1
|
Hill C, McKnight AJ, Smyth LJ. Integrated multiomic analyses: An approach to improve understanding of diabetic kidney disease. Diabet Med 2024:e15447. [PMID: 39460977 DOI: 10.1111/dme.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
AIM Diabetes is increasing in prevalence worldwide, with a 20% rise in prevalence predicted between 2021 and 2030, bringing an increased burden of complications, such as diabetic kidney disease (DKD). DKD is a leading cause of end-stage kidney disease, with significant impacts on patients, families and healthcare providers. DKD often goes undetected until later stages, due to asymptomatic disease, non-standard presentation or progression, and sub-optimal screening tools and/or provision. Deeper insights are needed to improve DKD diagnosis, facilitating the identification of higher-risk patients. Improved tools to stratify patients based on disease prognosis would facilitate the optimisation of resources and the individualisation of care. This review aimed to identify how multiomic approaches provide an opportunity to understand the complex underlying biology of DKD. METHODS This review explores how multiomic analyses of DKD are improving our understanding of DKD pathology, and aiding in the identification of novel biomarkers to detect disease earlier or predict trajectories. RESULTS Effective multiomic data integration allows novel interactions to be uncovered and empathises the need for harmonised studies and the incorporation of additional data types, such as co-morbidity, environmental and demographic data to understand DKD complexity. This will facilitate a better understanding of kidney health inequalities, such as social-, ethnicity- and sex-related differences in DKD risk, onset and progression. CONCLUSION Multiomics provides opportunities to uncover how lifetime exposures become molecularly embodied to impact kidney health. Such insights would advance DKD diagnosis and treatment, inform preventative strategies and reduce the global impact of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Amy Jayne McKnight
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Laura J Smyth
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Van Roy N, Speeckaert MM. The Potential Use of Targeted Proteomics and Metabolomics for the Identification and Monitoring of Diabetic Kidney Disease. J Pers Med 2024; 14:1054. [PMID: 39452561 PMCID: PMC11508375 DOI: 10.3390/jpm14101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent microvascular complication of diabetes mellitus and is associated with a significantly worse prognosis compared to diabetic patients without kidney involvement, other microvascular complications, or non-diabetic chronic kidney disease, due to its higher risk of cardiovascular events, faster progression to end-stage kidney disease, and increased mortality. In clinical practice, diagnosis is based on estimated glomerular filtration rate (eGFR) and albuminuria. However, given the limitations of these diagnostic markers, novel biomarkers must be identified. Omics is a new field of study involving the comprehensive analysis of various types of biological data at the molecular level. In different fields, they have shown promising results in (early) detection of diseases, personalized medicine, therapeutic monitoring, and understanding pathogenesis. DKD is primarily utilized in scientific research and has not yet been implemented in routine clinical practice. The aim of this review is to provide an overview of currently available data on targeted omics. After an extensive literature search, 25 different (panels of) omics were withheld and analyzed. Both serum/plasma and urine proteomics and metabolomics have been described with varying degrees of evidence. For all omics, there is still a relative paucity of data from large, prospective, longitudinal cohorts, presumably because of the heterogeneity of DKD and the lack of patient selection in studies, the complexity of omics technologies, and various practical and ethical considerations (e.g., limited accessibility, cost, and privacy concerns).
Collapse
Affiliation(s)
- Nele Van Roy
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
3
|
Sharma V, Khokhar M, Panigrahi P, Gadwal A, Setia P, Purohit P. Advancements, Challenges, and clinical implications of integration of metabolomics technologies in diabetic nephropathy. Clin Chim Acta 2024; 561:119842. [PMID: 38969086 DOI: 10.1016/j.cca.2024.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN), a severe complication of diabetes, involves a range of renal abnormalities driven by metabolic derangements. Metabolomics, revealing dynamic metabolic shifts in diseases like DN and offering insights into personalized treatment strategies, emerges as a promising tool for improved diagnostics and therapies. METHODS We conducted an extensive literature review to examine how metabolomics contributes to the study of DN and the challenges associated with its implementation in clinical practice. We identified and assessed relevant studies that utilized metabolomics methods, including nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) to assess their efficacy in diagnosing DN. RESULTS Metabolomics unveils key pathways in DN progression, highlighting glucose metabolism, dyslipidemia, and mitochondrial dysfunction. Biomarkers like glycated albumin and free fatty acids offer insights into DN nuances, guiding potential treatments. Metabolomics detects small-molecule metabolites, revealing disease-specific patterns for personalized care. CONCLUSION Metabolomics offers valuable insights into the molecular mechanisms underlying DN progression and holds promise for personalized medicine approaches. Further research in this field is warranted to elucidate additional metabolic pathways and identify novel biomarkers for early detection and targeted therapeutic interventions in DN.
Collapse
Affiliation(s)
- V Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - M Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Panigrahi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - A Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Setia
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - P Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India.
| |
Collapse
|
4
|
Ragi N, Sharma K. Deliverables from Metabolomics in Kidney Disease: Adenine, New Insights, and Implication for Clinical Decision-Making. Am J Nephrol 2024; 55:421-438. [PMID: 38432206 DOI: 10.1159/000538051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) presents a persistent global health challenge, characterized by complex pathophysiology and diverse progression patterns. Metabolomics has emerged as a valuable tool in unraveling the intricate molecular mechanisms driving CKD progression. SUMMARY This comprehensive review provides a summary of recent progress in the field of metabolomics in kidney disease with a focus on spatial metabolomics to shed important insights to enhancing our understanding of CKD progression, emphasizing its transformative potential in early disease detection, refined risk assessment, and the development of targeted interventions to improve patient outcomes. KEY MESSAGE Through an extensive analysis of metabolic pathways and small-molecule fluctuations, bulk and spatial metabolomics offers unique insights spanning the entire spectrum of CKD, from early stages to advanced disease states. Recent advances in metabolomics technology have enabled spatial identification of biomarkers to provide breakthrough discoveries in predicting CKD trajectory and enabling personalized risk assessment. Furthermore, metabolomics can help decipher the complex molecular intricacies associated with kidney diseases for exciting novel therapeutic approaches. A recent example is the identification of adenine as a key marker of kidney fibrosis for diabetic kidney disease using both untargeted and targeted bulk and spatial metabolomics. The metabolomics studies were critical to identify a new biomarker for kidney failure and to guide new therapeutics for diabetic kidney disease. Similar approaches are being pursued for acute kidney injury and other kidney diseases to enhance precision medicine decision-making.
Collapse
Affiliation(s)
- Nagarjunachary Ragi
- Center for Precision Medicine, The University of Texas Health San Antonio, San Antonio, Texas, USA
- Division of Nephrology, Department of Medicine, The University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Kumar Sharma
- Center for Precision Medicine, The University of Texas Health San Antonio, San Antonio, Texas, USA
- Division of Nephrology, Department of Medicine, The University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Kugathasan L, Sridhar VS, Lovblom LE, Matta S, Saliba A, Debnath S, AlAkwaa FM, Nair V, Bjornstad P, Kretzler M, Perkins BA, Sharma K, Cherney DZI. Interactive Effects of Empagliflozin and Hyperglycemia on Urinary Amino Acids in Individuals With Type 1 Diabetes. Diabetes 2024; 73:401-411. [PMID: 38015810 DOI: 10.2337/db23-0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Optimizing energy use in the kidney is critical for normal kidney function. Here, we investigate the effect of hyperglycemia and sodium-glucose cotransporter 2 (SGLT2) inhibition on urinary amino acid excretion in individuals with type 1 diabetes (T1D). The open-label ATIRMA trial assessed the impact of 8 weeks of 25 mg empagliflozin orally once per day in 40 normotensive normoalbuminuric young adults with T1D. A consecutive 2-day assessment of clamped euglycemia and hyperglycemia was evaluated at baseline and posttreatment visits. Principal component analysis was performed on urinary amino acids grouped into representative metabolic pathways using MetaboAnalyst. At baseline, acute hyperglycemia was associated with changes in 25 of the 33 urinary amino acids or their metabolites. The most significant amino acid metabolites affected by acute hyperglycemia were 3-hydroxykynurenine, serotonin, glycyl-histidine, and nicotinic acid. The changes in amino acid metabolites were reflected by the induction of four biosynthetic pathways: aminoacyl-tRNA; valine, leucine, and isoleucine; arginine; and phenylalanine, tyrosine, and tryptophan. In acute hyperglycemia, empagliflozin significantly attenuated the increases in aminoacyl-tRNA biosynthesis and valine, leucine, and isoleucine biosynthesis. Our findings using amino acid metabolomics indicate that hyperglycemia stimulates biosynthetic pathways in T1D. SGLT2 inhibition may attenuate the increase in biosynthetic pathways to optimize kidney energy metabolism. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Luxcia Kugathasan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Ontario, Canada
| | - Vikas S Sridhar
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, Ontario, Canada
| | - Shane Matta
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX
- Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Afaf Saliba
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX
- Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Subrata Debnath
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX
- Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Fadhl M AlAkwaa
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Petter Bjornstad
- Division of Nephrology, Department of Medicine, University of Colorado, Aurora, CO
- Section of Endocrinology, Department of Pediatrics, University of Colorado, Aurora, CO
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kumar Sharma
- Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX
- Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Gao W, Gao S, Zhang Y, Wang M, Liu Y, Li T, Gao C, Zhou Y, Bian B, Wang H, Wei X, Sato T, Si N, Zhao W, Zhao H. Altered metabolic profiles and targets relevant to the protective effect of acteoside on diabetic nephropathy in db/db mice based on metabolomics and network pharmacology studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117073. [PMID: 37619856 DOI: 10.1016/j.jep.2023.117073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) was a major cause of end-stage renal failure and a common microvascular complication in patients with diabetes mellitus (DM). Acteoside (ACT) was the main ingredient extracted from the leaves of Rehmannia glutinosa, which had the functions of entering the lung, moisturizing the skin and relieving itching, nourishing yin and tonifying the kidney, cooling blood, and stopping bleeding. ACT had attracted worldwide interest because of its therapeutic effects on DM and its complications. AIM OF THE STUDY To clarify the metabolic profiles and targets of ACT in db/db mice based on metabolomics and network pharmacology studies. MATERIALS AND METHODS Db/db mice were used to observe the biochemical indices and histopathological changes in the kidney to evaluate the pharmacological effects of ACT on DN. Untargeted metabolomics studies were performed to investigate by UHPLC-LTQ-Orbitrap MS on urine, serum, and kidney samples. The key targets and pathways were analyzed by network pharmacology. For the pathways enriched by untargeted metabolomics, targeted metabolomics by UHPLC-QQQ-MS/MS was performed in kidney samples for validation. Sensitive biomarkers in kidney samples were evaluated. The effect of ACT on the improvement of DN from the perspective of metabolism of small molecules in vivo was described. RESULTS ACT could delay the progression of DN and improve the degree of histopathological damage to the kidney. The pathways were focused on amino acid metabolism by untargeted metabolomics. Through network pharmacology analysis, the effect pathways were related to signal transduction, carbohydrate, lipid, amino acid metabolism and mainly affected the endocrine and immune systems. Amino acid metabolism was disturbed in the kidney of db/db mice, which could be callback by ACT, such as tryptophan, glutamine, cysteine, leucine, threonine, proline, phenylalanine, histidine, serine, arginine, asparagine by targeted metabolomics. CONCLUSIONS In conclusion, this study provided strong support for ACT on DN treatment in clinics. Meanwhile, the Rehmannia glutinosa was used fully to raise the income level of farmers economically, while achieving the social benefit of empowering rural revitalization.
Collapse
Affiliation(s)
- Wenya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mengxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuyang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Takashi Sato
- Department of Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Zhao
- Center for Drug Evaluation, National Medical Products Administration, Beijing, 100022, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Xie X, Wang Y, Chen S, Liu Y, Li F, Zeng C, Zhang L, Wang X. Network pharmacology and molecular docking of endogenous active metabolites in diabetic kidney disease. Ren Fail 2023; 45:2290927. [PMID: 38152048 PMCID: PMC10763839 DOI: 10.1080/0886022x.2023.2290927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
OBJECTIVES Network pharmacology and molecular docking were used to predict endogenous active metabolites with protective effects in diabetic kidney disease (DKD). METHODS We utilized metabolomics to screen differentially expressed metabolites in kidney tissues of mice with type 2 DKD and predicted potential targets using relevant databases. The interaction network between endogenous active metabolites and target proteins was established by integrating differentially expressed metabolites and proteins associated with DKD identified through proteomics. Gene ontology (GO) and signaling pathway enrichment analysis were performed. The biological functions of the active candidate metabolites and their effects on downstream pathways were also verified. RESULTS Metabolomics revealed 130 differentially expressed metabolites. Through co-expression network analysis coupled with the investigation of differentially expressed proteins in proteomics, 2-hydroxyphenylpropionylglycine (2-HPG) emerged as a key regulator of DKD. 2-HPG was found to modulate the progression of DKD by regulating the conformation and activity of synaptophysin 1 (SYNJ1), with a correlation coefficient of 0.974. In vivo experiments revealed that SYNJ1 expression was significantly downregulated in the Macroalbuminuria Group compared to the Control Group and negatively correlated with proteinuria (r = -0.7137), indicating its important role in DKD progression. Immunofluorescence demonstrated that treatment with 2-HPG restores the expression of the foot process marker protein Wilms tumor-1 (WT-1) in podocytes injured by high glucose levels. Western blot and polymerase chain reaction support the involvement of SYNJ1 in this process. CONCLUSIONS This study demonstrated the significance of the 2-HPG/SYNJ1 signaling axis in safeguarding the foot process of podocytes in DKD.
Collapse
Affiliation(s)
- Xinmiao Xie
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yanzhe Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Sijia Chen
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuyuan Liu
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, PR China
| | - Fengqin Li
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chuchu Zeng
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ling Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoxia Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
8
|
Li J, Zhu N, Wang Y, Bao Y, Xu F, Liu F, Zhou X. Application of Metabolomics and Traditional Chinese Medicine for Type 2 Diabetes Mellitus Treatment. Diabetes Metab Syndr Obes 2023; 16:4269-4282. [PMID: 38164418 PMCID: PMC10758184 DOI: 10.2147/dmso.s441399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetes is a major global public health problem with high incidence and case fatality rates. Traditional Chinese medicine (TCM) is used to help manage Type 2 Diabetes Mellitus (T2DM) and has steadily gained international acceptance. Despite being generally accepted in daily practice, the TCM methods and hypotheses for understanding diseases lack applicability in the current scientific characterization systems. To date, there is no systematic evaluation system for TCM in preventing and treating T2DM. Metabonomics is a powerful tool to predict the level of metabolites in vivo, reveal the potential mechanism, and diagnose the physiological state of patients in time to guide the follow-up intervention of T2DM. Notably, metabolomics is also effective in promoting TCM modernization and advancement in personalized medicine. This review provides updated knowledge on applying metabolomics to TCM syndrome differentiation, diagnosis, biomarker discovery, and treatment of T2DM by TCM. Its application in diabetic complications is discussed. The combination of multi-omics and microbiome to fully elucidate the use of TCM to treat T2DM is further envisioned.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Na Zhu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yaqiong Wang
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yanlei Bao
- Department of Pharmacy, Liaoyuan People’s Hospital, Liaoyuan, People’s Republic of China
| | - Feng Xu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Fengjuan Liu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Xuefeng Zhou
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| |
Collapse
|
9
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Luo M, Zhang Z, Lu Y, Feng W, Wu H, Fan L, Guan B, Dai Y, Tang D, Dong X, Yun C, Hocher B, Liu H, Li Q, Yin L. Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease. Int Urol Nephrol 2023; 55:1001-1013. [PMID: 36255506 DOI: 10.1007/s11255-022-03326-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Diabetic kidney disease (DKD) is the most common complication of type 2 diabetes mellitus (T2DM), and its pathogenesis is not yet fully understood and lacks noninvasive and effective diagnostic biomarkers. In this study, we performed urine metabolomics to identify biomarkers for DKD and to clarify the potential mechanisms associated with disease progression. METHODS We applied a liquid chromatography-mass spectrometry-based metabolomics method combined with bioinformatics analysis to investigate the urine metabolism characteristics of 79 participants, including healthy subjects (n = 20), T2DM patients (n = 20), 39 DKD patients that included 19 DKD with microalbuminuria (DKD + micro) and 20 DKD with macroalbuminuria (DKD + macro). RESULTS Seventeen metabolites were identified between T2DM and DKD that were involved in amino acid, purine, nucleotide and primarily bile acid metabolism. Ultimately, a combined model consisting of 2 metabolites (tyramine and phenylalanylproline) was established, which had optimal diagnostic performance (area under the curve (AUC) = 0.94). We also identified 19 metabolites that were co-expressed within the DKD groups and 41 metabolites specifically expressed in the DKD + macro group. Ingenuity pathway analysis revealed three interaction networks of these 60 metabolites, involving the sirtuin signaling pathway and ferroptosis signaling pathway, as well as the downregulation of organic anion transporter 1, which may be important mechanisms that mediate the progression of DKD. CONCLUSIONS This work reveals the metabolic alterations in T2DM and DKD, constructs a combined model to distinguish them and delivers a novel strategy for studying the underlying mechanism and treatment of DKD.
Collapse
Affiliation(s)
- Maolin Luo
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Department of Endocrinology and Metabolism, People's Hospital of Liwan District, Guangzhou, 510380, People's Republic of China
| | - Zeyu Zhang
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN, 518020, People's Republic of China
| | - Yongping Lu
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Weifeng Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hongwei Wu
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Lijing Fan
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Baozhang Guan
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yong Dai
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN, 518020, People's Republic of China
| | - Donge Tang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN, 518020, People's Republic of China
| | - Xiangnan Dong
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Chen Yun
- Department of Nephrology, Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Berthold Hocher
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Department of Nephrology, Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- Department of Medicine Nephrology, University Medicai Centre Mannheim, Heidelberg, Germany
| | - Haiping Liu
- The Second People's Hospital of Lianping County, Guangdong, 517139, People's Republic of China.
| | - Qiang Li
- Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, 523000, People's Republic of China.
| | - Lianghong Yin
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Yang J, Wu J, Tekola-Ayele F, Li LJ, Bremer AA, Lu R, Rahman ML, Weir NL, Pang WW, Chen Z, Tsai MY, Zhang C. Plasma Amino Acids in Early Pregnancy and Midpregnancy and Their Interplay With Phospholipid Fatty Acids in Association With the Risk of Gestational Diabetes Mellitus: Results From a Longitudinal Prospective Cohort. Diabetes Care 2023; 46:722-732. [PMID: 36701229 PMCID: PMC10090921 DOI: 10.2337/dc22-1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We prospectively evaluated plasma amino acids (AAs) in early pregnancy and midpregnancy and their interplay with phospholipid fatty acids (FAs) in association with gestational diabetes mellitus (GDM) risk. RESEARCH DESIGN AND METHODS From a longitudinal pregnancy cohort of 2,802 individuals, concentrations of 24 plasma AAs at 10-14 and 15-26 gestational weeks (GW) were assessed among 107 GDM case subjects and 214 non-GDM control subjects. We estimated adjusted odds ratios (OR) and 95% CI for the associations of plasma AAs and the joint associations of plasma AAs and phospholipid FAs with GDM risk, adjusting for risk factors including age, prepregnancy BMI, and family history of diabetes. RESULTS Glycine at 10-14 GW was inversely associated with GDM (adjusted OR [95% CI] per SD increment: 0.55 [0.39-0.79]). Alanine, aspartic acid, and glutamic acid at 10-14 GW were positively associated with GDM (1.43 [1.08-1.88], 1.41 [1.11-1.80], and 1.39 [0.98-1.98]). At 15-26 GW, findings for glycine, alanine, aspartic acid, and the glutamine-to-glutamic acid ratio were consistent with the directions observed at 10-14 GW. Isoleucine, phenylalanine, and tyrosine were positively associated with GDM (1.64 [1.19-2.27], 1.15 [0.87-1.53], and 1.56 [1.16-2.09]). All P values for linear trend were <0.05. Several AAs and phospholipid FAs were significantly and jointly associated with GDM. For instance, the lowest risk was observed among women with higher glycine and lower even-chain saturated FAs at 10-14 GW (adjusted OR [95% CI] 0.15 [0.06, 0.37]). CONCLUSIONS Plasma AAs may be implicated in GDM development starting in early pregnancy. Associations of AAs with GDM may be enhanced in the copresence of phospholipid FA profile.
Collapse
Affiliation(s)
- Jiaxi Yang
- Global Centre for Asian Women’s Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Wu
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Fasil Tekola-Ayele
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Ling-Jun Li
- Global Centre for Asian Women’s Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrew A. Bremer
- Division of Extramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Ruijin Lu
- Division of Biostatistics, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Mohammad L. Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Natalie L. Weir
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Wei Wei Pang
- Global Centre for Asian Women’s Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhen Chen
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Cuilin Zhang
- Global Centre for Asian Women’s Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
12
|
Efficacy of Yishen Huashi Granules Combined with Linagliptin Tablets on Blood Glucose and Renal Function in Patients with Type 2 Diabetic Nephropathy. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4272520. [PMID: 36177313 PMCID: PMC9514935 DOI: 10.1155/2022/4272520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Objective To probe into the efficacy of Yishen Huashi granules combined with linagliptin tablets in the treatment of type 2 diabetic nephropathy (DN) and its effect on blood glucose and renal function in patients. Methods 70 patients with type 2 DN at our hospital between May 2020 and May 2022 were chosen as the research objects and separated into the control group and the research group based on their treatments. With 35 cases in each group, the patients treated with initial therapy and linagliptin tablets were enrolled in the control group, and those who received the above treatments and also Yishen Huashi granules were included in the research group. Their clinical indexes such as blood glucose and renal function were compared with both groups after treatment. Results After treatment, the research group had remarkably lower fasting blood glucose (FPG), 2 h-postprandial blood glucose (2 h-PBG), and glycosylated hemoglobin A1c (HbA1c) levels than those in the control group (P < 0.05). After treatment, the research group had remarkably lower levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) (P < 0.05) and higher high-density lipoprotein (HDL) levels (P < 0.05) than those in the control group. After treatment, the urinary microalbumin (u-mALB) level was remarkably lower in both groups (P < 0.05) and was distinctly lower in the research group than in the control group (P < 0.05). After treatment, the research group had remarkably lower renal function indexes such as serum creatinine (SCr), blood urea nitrogen (BUN), urinary protein (UPro), and urinary albumin excretion rate (UAER) (P < 0.05) and a higher estimated glomerular filtration rate (eGFR) level (P < 0.05) than those in the control group. The efficacy was evaluated by the traditional Chinese medicine (TCM) syndrome score after treatment. There were no patients in complete remission between both the groups, where slight differences were found in the proportion of significant remission (P > 0.05), with the total effective rate of the research group remarkably higher than that of the control group (P < 0.05). Conclusion The combination of Yishen Huashi granules and linagliptin tablets can reduce the blood glucose and blood lipid levels in patients with type 2 DN and lower UPro and protect renal function at the same time, which provides a new idea and a method for clinical treatment of type 2 DN with integrated traditional Chinese and Western medicine.
Collapse
|
13
|
Ni Y, Zheng A, Hu Y, Rong N, Zhang Q, Long W, Yang S, Nan S, Zhang L, Zhou K, Wu T, Fu Z. Compound dietary fiber and high-grade protein diet improves glycemic control and ameliorates diabetes and its comorbidities through remodeling the gut microbiota in mice. Front Nutr 2022; 9:959703. [PMID: 35958251 PMCID: PMC9363113 DOI: 10.3389/fnut.2022.959703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary intervention with a low glycemic index and full nutritional support is emerging as an effective strategy for diabetes management. Here, we found that the treatment of a novel compound dietary fiber and high-grade protein diet (CFP) improved glycemic control and insulin resistance in streptozotocin-induced diabetic mice, with a similar effect to liraglutide. In addition, CFP treatment ameliorated diabetes-related metabolic syndromes, such as hyperlipidemia, hepatic lipid accumulation and adipogenesis, systemic inflammation, and diabetes-related kidney damage. These results were greatly associated with enhanced gut barrier function and altered gut microbiota composition and function, especially those bacteria, microbial functions, and metabolites related to amino acid metabolism. Importantly, no adverse effect of CFP was found in our study, and CFP exerted a wider arrange of protection against diabetes than liraglutide. Thereby, fortification with balanced dietary fiber and high-grade protein, like CFP, might be an effective strategy for the management and treatment of diabetes.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Aqian Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yating Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Nianke Rong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qianpeng Zhang
- Polaris Health Life Science Research Center, Zhejiang University of Technology, Hangzhou, China
| | - Wenmin Long
- Polaris Health Life Science Research Center, Zhejiang University of Technology, Hangzhou, China
| | - Song Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sujie Nan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liqian Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kexin Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tianxing Wu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
14
|
Ji T, Wang J, Xu Z, Cai HD, Su SL, Peng X, Ruan HS. Combination of mulberry leaf active components possessed synergetic effect on SD rats with diabetic nephropathy by mediating metabolism, Wnt/β-catenin and TGF-β/Smads signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115026. [PMID: 35074452 DOI: 10.1016/j.jep.2022.115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/25/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry leaf has attracted much attention due to its excellent curative effect on diabetes and its complications, whether the combination of its effective components have protective and synergistic effect on diabetic nephropathy (DN) in vivo remain unclear. AIM OF THE STUDY The aim of this study was to investigate the protective and synergistic effect of the combination (MAF1:1 and MAF1:5) of mulberry leaf alkaloids (MA) and flavonoids extract (MF) on DN. MATERIALS AND METHODS A step by step method consisted of network pharmacological prediction, animal in vivo validation and metabolic mechanism research was used to construct the multi-component-target-pathway network of mulberry leaf against DN. Firstly, the potential components and mechanism of mulberry leaf against DN was explored by network pharmacology analysis. Secondly, DN animal model was established to validate the anti-DN activity of these potential compounds. Thirdly, the metabolomics of serum and urine samples from animal experiments was analyzed to explore the anti-DN mechanism of these potential compounds. RESULTS The results of network pharmacology demonstrated that a total of 7 compounds detected in MA and MF exhibited anti-DN activity, their mechanism were strongly in connection with metabolic pathways, arachidonic acid metabolism, sphingolipid signaling pathway, etc. The results of animal experiment indicated that MAF1:1 and MAF1:5 significantly relieved metabolic disorders through regulating Wnt/β-catenin and TGF-β/Smads signaling pathway, just like MF or MA alone. Metabolomics suggested they could regulate 16 serum and 7 urine endogenous metabolites through arachidonic acid metabolism, phenylalanine metabolism and sphingolipid metabolism, thus alleviated DN. Significantly, MAF1:1 and MAF1:5 might possess synergistic effect considering their therapeutic effects on DN rats were superior to the single use of MA or MF. CONCLUSIONS MAF1:1 and MAF1:5 possessed protective and synergistic effect on DN rats through multi-target and multi-pathways. These findings were of great scientific significance and application value to reveal the advantage of mulberry leaf in preventing and treating DN.
Collapse
Affiliation(s)
- Tao Ji
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, PR China
| | - Juan Wang
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, PR China
| | - Zhuo Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Die Cai
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Zhejiang Province, Ningbo, 315100, PR China.
| | - Hong-Sheng Ruan
- Zhejiang Pharmaceutical College, Zhejiang Province, Ningbo, 315100, PR China
| |
Collapse
|
15
|
Zhang F, Li DX, Lu DY, Lu YF, Zhang R, Zhao LL, Ji S, Guo MZ, Du Y, Tang DQ. Analysis of plasma free amino acids in diabetic rat and the intervention of Ginkgo biloba leaves extract using hydrophilic interaction liquid chromatography coupled with tandem mass-spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123230. [PMID: 35349934 DOI: 10.1016/j.jchromb.2022.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
Amino acids (AAs) are important metabolites that are related with diabetes. However, their roles in the initiation and development of diabetes mellitus (DM), especially in the treatment of Ginkgo biloba leaves extract (GBE) have not been fully explored. Thus, we investigated the roles that AAs played in the progression and GBE supplementation of DM rat induced by streptozotocin. The rats were randomly divided into a normal control group treated with drug-free solution, a normal control group treated with GBE, a DM group treated with drug-free solution, and DM group treated with GBE; and maintained on this protocol for 9 weeks. Rat plasma was collected from the sixth week to the ninth week and then analyzed with the optimized hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry method. A total of 17 AAs with differential levels were monitored to indicate dysfunction of AAs metabolism to confirm the occurrence and development of DM. Treatment with GBE partially reversed the changes seen in seven AAs including leucine, isoleucine, tyrosine, glutamic acid, asparagines, lysine and alanine in DM rats, indicating that GBE could prevent the occurrence and development of DM by acting on AAs metabolism. The improvement of those AAs metabolism disorders may play a considerable role in the treatment of GBE on the occurrence and development of DM. Those findings potentially promote the understanding of the pathogenic progression of DM and reveal the therapeutic mechanism of GBE against DM.
Collapse
Affiliation(s)
- Fan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital, Suining, China
| | - Yi-Fan Lu
- The Second Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lin-Lin Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, Suining People's Hospital, Suining, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
16
|
Pereira PR, Carrageta DF, Oliveira PF, Rodrigues A, Alves MG, Monteiro MP. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med Res Rev 2022; 42:1518-1544. [PMID: 35274315 DOI: 10.1002/med.21883] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most prevalent comorbidities of diabetes mellitus and the leading cause of the end-stage renal disease (ESRD). DKD results from chronic exposure to hyperglycemia, leading to progressive alterations in kidney structure and function. The early development of DKD is clinically silent and when albuminuria is detected the lesions are often at advanced stages, leading to rapid kidney function decline towards ESRD. DKD progression can be arrested or substantially delayed if detected and addressed at early stages. A major limitation of current methods is the absence of albuminuria in non-albuminuric phenotypes of diabetic nephropathy, which becomes increasingly prevalent and lacks focused therapy. Metabolomics is an ever-evolving omics technology that enables the study of metabolites, downstream products of every biochemical event that occurs in an organism. Metabolomics disclosures complex metabolic networks and provide knowledge of the very foundation of several physiological or pathophysiological processes, ultimately leading to the identification of diseases' unique metabolic signatures. In this sense, metabolomics is a promising tool not only for the diagnosis but also for the identification of pre-disease states which would confer a rapid and personalized clinical practice. Herein, the use of metabolomics as a tool to identify the DKD metabolic signature of tubule interstitial lesions to diagnose or predict the time-course of DKD will be discussed. In addition, the proficiency and limitations of the currently available high-throughput metabolomic techniques will be discussed.
Collapse
Affiliation(s)
- Pedro R Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.,Department of Nephrology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD, EPE), Vila Real, Portugal
| | - David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Pedro F Oliveira
- Department of Chemistry, QOPNA & LAQV, University of Aveiro, Aveiro, Portugal
| | - Anabela Rodrigues
- Department of Nephrology and Department of Clinical Pathology, Santo António General Hospital (Hospital Center of Porto, EPE), Porto, Portugal.,Nephrology, Dialysis and Transplantation, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Department of Biology, Unit of Cell Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
17
|
Li J, Zhang AH, Wu FF, Wang XJ. Alterations in the Gut Microbiota and Their Metabolites in Colorectal Cancer: Recent Progress and Future Prospects. Front Oncol 2022; 12:841552. [PMID: 35223525 PMCID: PMC8875205 DOI: 10.3389/fonc.2022.841552] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer morbidity and mortality worldwide. The etiology and pathogenesis of CRC remain unclear. A growing body of evidence suggests dysbiosis of gut bacteria can contribute to the occurrence and development of CRC by generating harmful metabolites and changing host physiological processes. Metabolomics, a systems biology method, will systematically study the changes in metabolites in the physiological processes of the body, eventually playing a significant role in the detection of metabolic biomarkers and improving disease diagnosis and treatment. Metabolomics, in particular, has been highly beneficial in tracking microbially derived metabolites, which has substantially advanced our comprehension of host-microbiota metabolic interactions in CRC. This paper has briefly compiled recent research progress of the alterations of intestinal flora and its metabolites associated with CRC and the application of association analysis of metabolomics and gut microbiome in the diagnosis, prevention, and treatment of CRC; furthermore, we discuss the prospects for the problems and development direction of this association analysis in the study of CRC. Gut microbiota and their metabolites influence the progression and causation of CRC, and the association analysis of metabolomics and gut microbiome will provide novel strategies for the prevention, diagnosis, and therapy of CRC.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-hua Zhang
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
18
|
Mu X, Yang M, Ling P, Wu A, Zhou H, Jiang J. Acylcarnitines: Can They Be Biomarkers of Diabetic Nephropathy? Diabetes Metab Syndr Obes 2022; 15:247-256. [PMID: 35125878 PMCID: PMC8811266 DOI: 10.2147/dmso.s350233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN), one of the most serious microvascular complications of diabetes mellitus (DM), may progress to end-stage renal disease (ESRD). Current biochemical biomarkers, such as urinary albumin excretion rate (UAER), have limitations for early screening and monitoring of DN. Recent studies have identified some metabolites as candidate biomarkers for early detection of DN. In this review, we summarize the role of dysregulated acylcarnitines (AcylCNs) in DN pathophysiology. Lower abundance of short- and medium-chain AcylCNs and higher long-chain AcylCNs often occurred in DM with normal albuminuria and microalbuminuria, compared with advanced stages of DN. The increase of long-chain AcylCNs was supposed to be an adaptive compensation in fat acids (FAs) oxidation in the early stage of DN. Conversely, the decrease of long-chain AcylCNs was due to incomplete oxidation of FAs in advanced stage of DN. Thus, AcylCNs may serve as sensitive biomarkers in predicting the risk of DN.
Collapse
Affiliation(s)
- Xiaodie Mu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Peiyao Ling
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Aihua Wu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Hua Zhou
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| |
Collapse
|
19
|
Qi JW, Huang B, Wang S, Song D, Xu J, Cui Y, Guo B. Association Between Plasma Vitamin D2 and Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:897316. [PMID: 35721707 PMCID: PMC9198404 DOI: 10.3389/fendo.2022.897316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate the relationship between plasma vitamin D2(VD2) and type 2 diabetes(T2DM). METHOD Data from electronic medical records of 797 inpatients treated at Sun Yat Sen Memorial Hospital, Sun Yat-sen University between June 24, 2019 and December 24, 2020 were collected, and a total of 596 patients were enrolled after screening based on inclusion and exclusion criteria. Patients were divided into diabetic and non-diabetic groups according to whether they had T2DM. The Wilcoxon rank sum test was finally selected for the analysis of differences between groups according to the distribution of patients' plasma VD2, and logistic regression models were used to find the corresponding influencing factors. RESULT Of the 596 hospitalized patients, 138 (23.15%) were diagnosed with T2DM. The Wilcoxon test showed no statistically significant difference in plasma VD2 concentrations between the T2DM and non-T2DM groups (p=0.833). After adjustment for confounders by multivariate logistic regression, there was still no significant difference in plasma VD2 concentrations between the two groups (P=0.316, OR: 1.15 (0.88,1.49)). The uncorrelated relationship between VD2 and T2DM was not found to change after incorporating 12 indicators, including demographic characteristics, laboratory indicators and complications, into the logistic regression model by 3 steps, even the OR (1.08 (0.92,1.26)) did not change in the 3 models. Similarly, the adjusted ORs agreed that there was no statistical association between VD2 and T2DM. CONCLUSION VD2 levels are similar in patients with T2DM compared to those without T2DM. Clinical caution should be exercised in giving VD2 supplementation to patients with T2DM unless other diseases requiring VD2 supplementation (e.g., rickets, osteoporosis) are present.
Collapse
Affiliation(s)
- Jing-Wan Qi
- Department of Microbiology and Biochemical Pharmacy, Pharmaceutical Sciences School of Jinzhou Medical University, Jinzhou, China
| | - Bing Huang
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Shuang Wang
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Dan Song
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Jing Xu
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Ying Cui
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Bin Guo
- Department of Microbiology and Biochemical Pharmacy, Pharmaceutical Sciences School of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Bin Guo,
| |
Collapse
|
20
|
Olugbuyi AO, Malomo SA, Ijarotimi OS, Fagbemi TN. Amino Acids Profile,Glyceamic Index/load, In-vitro Antioxidant and Sensory Attributes of Optimized Dough Meal from the Blends of Plantain, Soycake and Rice-bran Flours. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.2016530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ayo Oluwadunsin Olugbuyi
- Department of Hospitality and Tourism Management, Federal University, Oye Ekiti, Nigeria
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Sunday Abiodun Malomo
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | | | - Tayo Nathaniel Fagbemi
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
21
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
22
|
Amino Acid Signature of Oxidative Stress in Patients with Type 2 Diabetes: Targeted Exploratory Metabolomic Research. Antioxidants (Basel) 2021; 10:antiox10040610. [PMID: 33921149 PMCID: PMC8071553 DOI: 10.3390/antiox10040610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress plays a key role in the development of chronic diabetes-related complications. Previous metabolomic studies showed a positive association of diabetes and insulin resistance with branched-chain amino acids (AAs) and aromatic AAs. The purpose of this research is to identify distinct metabolic changes associated with increased oxidative stress, as assessed by nitrotyrosine levels, in type 2 diabetes (T2DM). Serum samples of 80 patients with insulin-treated T2DM are analyzed by AA-targeted metabolomics using ultrahigh-performance liquid chromatography/mass spectrometry. Patients are divided into two groups based on their nitrotyrosine levels: the highest level of oxidative stress (Q4 nitrotyrosine) and lower levels (Q1–Q3 nitrotyrosine). The identification of biomarkers is performed in MetaboAnalyst version 5.0 using a t-test corrected for false discovery rate, unsupervised principal component analysis and supervised partial least-squares discriminant analysis (PLS-DA). Four AAs have significantly different levels between the groups for highest and lower oxidative stress. Cysteine, phenylalanine and tyrosine are substantially increased while citrulline is decreased (p-value <0.05 and variable importance in the projection [VIP] >1). Corresponding pathways that might be disrupted in patients with high oxidative stress are phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, phenylalanine metabolism, cysteine and methionine metabolism and tyrosine metabolism.
Collapse
|