br J Dermatol 2024; 192:19-26. [PMID: 39230675 DOI: 10.1093/bjd/ljae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND A common complication of wounds is the excessive production of fibrotic scar tissue, which can lead to hypertrophic scars or keloids. Currently, no treatments with good evidence for preventing excessive scar tissue formation are available. We explored the use of microneedle patches containing small interfering RNA (siRNA) to inhibit SPARC mRNA in reducing the volume of postoperative scars. OBJECTIVES To compare differences in postoperative scar volume with the daily application of siRNA-embedded dissolving microneedle patches vs. silicone sheets. METHODS This was an 8-week, single-blinded intraindividually controlled randomized trial at a tertiary dermatological centre. Patients with 2-week-old postoperative wounds were included. Each half of the scar was randomly assigned to the microneedle patch or silicone sheet. Three-dimensional (3D) volumes were obtained from the scars via a high-resolution scanner at days 0, 30 and 60. The trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000558729). RESULTS At day 30, scars treated with microneedle patches had a lower geometric mean volume of 0.79 mm3 vs. scars treated with silicone sheets, with a difference in mean percentage volume reduction of 10.7%. At day 60, scars treated with microneedle patches had a statistically significant lower volume (8.88 mm3) compared with the side treated with silicone sheets (12.77 mm3; P = 0.005), with a difference in mean percentage reduction of 9.7%. Additionally, there was also a statistically significant difference between the percentage reduction in scar volume vs. baseline on the side treated with microneedle patches (mean 83.8%) compared with the side treated with silicone sheets (mean 74.1%). CONCLUSIONS There was a significantly greater reduction in the volume of postoperative scars on the side of the scar treated with microneedle patches compared with the side treated with silicone sheets. This demonstrates the use of transdermal gene-silencing technology in scar inhibition and that siRNA microneedle patches can be effective and safe in reducing scar tissue formation.
Collapse
Affiliation(s)
| | - Yong Yao Chun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | | | | | | | | | - Yingrou Tan
- National Skin Centre, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Timothy T Y Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Hong Liang Tey
- National Skin Centre, Singapore
- Skin Research Institute of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
2
|
Chen Z, Hong Y, Zhao Z, Wu N, Ma X, Chen L, Zhang R. Differences in BRAF V600E mutation between the epithelium and mesenchyme in classic ameloblastoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:753-762. [PMID: 39266397 DOI: 10.1016/j.oooo.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE Laser capture microdissection (LCM) was used to pinpoint the mutated tissue in ameloblastoma and investigate whether B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutation is the main pathogenic gene in classic ameloblastoma. STUDY DESIGN A total of 24 patients with ameloblastoma scheduled to undergo surgery between 2000 and 2024 were included in the study. LCM was used to isolate tumor cells. Oxford nanopore technology (ONT) was used to analyze the collected cells. GO and KEGG enrichment analyses were then performed on the 300 most highly expressed genes in the epithelial tissue and mesenchyme. RESULTS Mandibular follicular ameloblastoma showed BRAF V600E mutations in all epithelial cells but not in the mesenchyme. The mutation rate was significantly higher in mandibular ameloblastomas compared to the maxilla (P < .05). RNA-seq showed that traditional follicular ameloblastoma epithelium was enriched in "growth factor receptor binding" and "angiogenesis regulation," while the mesenchyme was enriched in "ECM receptor interaction." KEGG enrichment analysis showed differential gene expression, mainly in MAPK and PI3K-AKT pathways. CONCLUSION Classical follicular ameloblastoma shows the presence of BRAF V600E mutation in epithelial tissue, with a higher mutation rate in the mandible than in the maxilla. The signaling pathways of MAPK and PI3K may be significantly involved in epithelial signal transduction.
Collapse
Affiliation(s)
- Zhuoxuan Chen
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China
| | - Yingying Hong
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking, P.R. China
| | - Zhenni Zhao
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China
| | - Ningxiang Wu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China
| | - Xiaokun Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Jiangsu Province, P.R. China
| | - Linlin Chen
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, P.R. China; Jiangxi Province Key Laboratory of Oral Diseases, Jiangxi Province, P.R. China; Jiangxi Provincial Clinical Research Center for Oral Diseases, Jiangxi Province, P.R. China
| | - Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, P.R. China.
| |
Collapse
|
3
|
Liu Y, Zhang W, Lin N, Yang Z, Liu Y, Chen H. SPARC activates p38γ signaling to promote PFKFB3 protein stabilization and contributes to keloid fibroblast glycolysis. Inflamm Regen 2024; 44:44. [PMID: 39482755 PMCID: PMC11529245 DOI: 10.1186/s41232-024-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Keloids are currently challenging to treat because they recur after resection which may affect patients' quality of life. At present, no universal consensus on treatment regimen has been established. Thus, finding new molecular mechanisms underlying keloid formation is imminent. This study aimed to explore the function of secreted protein acidic and cysteine rich (SPARC) on keloids and its behind exact mechanisms. METHODS The expression of SPARC, p38γ, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), α-SMA, and Ki67 in patients with keloid and bleomycin (BLM)-induced fibrosis mice was assessed utilizing western blot, qRT-PCR, and immunohistochemical staining. After transfected with pcDNA-SPARC, si-SPARC-1#, si-SPARC-2#, and si-p38γ, and treated with glycolytic inhibitor (2-DG) or p38 inhibitor (SB203580), CCK-8, EdU, transwell, and western blot were utilized for assessing the proliferation, migration, and collagen production of keloid fibroblasts (KFs). RESULTS SPARC, p38γ, and PFKFB3 were highly expressed in patients with keloid and BLM-induced fibrosis mice. SPARC promoted the proliferation, migration, and collagen production of KFs via inducing glycolysis. Moreover, SPARC could activate p38γ signaling to stabilize PFKFB3 protein expression in KFs. Next, we demonstrated that SPARC promoted the proliferation, migration, collagen production, and glycolysis of KFs via regulating p38γ signaling. In addition, in BLM-induced fibrosis mice, inhibition of p38γ and PFKFB3 relieved skin fibrosis. CONCLUSIONS Our findings indicated that SPARC could activate p38γ pathway to stabilize the expression of PFKFB3, and thus promote the glycolysis of KFs and the progression of keloid.
Collapse
Affiliation(s)
- Yining Liu
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266100, Shandong, People's Republic of China
| | - Wei Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 JingWu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Nan Lin
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 JingWu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Zelei Yang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 JingWu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 JingWu Road, Jinan, 250021, Shandong, People's Republic of China
| | - Huaxia Chen
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 JingWu Road, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Kazimierska K, Szabłowska-Gadomska I, Rudziński S, Kośla K, Płuciennik E, Bobak Ł, Zambrowicz A, Kalinowska-Lis U. Biologically Active Sheep Colostrum for Topical Treatment and Skin Care. Int J Mol Sci 2024; 25:8091. [PMID: 39125660 PMCID: PMC11311297 DOI: 10.3390/ijms25158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Colostrum is gaining popularity in cosmetic products. The present study compared the composition and selected biological properties of colostrum from Polish sheep (colostrum 1) and Swiss sheep (colostrum 2), particularly those that can affect healthy or diseased skin. The antioxidant activity of the colostrums was measured using ABTS and DPPH assays. The effect on the proliferation of human skin fibroblasts, neonatal epidermal keratinocytes, and human diabetic fibroblast (dHF) cells isolated from diabetic foot ulcers was also assayed in vitro by MTT and Presto Blue tests, respectively. The colostrum simulated dHF cell proliferation by up to 115.4%. The highest used concentration of colostrum 1 stimulated normal fibroblast proliferation by 191.2% (24 h) and 222.2% (48 h). Both colostrums inhibited epidermal keratinocyte viability. The influence of the colostrums on the expression of genes related to proliferation (Ki67) and immune response (IL-6, PTGS-2, TSG-6) in dHF cells were compared. Colostrum 1 increased the rate of wound closure (scar test). Analysis of total fat, protein and fatty acid content found the Polish colostrum to be a richer source of fat than the Swiss colostrum, which contained a larger amount of protein. Both colostrums exhibit properties that suggest they could be effective components in cosmetic or medicinal formulations for skin care, especially supporting its regeneration, rejuvenation, and wound healing.
Collapse
Affiliation(s)
- Kinga Kazimierska
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Ilona Szabłowska-Gadomska
- Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.)
| | - Stefan Rudziński
- Laboratory for Cell Research and Application, Center for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (I.S.-G.); (S.R.)
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland; (Ł.B.); (A.Z.)
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland; (Ł.B.); (A.Z.)
| | - Urszula Kalinowska-Lis
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
5
|
Yong R, Mu R, Han C, Chao T, Liu Y, Dong L, Wang C. Optimizing a five-factor cocktail to prepare reparative macrophages for wound healing. J Leukoc Biol 2024:qiae096. [PMID: 38630870 DOI: 10.1093/jleuko/qiae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
The treatment of non-healing wounds, such as diabetic ulcers, remains a critical clinical challenge. Recent breakthroughs in cell therapy have shown great promise, with one primary focus on preparing cells with comprehensive reparative functions and foreseeable safety. In our previous study, we recapitulated the pro-regenerative and immunosuppressive functions of tumor-associated macrophages (TAMs) in non-tumor-derived macrophages, endowing the latter with characteristics for promoting diabetic wound healing - termed TAMs-educated macrophages (TAMEMs). To eliminate the use of tumor-derived sources and devise a more controllable method to prepare TAMEM-like cells, in this study, we identify a cocktail comprising five recombinant proteins as an essential condition to induce non-polarized macrophages (termed TAMEMs5) into therapeutic cells with pro-healing functions. The screened five factors are osteopontin (OPN), macrophage inflammatory protein (MIP)-2, chemokine (C-C motif) ligand 8 (CCL8), vascular endothelial growth factor (VEGF)-B, and macrophage colony-stimulating factor (M-CSF). We demonstrate the rationale for screening these factors and the phenotype of TAMEMs5 prepared from murine bone marrow-derived macrophages, which exhibit angiogenic and immunomodulatory effects in vitro. Then, we induce primary human monocytes from periphery blood into TAMEMs5, which show pro-healing effects in a human primary cell-based ex vivo model (T-SkinTM). Our study demonstrates a simple, effective, and controllable approach to induce primary macrophages to possess repairing activities, which may provide insights for developing cell-based therapeutics for non-healing wounds clinically.
Collapse
Affiliation(s)
- Rong Yong
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Ruoyu Mu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Congwei Han
- School of Life Sciences & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Tzuwei Chao
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Yu Liu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Lei Dong
- School of Life Sciences & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunming Wang
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
6
|
Geng R, Kang SG, Huang K, Tong T. Dietary supplementation with α-ionone alleviates chronic UVB exposure-induced skin photoaging in mice. Food Funct 2024; 15:1884-1898. [PMID: 38328833 DOI: 10.1039/d3fo04379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Photoaging is widely regarded as the most significant contributor to skin aging damage. It is triggered by prolonged exposure to ultraviolet (UV) light and typically manifests as dryness and the formation of wrinkles. Nutritional intervention is a viable strategy for preventing and treating skin photoaging. In previous studies, we demonstrated that α-ionone had ameliorating effects on photoaging in both epidermal keratinocytes and dermal fibroblasts. Here, we investigated the potential anti-photoaging effects of dietary α-ionone using a UVB-irradiated male C57BL/6N mouse model. Our findings provided compelling evidence that dietary α-ionone alleviates wrinkle formation, skin dryness, and epidermal thickening in chronic UVB-exposed mice. α-Ionone accumulated in mouse skin after 14 weeks of dietary intake of α-ionone. α-Ionone increased collagen density and boosted the expression of collagen genes, while attenuating the UVB-induced increase of matrix metalloproteinase genes in the skin tissues. Furthermore, α-ionone suppressed the expression of senescence-associated secretory phenotypes and reduced the expression of the senescence marker p21 and DNA damage marker p53 in the skin of UVB-irradiated mice. Transcriptome sequencing results showed that α-ionone modifies gene expression profiles of skin. Multiple pathway enrichment analyses on both the differential genes and the entire genes revealed that α-ionone significantly affects multiple physiological processes and signaling pathways associated with skin health and diseases, of which the p53 signaling pathway may be the key signaling pathway. Taken together, our findings reveal that dietary α-ionone intervention holds promise in reducing the risks of skin photoaging, offering a potential strategy to address skin aging concerns.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, PR China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, PR China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, PR China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, PR China
| |
Collapse
|
7
|
Ham SM, Song MJ, Yoon HS, Lee DH, Chung JH, Lee ST. SPARC Is Highly Expressed in Young Skin and Promotes Extracellular Matrix Integrity in Fibroblasts via the TGF-β Signaling Pathway. Int J Mol Sci 2023; 24:12179. [PMID: 37569556 PMCID: PMC10419001 DOI: 10.3390/ijms241512179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The matricellular secreted protein acidic and rich in cysteine (SPARC; also known as osteonectin), is involved in the regulation of extracellular matrix (ECM) synthesis, cell-ECM interactions, and bone mineralization. We found decreased SPARC expression in aged skin. Incubating foreskin fibroblasts with recombinant human SPARC led to increased type I collagen production and decreased matrix metalloproteinase-1 (MMP-1) secretion at the protein and mRNA levels. In a three-dimensional culture of foreskin fibroblasts mimicking the dermis, SPARC significantly increased the synthesis of type I collagen and decreased its degradation. In addition, SPARC also induced receptor-regulated SMAD (R-SMAD) phosphorylation. An inhibitor of transforming growth factor-beta (TGF-β) receptor type 1 reversed the SPARC-induced increase in type I collagen and decrease in MMP-1, and decreased SPARC-induced R-SMAD phosphorylation. Transcriptome analysis revealed that SPARC modulated expression of genes involved in ECM synthesis and regulation in fibroblasts. RT-qPCR confirmed that a subset of differentially expressed genes is induced by SPARC. These results indicated that SPARC enhanced ECM integrity by activating the TGF-β signaling pathway in fibroblasts. We inferred that the decline in SPARC expression in aged skin contributes to process of skin aging by negatively affecting ECM integrity in fibroblasts.
Collapse
Affiliation(s)
- Seung Min Ham
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Sun Yoon
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Department of Dermatology, Seoul National University Boramae Hospital, Seoul 07061, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (M.J.S.); (H.-S.Y.); (D.H.L.); (J.H.C.)
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
- Institute on Aging, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| |
Collapse
|