1
|
Ding X, Yang C, Li Y, He T, Xu Y, Cheng X, Song J, Xue N, Min W, Feng W, Zhao H, Dong J, Liu P, Wang Y, Chen J. Reshaped commensal wound microbiome via topical application of Calvatia gigantea extract contributes to faster diabetic wound healing. BURNS & TRAUMA 2024; 12:tkae037. [PMID: 39224840 PMCID: PMC11367672 DOI: 10.1093/burnst/tkae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/20/2024] [Accepted: 06/02/2024] [Indexed: 09/04/2024]
Abstract
Background Calvatia gigantea (CG) is widely used as a traditional Chinese medicine for wound treatment. In this study, we aimed to determine the effects of CG extract (CGE) on diabetic wound healing and the commensal wound microbiome. Method A wound model was established using leptin receptor-deficient db/db mice, with untreated mice as the control group and CGE-treated mice as the treatment group. The wound healing rate, inflammation and histology were analyzed. Additionally, wound microbiome was evaluated via 16S ribosomal RNA (rRNA) gene sequencing. Results CGE significantly accelerated the healing of diabetic ulcer wounds, facilitated re-epithelialization, and downregulated the transcription levels of the inflammatory cytokines, interleukin-1β and tumor necrosis factor-α. Furthermore, CGE treatment positively affected the wound microbiome, promoting diversity of the microbial community and enrichment of Escherichia-Shigella bacteria in the CGE-treated group. Conclusions Overall, CGE enhanced diabetic wound healing by modulating the wound microbiome and facilitating macrophage polarization during inflammation. These findings suggest modulation of the commensal wound microbiome using medicinal plants as a potential therapeutic strategy for diabetic wounds.
Collapse
Affiliation(s)
- Xiaotong Ding
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Chenxi Yang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Yue Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Tangtang He
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- Department of Bone injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, P.R. China
| | - Yan Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Xuxi Cheng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Jinyun Song
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, 1 Kangfu Street, Nanjing 210003, P.R. China
| | - Nannan Xue
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Wen Min
- Department of Bone injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing 210029, P.R. China
| | - Weimeng Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, 1 Kangfu Street, Nanjing 210003, P.R. China
| | - Hongyu Zhao
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, 1 Kangfu Street, Nanjing 210003, P.R. China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Pei Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| |
Collapse
|
2
|
Shaikh SA, Muthuraman A. Tocotrienol-Rich Fraction Ameliorates the Aluminium Chloride-Induced Neurovascular Dysfunction-Associated Vascular Dementia in Rats. Pharmaceuticals (Basel) 2023; 16:828. [PMID: 37375775 DOI: 10.3390/ph16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Neurovascular dysfunction leads to the second most common type of dementia, i.e., vascular dementia (VaD). Toxic metals, such as aluminium, increase the risk of neurovascular dysfunction-associated VaD. Hence, we hypothesized that a natural antioxidant derived from palm oil, i.e., tocotrienol-rich fraction (TRF), can attenuate the aluminium chloride (AlCl3)-induced VaD in rats. Rats were induced with AlCl3 (150 mg/kg) intraperitoneally for seven days followed by TRF treatment for twenty-one days. The elevated plus maze test was performed for memory assessment. Serum nitrite and plasma myeloperoxidase (MPO) levels were measured as biomarkers for endothelial dysfunction and small vessel disease determination. Thiobarbituric acid reactive substance (TBARS) was determined as brain oxidative stress marker. Platelet-derived growth factor-C (PDGF-C) expression in the hippocampus was identified using immunohistochemistry for detecting the neovascularisation process. AlCl3 showed a significant decrease in memory and serum nitrite levels, while MPO and TBARS levels were increased; moreover, PDGF-C was not expressed in the hippocampus. However, TRF treatment significantly improved memory, increased serum nitrite, decreased MPO and TBARS, and expressed PDGF-C in hippocampus. Thus, the results imply that TRF reduces brain oxidative stress, improves endothelial function, facilitates hippocampus PDGF-C expression for neovascularisation process, protects neurons, and improves memory in neurovascular dysfunction-associated VaD rats.
Collapse
Affiliation(s)
- Sohrab A Shaikh
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
3
|
Nair AB, Gorain B, Pandey M, Jacob S, Shinu P, Aldhubiab B, Almuqbil RM, Elsewedy HS, Morsy MA. Tocotrienol in the Treatment of Topical Wounds: Recent Updates. Pharmaceutics 2022; 14:pharmaceutics14112479. [PMID: 36432670 PMCID: PMC9699634 DOI: 10.3390/pharmaceutics14112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Healing wounds is an important attempt to keep the internal higher organs safe. Complications in topical wound healing may lead to the formation of scars, which can affect the patient's quality of life. Although several approaches are ongoing in parallel in the exploration of natural compounds via advanced delivery, in this article, an attempt has been made to highlight tocotrienol. Tocotrienol is a natural form of vitamin E and has shown its potential in certain pharmacological activities better than tocopherol. Its antioxidant, anti-inflammatory, cell signal-mediating effects, angiogenic properties, management of scar, and promotion of wound environment with essential factors have shown potential in the management of topical wound healing. Therefore, this review has aimed to focus on recent advances in topical wound healing through the application of tocotrienols. Challenges in delivering tocotrienols to the topical wound due to its large molecular weight and higher logP have also been explored using nanotechnological-based carriers, which has made tocotrienol a potential tool to facilitate the closure of wounds. Exploration of tocotrienol has also been made in human volunteers for biopsy wounds; however, the results are yet to be reported. Overall, based on the current findings in the literature, it could be inferred that tocotrienol would be a viable alternative to the existing wound dressing components for the management of topical wounds.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.B.N.); (B.G.); Tel.: +966-536219868 (A.B.N.); +91-9088585676 (B.G.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
- Correspondence: (A.B.N.); (B.G.); Tel.: +966-536219868 (A.B.N.); +91-9088585676 (B.G.)
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Mahendergarh 123031, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
4
|
Palm Oil Derived Tocotrienol-Rich Fraction Attenuates Vascular Dementia in Type 2 Diabetic Rats. Int J Mol Sci 2022; 23:ijms232113531. [PMID: 36362316 PMCID: PMC9653761 DOI: 10.3390/ijms232113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Vascular dementia (VaD) is a serious global health issue and type 2 diabetes mellitus (T2DM) patients are at higher risk. Palm oil tocotrienol-rich fraction (TRF) exhibits neuroprotective properties; however, its effect on VaD is not reported. Hence, we evaluated TRF effectiveness in T2DM-induced VaD rats. Rats were given a single dose of streptozotocin (STZ) and nicotinamide (NA) to develop T2DM. Seven days later, diabetic rats were given TRF doses of 30, 60, and 120 mg/kg orally for 21 days. The Morris water maze (MWM) test was performed for memory assessment. Biochemical parameters such as blood glucose, plasma homocysteine (HCY) level, acetylcholinesterase (AChE) activity, reduced glutathione (GSH), superoxide dismutase (SOD) level, and histopathological changes in brain hippocampus and immunohistochemistry for platelet-derived growth factor-C (PDGF-C) expression were evaluated. VaD rats had significantly reduced memory, higher plasma HCY, increased AChE activity, and decreased GSH and SOD levels. However, treatment with TRF significantly attenuated the biochemical parameters and prevented memory loss. Moreover, histopathological changes were attenuated and there was increased PDGF-C expression in the hippocampus of VaD rats treated with TRF, indicating neuroprotective action. In conclusion, this research paves the way for future studies and benefits in understanding the potential effects of TRF in VaD rats.
Collapse
|
5
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
6
|
Schilrreff P, Alexiev U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci 2022; 23:ijms23094928. [PMID: 35563319 PMCID: PMC9104327 DOI: 10.3390/ijms23094928] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.
Collapse
|
7
|
Yeo E, Yew Chieng CJ, Choudhury H, Pandey M, Gorain B. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: Fabrication, characterization and comparative in vitro evaluations. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100019. [PMID: 34909654 PMCID: PMC8663980 DOI: 10.1016/j.crphar.2021.100019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The present research had been attempted to formulate and characterize tocotrienols-rich naringenin nanoemulgel for topical application in chronic wound conditions associated with diabetes. In due course, different phases of the nanoemulsion were chosen based on the solubility study, where combination of Capryol 90 and tocotrienols, Solutol HS15, and Transcutol P were selected as oil, surfactant, and cosurfactant, respectively. The nanoemulsions were formulated using the spontaneous emulsification method. Subsequently, Carbopols were incorporated to develop corresponding nanoemulgels of the optimized nanoemulsions. Thermodynamically stable optimized nanoemulgels were evaluated for their globule size, polydispersity index (PDI), surface charge, viscosity, mucoadhesive property, spreadability, in vitro release and release mechanism. Further, increasing polymer concentration in the nanoemulgels was reflected with the increased mucoadhesive property with corresponding decrease in the release rate of the drug. The optimized nanoemulgel (NG1) consisted of uniform dispersion (PDI, 0.452 ± 0.03) of the nanometric globules (145.58 ± 12.5) of the dispersed phase, and negative surface charge (−21.1 ± 3.32 mV) with viscosity 297,600 cP and good spreadability. In vitro release of naringenin in phosphate buffer saline revealed a sustained release profile up to a maximum of 74.62 ± 4.54% from the formulated nanoemulgel (NG1) within the time-frame of 24 h. Alternatively, the release from the nanoemulsion was much higher (89.17 ± 2.87%), which might be due to lack of polymer coating on the dispersed oil droplets. Moreover, the in vitro release kinetics from the nanoemulgel followed the first-order release and Higuchi model with non-Fickian diffusion. Therefore, encouraging results in this research is evident in bringing a promising future in wound management, particularly associated with diabetes complications. Thermodynamically stable naringenin-loaded tocotrienol-rich nanoemulgels were fabricated using spontaneous method. Developed nanoemulgel possesses nanometric globule size with good spreadability. Controlled in vitro release was obtained over a period of 24 h. First-order release and Higuchi model with non-Fickian diffusion was established in the in vitro release kinetic profile. This nanoemulgel could be a promising tool in the management of chronic wound condition.
Collapse
Affiliation(s)
- Eileen Yeo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia
| | - Clement Jia Yew Chieng
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, 47500, Selangor, Malaysia.,Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Sajadimajd S, Khosravifar M, Bahrami G. Anti-Diabetic Effects of Isolated Lipids from Natural Sources through Modulation of Angiogenesis. Curr Mol Pharmacol 2021; 15:589-606. [PMID: 34473620 DOI: 10.2174/1874467214666210902121337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/10/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant angiogenesis plays a fateful role in the development of diabetes and diabetic complications. Lipids, as a diverse group of biomacromolecules, are able to relieve diabetes through the modulation of angiogenesis. OBJECTIVE Owing to the present remarkable anti-diabetic effects with no or few side effects of lipids, the aim of this study was to assess the state-of-the-art research on anti-diabetic effects of lipids via the modulation of angiogenesis. METHODS To study the effects of lipids in diabetes via modulation of angiogenesis, we have searched the electronic databases including Scopus, PubMed, and Cochrane. RESULTS The promising anti-diabetic effects of lipids were reported in several studies. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil (FO) were reported to significantly induce neovasculogenesis in high glucose (HG)-mediated endothelial progenitor cells (EPCs) neovasculogenic dysfunction in type 2 diabetic mice. Linoleic acid, mono-epoxy-tocotrienol-α (MeT3α), and ginsenoside Rg1 facilitate wound closure and vessel formation. N-Palmitoylethanolamine (PEA), α-linolenic acid (ALA), omega-3 (ω3) lipids from flaxseed (FS) oil, ω-3 polyunsaturated fatty acids (PUFA), lipoic acid, taurine, and zeaxanthin (Zx) are effective in diabetic retinopathy via suppression of angiogenesis. Lysophosphatidic acid, alkyl-glycerophosphate, crocin, arjunolic acid, α-lipoic acid, and FS oil are involved in the management of diabetes and its cardiac complications. Furthermore, in two clinical trials, R-(+)-lipoic acid (RLA) in combination with hyperbaric oxygenation therapy (HBOT) for treatment of chronic wound healing in DM patients, as well as supplementation with DHA plus antioxidants along with intravitreal ranibizumab were investigated for its effects on diabetic macular edema. CONCLUSION Proof-of-concept studies presented here seem to well shed light on the anti-diabetic effects of lipids via modulation of angiogenesis.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Mina Khosravifar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Dallner G, Bentinger M, Hussain S, Sinha I, Yang J, Schwank-Xu C, Zheng X, Swiezewska E, Brismar K, Valladolid-Acebes I, Tekle M. Dehydro-Tocotrienol-β Counteracts Oxidative-Stress-Induced Diabetes Complications in db/db Mice. Antioxidants (Basel) 2021; 10:antiox10071070. [PMID: 34356303 PMCID: PMC8301068 DOI: 10.3390/antiox10071070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/05/2023] Open
Abstract
Hyperglycemia, hyperlipidemia, and adiposity are the main factors that cause inflammation in type 2 diabetes due to excessive ROS production, leading to late complications. To counteract the effects of increased free radical production, we searched for a compound with effective antioxidant properties that can induce coenzyme Q biosynthesis without affecting normal cellular functions. Tocotrienols are members of the vitamin E family, well-known as efficient antioxidants that are more effective than tocopherols. Deh-T3β is a modified form of the naturally occurring tocotrienol-β. The synthesis of this compound involves the sequential modification of geranylgeraniol. In this study, we investigated the effects of this compound in different experimental models of diabetes complications. Deh-T3β was found to possess multifaceted capacities. In addition to enhanced wound healing, deh-T3β improved kidney and liver functions, reduced liver steatosis, and improved heart recovery after ischemia and insulin sensitivity in adipose tissue in a mice model of type 2 diabetes. Deh-T3β exerts these positive effects in several organs of the diabetic mice without reducing the non-fasting blood glucose levels, suggesting that both its antioxidant properties and improvement in mitochondrial function are involved, which are central to reducing diabetes complications.
Collapse
Affiliation(s)
- Gustav Dallner
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Magnus Bentinger
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-41345 Gothenburg, Sweden;
- Department of Medicine, Division of Cardiology, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Jiangning Yang
- Department of Medicine, Division of Cardiology, Karolinska Institutet, SE-17177 Stockholm, Sweden;
| | - Cheng Schwank-Xu
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Xiaowei Zheng
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, PL-02-106 Warsaw, Poland;
| | - Kerstin Brismar
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Ismael Valladolid-Acebes
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
| | - Michael Tekle
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17177 Stockholm, Sweden; (G.D.); (M.B.); (C.S.-X.); (X.Z.); (K.B.); (I.V.-A.)
- Department of Clinical Pharmacology, Karolinska University Hospital, SE-17177 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
10
|
Zhang W, Chen L, Xiong Y, Panayi AC, Abududilibaier A, Hu Y, Yu C, Zhou W, Sun Y, Liu M, Xue H, Hu L, Yan C, Xie X, Lin Z, Cao F, Mi B, Liu G. Antioxidant Therapy and Antioxidant-Related Bionanomaterials in Diabetic Wound Healing. Front Bioeng Biotechnol 2021; 9:707479. [PMID: 34249895 PMCID: PMC8264455 DOI: 10.3389/fbioe.2021.707479] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Ulcers are a lower-extremity complication of diabetes with high recurrence rates. Oxidative stress has been identified as a key factor in impaired diabetic wound healing. Hyperglycemia induces an accumulation of intracellular reactive oxygen species (ROS) and advanced glycation end products, activation of intracellular metabolic pathways, such as the polyol pathway, and PKC signaling leading to suppression of antioxidant enzymes and compounds. Excessive and uncontrolled oxidative stress impairs the function of cells involved in the wound healing process, resulting in chronic non-healing wounds. Given the central role of oxidative stress in the pathology of diabetic ulcers, we performed a comprehensive review on the mechanism of oxidative stress in diabetic wound healing, focusing on the progress of antioxidant therapeutics. We summarize the antioxidant therapies proposed in the past 5 years for use in diabetic wound healing, including Nrf2- and NFκB-pathway-related antioxidant therapy, vitamins, enzymes, hormones, medicinal plants, and biological materials.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Abudula Abududilibaier
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yun Sun
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.,Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xuedong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
11
|
Alishahedani ME, Yadav M, McCann KJ, Gough P, Castillo CR, Matriz J, Myles IA. Therapeutic candidates for keloid scars identified by qualitative review of scratch assay research for wound healing. PLoS One 2021; 16:e0253669. [PMID: 34143844 PMCID: PMC8213172 DOI: 10.1371/journal.pone.0253669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
The scratch assay is an in vitro technique used to analyze cell migration, proliferation, and cell-to-cell interaction. In the assay, cells are grown to confluence and then ‘scratched’ with a sterile instrument. For the cells in the leading edge, the resulting polarity induces migration and proliferation in attempt to ‘heal’ the modeled wound. Keloid scars are known to have an accelerated wound closure phenotype in the scratch assay, representing an overactivation of wound healing. We performed a qualitative review of the recent literature searching for inhibitors of scratch assay activity that were already available in topical formulations under the hypothesis that such compounds may offer therapeutic potential in keloid treatment. Although several shortcomings in the scratch assay literature were identified, caffeine and allicin successfully inhibited the scratch assay closure and inflammatory abnormalities in the commercially available keloid fibroblast cell line. Caffeine and allicin also impacted ATP production in keloid cells, most notably with inhibition of non-mitochondrial oxygen consumption. The traditional Chinese medicine, shikonin, was also successful in inhibiting scratch closure but displayed less dramatic impacts on metabolism. Together, our results partially summarize the strengths and limitations of current scratch assay literature and suggest clinical assessment of the therapeutic potential for these identified compounds against keloid scars may be warranted.
Collapse
Affiliation(s)
- Mohammadali E. Alishahedani
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Manoj Yadav
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Katelyn J. McCann
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, United States of America
| | - Portia Gough
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Carlos R. Castillo
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Jobel Matriz
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
| | - Ian A. Myles
- Epithelial Therapeutics Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, North Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
L-Carnosine Stimulation of Coenzyme Q10 Biosynthesis Promotes Improved Mitochondrial Function and Decreases Hepatic Steatosis in Diabetic Conditions. Antioxidants (Basel) 2021; 10:antiox10050793. [PMID: 34067694 PMCID: PMC8156016 DOI: 10.3390/antiox10050793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction in type 2 diabetes leads to oxidative stress, which drives disease progression and diabetes complications. L-carnosine, an endogenous dipeptide, improves metabolic control, wound healing and kidney function in animal models of type 2 diabetes. Coenzyme Q (CoQ), a component of the mitochondrial electron transport chain, possesses similar protective effects on diabetes complications. We aimed to study the effect of carnosine on CoQ, and assess any synergistic effects of carnosine and CoQ on improved mitochondrial function in a mouse model of type 2 diabetes. Carnosine enhanced CoQ gene expression and increased hepatic CoQ biosynthesis in db/db mice, a type 2 diabetes model. Co-administration of Carnosine and CoQ improved mitochondrial function, lowered ROS formation and reduced signs of oxidative stress. Our work suggests that carnosine exerts beneficial effects on hepatic CoQ synthesis and when combined with CoQ, improves mitochondrial function and cellular redox balance in the liver of diabetic mice. (4) Conclusions: L-carnosine has beneficial effects on oxidative stress both alone and in combination with CoQ on hepatic mitochondrial function in an obese type 2 diabetes mouse model.
Collapse
|
13
|
Huynh P, Phie J, Krishna SM, Golledge J. Systematic review and meta-analysis of mouse models of diabetes-associated ulcers. BMJ Open Diabetes Res Care 2020; 8:8/1/e000982. [PMID: 32467222 PMCID: PMC7259859 DOI: 10.1136/bmjdrc-2019-000982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Mouse models are frequently used to study diabetes-associated ulcers, however, whether these models accurately simulate impaired wound healing has not been thoroughly investigated. This systematic review aimed to determine whether wound healing is impaired in mouse models of diabetes and assess the quality of the past research. A systematic literature search was performed of publicly available databases to identify original articles examining wound healing in mouse models of diabetes. A meta-analysis was performed to examine the effect of diabetes on wound healing rate using random effect models. A meta-regression was performed to examine the effect of diabetes duration on wound healing impairment. The quality of the included studies was also assessed using two newly developed tools. 77 studies using eight different models of diabetes within 678 non-diabetic and 720 diabetic mice were included. Meta-analysis showed that wound healing was impaired in all eight models. Meta-regression suggested that longer duration of diabetes prior to wound induction was correlated with greater degree of wound healing impairment. Pairwise comparisons suggested that non-obese diabetic mice exhibited more severe wound healing impairment compared with db/db mice, streptozotocin-induced diabetic mice or high-fat fed mice at an intermediate stage of wound healing (p<0.01). Quality assessment suggested that the prior research frequently lacked incorporation of key clinically relevant characteristics. This systematic review suggested that impaired wound healing can be simulated in many different mouse models of diabetes but these require further refinement to become more clinically relevant.
Collapse
Affiliation(s)
- Pacific Huynh
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia
| | - James Phie
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia
| |
Collapse
|
14
|
Jintao X, Nanqian Z, Yuping Y, Yun J, Yue Q, Yanhua L, Junxiu L, Xinqiao T, Yaling Y, Peng L. Puerarin-loaded ultrasound microbubble contrast agent used as sonodynamic therapy for diabetic cardiomyopathy rats. Colloids Surf B Biointerfaces 2020; 190:110887. [PMID: 32113166 DOI: 10.1016/j.colsurfb.2020.110887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/16/2023]
Abstract
In this study, a puerarin-loaded ultrasound sulfur hexafluoride microbubble contrast agent as a sonodynamic therapy (SDT) was developed to improve targeted drug delivery and pharmacodynamic effects in diabetic cardiomyopathy (DCM) treatment. Fluorescence microscope morphology was applied to confirm the fabrication of the puerarin - microbubbles (PMBs). The average size distribution and zeta potential of PMBs were 760.0 ± 101.2 nm and -20.4 ± 6.59 mV, respectively. In vitro and in vivo experiments were carried out to study the pharmacodynamic effects and targeted drug delivery of PMBs. The cytotoxicity, assessed by the cell viability of human umbilical vein endothelial cells (HUVECs), showed that the microbubbles were nontoxic even in high concentration of 2.500 mg/mL, and the wound healing scratch assay proved that PMBs cloud obviously improve the migration ability of HUVECs. Furthermore, streptozotocin (STZ) accompanied with high-energy diets was employed to build the DCM rat model. The blood glucose, histological changes of the pancreas and heart, and cardiac function were used to confirm the obtainment of the DCM rat model. Histological and physiological changes of the PMBs treatment group indicated that PMBs had a significant therapeutic efficacy when compared to the DCM model group. Therefore, PMBs are a promising strategy for a targeted drug delivery system and a novel noninvasive treatment for DCM.
Collapse
Affiliation(s)
- Xue Jintao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Zhou Nanqian
- Department of Ultrasonography, Fuwai Hospital of Central China, Henan Provincial Peoples Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, 450003, PR China
| | - Yang Yuping
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Jing Yun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Qiu Yue
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Liu Yanhua
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Lu Junxiu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China
| | - Tian Xinqiao
- Department of Ultrasonography, Fuwai Hospital of Central China, Henan Provincial Peoples Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, 450003, PR China.
| | - Yin Yaling
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China.
| | - Li Peng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453002, Henan Province, PR China.
| |
Collapse
|
15
|
Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Mohd Fahami NA, Mohamed IN, Shuid AN, Mohd Saad Q, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin KY. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020; 12:E259. [PMID: 31963885 PMCID: PMC7019837 DOI: 10.3390/nu12010259] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.K.W.); (Y.K.); (N.M.); (N.M.); (N.M.); (N.A.M.F.); (I.N.M.); (A.N.S.); (Q.M.S.); (A.A.); (N.-V.M.); (N.I.I.); (K.-L.P.); (Y.Y.C.); (B.K.S.T.); (S.S.); (C.Y.C.); (S.I.-N.)
| |
Collapse
|
16
|
Huang W, Shao M, Liu H, Chen J, Hu J, Zhu L, Liu F, Wang D, Zou Y, Xiong Y, Wang X. Fibroblast growth factor 21 enhances angiogenesis and wound healing of human brain microvascular endothelial cells by activating PPARγ. J Pharmacol Sci 2019; 140:120-127. [PMID: 31255518 DOI: 10.1016/j.jphs.2019.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/05/2023] Open
Abstract
Angiogenesis of brain microvascular endothelial cells (BMECs) is required in the functional restoration of brain injury, such as traumatic brain injury (TBI) and ischemic stroke. Fibroblast growth factor 21 (FGF21) is an angiogenic molecule that functions through the formation of the FGF21/FGFR1/β-klotho complex but does not cause carcinogenic events. The current study was to determine whether recombinant human FGF21 (rhFGF21) could promote angiogenesis and scratch wound healing of human brain microvascular endothelial cells (HBMECs) and the possible underlying mechanism. rhFGF21 promoted angiogenesis and migration of HBMECs. The FGFR1 inhibitor PD173074 was applied to demonstrate that rhFGF21 functions through the formation of FGF21/FGFR1/β-klotho complexes. In addition, the specific PPARγ inhibitor GW9662 and PPARγ activator rosiglitazone were applied to determine that the role of rhFGF21 in increasing angiogenesis is through the PPARγ pathway. In addition, we revealed that the effect of rhFGF21 acts partially through upregulating eNOS expression. In conclusion, our study provides novel evidence that rhFGF21 can enhance the angiogenesis and migration of HBMECs through the formation of the FGF21/FGFR1/β-klotho complex via PPARγ activation and eNOS upregulation, indicating that FGF21 is a potential therapeutic angiogenic agent for the treatment of human brain injury.
Collapse
Affiliation(s)
- Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mingjie Shao
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuchi Zou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 315020, China
| | - Ye Xiong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 315020, China.
| | - Xue Wang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
17
|
Afzali H, Jafari Kashi AH, Momen-Heravi M, Razzaghi R, Amirani E, Bahmani F, Gilasi HR, Asemi Z. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Wound Repair Regen 2019; 27:277-284. [PMID: 30693609 DOI: 10.1111/wrr.12701] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
This study was carried out to determine the effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer (DFU). The current randomized, double-blind, placebo-controlled trial was conducted among 57 patients with grade 3 DFU. Participants were randomly divided into two groups to take either 250 mg magnesium oxide plus 400 IU vitamin E (n = 29) or placebo per day (n = 28) for 12 weeks. Compared with the placebo, taking magnesium plus vitamin E supplements reduced ulcer length (β [difference in the mean of outcomes measures between treatment groups] -0.56 cm; 95% CI, -0.92, -0.20; p = 0.003), width (β -0.35 cm; 95% CI, -0.64, -0.05; p = 0.02) and depth (β -0.18 cm; 95% CI, -0.33, -0.02; p = 0.02). In addition, co-supplementation led to a significant reduction in fasting plasma glucose (β -13.41 mg/dL; 95% CI, -20.96, -5.86; p = 0.001), insulin (β -1.45 μIU/ml; 95% CI, -2.37, -0.52; p = 0.003), insulin resistance (β -0.60; 95% CI, -0.99, -0.20; p = 0.003) and HbA1c (β -0.32%; 95% CI, -0.48, -0.16; p < 0.003), and a significant elevation in insulin sensitivity (β 0.007; 95% CI, 0.003, 0.01; p < 0.001) compared with the placebo. Additionally, compared with the placebo, taking magnesium plus vitamin E supplements decreased triglycerides (β -10.08 mg/dL; 95% CI, -19.70, -0.46; p = 0.04), LDL-cholesterol (β -5.88 mg/dL; 95% CI, -11.42, -0.34; p = 0.03), high sensitivity C-reactive protein (hs-CRP) (β -3.42 mg/L; 95% CI, -4.44, -2.41; p < 0.001) and malondialdehyde (MDA) (β -0.30 μmol/L; 95% CI, -0.45, -0.15; p < 0.001), and increased HDL-cholesterol (β 2.62 mg/dL; 95% CI, 0.60, 4.63; p = 0.01) and total antioxidant capacity (TAC) levels (β 53.61 mmol/L; 95% CI, 4.65, 102.57; p = 0.03). Overall, magnesium and vitamin E co-supplementation for 12 weeks to patients with DFU had beneficial effects on ulcer size, glycemic control, triglycerides, LDL- and HDL-cholesterol, hs-CRP, TAC, and MDA levels.
Collapse
Affiliation(s)
- Hassan Afzali
- Department of Infectious Disease, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Infections Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hosein Jafari Kashi
- Department of Infectious Disease, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Momen-Heravi
- Department of Infectious Disease, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Infections Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Razzaghi
- Department of Infectious Disease, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Infections Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Gilasi
- Department of Epidemiology and Biostatistics, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Ibrahim N'I, Wong SK, Mohamed IN, Mohamed N, Chin KY, Ima-Nirwana S, Shuid AN. Wound Healing Properties of Selected Natural Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112360. [PMID: 30366427 PMCID: PMC6266783 DOI: 10.3390/ijerph15112360] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process of recovering the forms and functions of injured tissues. The process is tightly regulated by multiple growth factors and cytokines released at the wound site. Any alterations that disrupt the healing processes would worsen the tissue damage and prolong repair process. Various conditions may contribute to impaired wound healing, including infections, underlying diseases and medications. Numerous studies on the potential of natural products with anti-inflammatory, antioxidant, antibacterial and pro-collagen synthesis properties as wound healing agents have been performed. Their medicinal properties can be contributed by the content of bioactive phytochemical constituents such as alkaloids, essential oils, flavonoids, tannins, saponins, and phenolic compounds in the natural products. This review highlights the in vitro, in vivo and clinical studies on wound healing promotions by the selected natural products and the mechanisms involved.
Collapse
Affiliation(s)
- Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.
| |
Collapse
|
19
|
Zhang Y, Li ZY, Hou XX, Wang X, Luo YH, Ying YP, Chen G. Clinical significance and effect of AEG-1 on the proliferation, invasion, and migration of NSCLC: a study based on immunohistochemistry, TCGA, bioinformatics, in vitro and in vivo verification. Oncotarget 2017; 8:16531-16552. [PMID: 28152520 PMCID: PMC5369983 DOI: 10.18632/oncotarget.14972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Background Astrocyte elevated gene-1 (AEG-1) is related to the tumorigenesis and deterioration of different cancers, including non-small cell lung cancer (NSCLC). However, the effect of AEG-1 in NSCLC remains unclear. In this study, we aimed to investigate the clinical significance and effect of AEG-1 on biological function of NSCLC. Results AEG-1 was significantly overexpressed in NSCLC tissues and closely correlated to the deterioration of NSCLC based on tissue microarray, TCGA database and meta-analysis. After knock-down of AEG-1, the proliferation, migration and invasion of NSCLC cells were all inhibited, and the tumorigenic and angiogenic ability of NSCLC cells were weakened. Furthermore, the AEG-1 co-expressed genes were significantly related to AMPK signaling pathway based on bioinformatics approaches. Materials and Methods A tissue microarray, the Cancer Genome Atlas (TCGA) database, as well as a meta-analysis were performed to analyze the relationship between AEG-1 and the clinicopathological parameters of NSCLC. Furthermore, immunocytochemistry, Western blot analysis, scratch assay, colony formation assay, Transwell migration and invasion assay and the chick embryo chorioallantoic membrane (CAM) model were conducted to explore the effect of AEG-1 on NSCLC in vitro and in vivo. Additionally, bioinformatics analyses were carried out to assess the potential pathways and networks of the co-expressed genes of AEG-1. Conclusions AEG-1 is positively activated in the tumorigenesis and deterioration of NSCLC. We hypothesize that AEG-1 could play an important role in NSCLC via AMPK signaling pathway. Inhibiting the expression of AEG-1 is expected to become a novel method in the therapeutic strategies of NSCLC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Xin-Xi Hou
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Xiao Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yi-Huan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yan-Ping Ying
- Department of Nursing, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region 530021, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| |
Collapse
|