1
|
Farmani AR, Nekoofar MH, Ebrahimi-Barough S, Azami M, Najafipour S, Moradpanah S, Ai J. Preparation and In Vitro Osteogenic Evaluation of Biomimetic Hybrid Nanocomposite Scaffolds Based on Gelatin/Plasma Rich in Growth Factors (PRGF) and Lithium-Doped 45s5 Bioactive Glass Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 31:870-885. [PMID: 36373108 PMCID: PMC9638231 DOI: 10.1007/s10924-022-02615-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bone tissue engineering is an emerging technique for repairing large bone lesions. Biomimetic techniques expand the use of organic-inorganic spongy-like nanocomposite scaffolds and platelet concentrates. In this study, a biomimetic nanocomposite scaffold was prepared using lithium-doped bioactive-glass nanoparticles and gelatin/PRGF. First, sol-gel method was used to prepare bioactive-glass nanoparticles that contain 0, 1, 3, and 5%wt lithium. The lithium content was then optimized based on antibacterial and MTT testing. By freeze-drying, hybrid scaffolds comprising 5, 10, and 20% bioglass were made. On the scaffolds, human endometrial stem cells (hEnSCs) were cultured for adhesion (SEM), survival, and osteogenic differentiation. Alkaline phosphatase activity and osteopontin, osteocalcin, and Runx2 gene expression were measured. The effect of bioactive-glass nanoparticles and PRGF on nanocomposites' mechanical characteristics and glass-transition temperature (T g) was also studied. An optimal lithium content in bioactive glass structure was found to be 3% wt. Nanoparticle SEM examination indicated grain deformation due to different sizes of lithium and sodium ions. Results showed up to 10% wt bioactive-glass and PRGF increased survival and cell adhesion. Also, Hybrid scaffolds revealed higher ALP-activity and OP, OC, and Runx2 gene expression. Furthermore, bioactive-glass has mainly increased ALP-activity and Runx2 expression, whereas PRGF increases the expression of OP and OC genes. Bioactive-glass increases scaffold modulus and T g continuously. Hence, the presence of both bioactive-glass and nanocomposite scaffold improves the expression of osteogenic differentiation biomarkers. Subsequently, it seems that hybrid scaffolds based on biopolymers, Li-doped bioactive-glass, and platelet extracts can be a good strategy for bone repair.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endodontics, School of Dentistry, Bahçeşehir University, Istanbul, Turkey
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Moradpanah
- Department of Obstetrics and Gynecology, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Platelet-Rich Plasma as an Alternative to Xenogeneic Sera in Cell-Based Therapies: A Need for Standardization. Int J Mol Sci 2022; 23:ijms23126552. [PMID: 35742995 PMCID: PMC9223511 DOI: 10.3390/ijms23126552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
There has been an explosion in scientific interest in using human-platelet-rich plasma (PRP) as a substitute of xenogeneic sera in cell-based therapies. However, there is a need to create standardization in this field. This systematic review is based on literature searches in PubMed and Web of Science databases until June 2021. Forty-one studies completed the selection criteria. The composition of PRP was completely reported in less than 30% of the studies. PRP has been used as PRP-derived supernatant or non-activated PRP. Two ranges could be identified for platelet concentration, the first between 0.14 × 106 and 0.80 × 106 platelets/µL and the second between 1.086 × 106 and 10 × 106 platelets/µL. Several studies have pooled PRP with a pool size varying from four to nine donors. The optimal dose for the PRP or PRP supernatant is 10%. PRP or PRP-derived supernatants a have positive effect on MSC colony number and size, cell proliferation, cell differentiation and genetic stability. The use of leukocyte-depleted PRP has been demonstrated to be a feasible alternative to xenogeneic sera. However, there is a need to improve the description of the PRP preparation methodology as well as its composition. Several items are identified and reported to create guidelines for future research.
Collapse
|
3
|
Gaviño-Orduña JF, Caviedes-Bucheli J, Manzanares-Céspedes MC, Román-Richon S, Martin-Biedma B, Segura-Egea JJ, Berástegui-Jimeno E, López-López J. Dentin Growth after Direct Pulp Capping with the Different Fractions of Plasma Rich in Growth Factors (PRGF) vs. MTA: Experimental Study in Animal Model. J Clin Med 2021; 10:jcm10153432. [PMID: 34362215 PMCID: PMC8347198 DOI: 10.3390/jcm10153432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background: This study aimed to evaluate the area of dentin growth in rabbit incisors after pulp capping with plasma rich in growth factors (PRGF) compared with mineral trioxide aggregate (MTA) by fluorescence. Methods: twenty-seven upper and lower incisors of rabbits were divided into 4 groups: poor PRGF (F1) (n = 9 teeth), rich PRGF (F2) (n = 8 teeth), ProRoot MTA (positive control, n = 5 teeth), and untreated (NC) (negative control, n = 5). Fluorochrome markers were injected 24 h before surgery and the day before euthanasia, 28 days after the vital pulp therapy (VPT). Two transverse cuts were performed to every tooth: the first cut (A), 1 mm incisal to the gingival margin, and the second cut (B), 5 mm apical to the first cut. The sections were assessed with histomorphometric evaluation by fluorescence microscopy, comparing the dentin area between fluorescence marks and the total mineralized area. Results: The higher percentage of dentin growth was observed in the F2 group (B = 63.25%, A = 36.52%), followed by F1 (B = 57.63%, A = 30,12%) and MTA (B = 38.64%, A = 15.74%). The group with lowest percentage of dentin growth was the NC group (B = 29.22%, A = 7.82%). Significant difference (p < 0.05) was found between F2 group and MTA, also statistically significant difference has been observed comparing dentin growth areas of NC group with F1 and F2 groups. Conclusions: The application of PRGF rich and poor fraction as a pulp capping material stimulated dentin formation more intensively than MTA and NC.
Collapse
Affiliation(s)
- José F. Gaviño-Orduña
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; (S.R.-R.); (E.B.-J.)
- Correspondence: (J.F.G.-O.); (J.L.-L.)
| | - Javier Caviedes-Bucheli
- Centro de Investigaciones Odontologicas (CIO), Pontificia Universidad Javeriana, Bogota 11001000, Colombia;
| | - María C. Manzanares-Céspedes
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain;
| | - Sophie Román-Richon
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; (S.R.-R.); (E.B.-J.)
| | - Benjamín Martin-Biedma
- Unit of Dental Pathology and Therapeutics II, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Juan J. Segura-Egea
- Department of Stomatology, School of Dentistry, University of Sevilla, 41009 Sevilla, Spain;
| | - Esther Berástegui-Jimeno
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; (S.R.-R.); (E.B.-J.)
| | - José López-López
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, School of Dentistry, University of Barcelona, 08907 Barcelona, Spain; (S.R.-R.); (E.B.-J.)
- Service of the Surgical Medical Area, Odontological Hospital University of Barcelona, University of Barcelona, 08907 Barcelona, Spain
- Oral Health and Masticatory System Group—IDIBELL (Bellvitge Biomedical Research Institute), University of Barcelona, 08907 Barcelona, Spain
- Correspondence: (J.F.G.-O.); (J.L.-L.)
| |
Collapse
|
4
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
5
|
Motejunas MW, Bonneval L, Carter C, Reed D, Ehrhardt K. Biologic Therapy in Chronic Pain Management: a Review of the Clinical Data and Future Investigations. Curr Pain Headache Rep 2021; 25:30. [PMID: 33761016 DOI: 10.1007/s11916-021-00947-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE With the aging population, it is clear that the demand for future chronic pain treatment modalities is at an all-time high. One of the newest treatment modalities that is gaining popularity with both practitioners and patients alike is that of regenerative medicine and the use of stem cells to treat chronic painful conditions. This article aims to distill the most recent, available data from both laboratory research and clinical trials to better illuminate the potentials for these therapies in the treatment of chronic pain. RECENT FINDINGS There are numerous investigations underway using mesenchymal stem cells (MSCs) to treat painful, largely degenerative conditions. A large majority of these investigations focus on osteoarthritis of the knee and have demonstrated significantly improved pain scores. Some of these investigations have demonstrated significantly increased articular cartilage and meniscus growth as well as improved function. These studies have been smaller (n, 18) and need to be corroborated on a macrolevel. Platelet-rich plasma (PRP)-based therapies have been most extensively studied in the treatment of knee osteoarthritis. Multiple prospective and randomized trials and meta-analyses have afforded level I evidence in support of PRP's safety and efficacy in chronic knee pain demonstrating both decreased pain (via VAS) and increased functional status (via WOMAC and IKDC). There have been randomized controlled trials examining PRP therapies in treatment degenerative disc disease (intradiscal treatment), facet arthropathy (intra-facet injections), and sacroiliitis (SIJ) which have all yielded similar positive results. Each RTC demonstrated decreased pain scores and increased function but lacks the scale to derive concrete guidelines. Newer investigations are underway examining modified PRP formulas with increased fibrin (PRF) or various growth factors (PRGF) and have shown positive outcomes with respect to osteoarthritic conditions in small trials. Animal trials are underway further investigating these therapies as well as specific gene modulation therapies. This review of the most recent investigations into the application and uses of biologic stem cell-derived treatments for chronic painful conditions should act to illustrate the growing, favorable data for these types of modalities both with respect to pain control and functional improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ken Ehrhardt
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
A humoral solution: Autologous blood products and tissue repair. Cell Immunol 2020; 356:104178. [PMID: 32861105 DOI: 10.1016/j.cellimm.2020.104178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Autologous blood-derived products (ABP) are the focus of growing scientific interest and are investigated and used for multiple medical indications. ABPs hold promise thanks to their availability, ease of preparation, and low risk of adverse allogenic reaction, hypersensitivity, and contamination. Compositional analysis of ABPs reveals a diverse mixture of cellular components, cytokines and growth factors that play roles in healing processes such as tissue proliferation and angiogenesis, modulation of the local environment through chemotaxis and regulation of inflammation and the extracellular matrix, as well as several immunomodulatory actions. Thus, the administration of ABP induces supraphysiological levels of components necessary for orchestrating reparative efforts in currently difficult-to-treat medical conditions. In this article, we review the variety of autologous blood-derived products, their composition, current clinical uses, regulatory climate, and mechanisms of action.
Collapse
|
7
|
Clinical Outcomes of Root-Analogue Implants Restored with Single Crowns or Fixed Dental Prostheses: A Retrospective Case Series. J Clin Med 2020; 9:jcm9082346. [PMID: 32717843 PMCID: PMC7465378 DOI: 10.3390/jcm9082346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
The objective was to investigate clinical and radiological outcomes of rehabilitations with root-analogue implants (RAIs). Patients restored with RAIs, supporting single crowns or fixed dental prostheses, were recruited for follow-up examinations. Besides clinical and esthetical evaluations, X-rays were taken and compared with the records. Patients were asked to evaluate the treatment using Visual Analogue Scales (VAS). For statistical analyses, mixed linear models were used. A total of 107 RAIs were installed in one dental office. Of these, 31 were available for follow-up examinations. For those remaining, survival has been verified via phone. RAIs were loaded after a mean healing time of 6.6 ± 2.5 months. 12.1 ± 6.9 months after loading, a mean marginal bone loss (MBL) of 1.20 ± 0.73 mm was measured. Progression of MBL significantly decreased after loading (p = 0.013). The mean pink and white esthetic score (PES/WES) was 15.35 ± 2.33 at follow-up. A survival rate of 94.4% was calculated after a mean follow-up of 18.9 ± 2.4 months after surgery. Immediate installation of RAIs does not seem to reduce MBL, as known from the literature regarding screw-type implants, and might not be recommended for daily routine. Nevertheless, they deliver esthetically satisfying results.
Collapse
|
8
|
Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic-alginate composite thermogel. Int J Pharm 2018; 543:160-168. [PMID: 29567197 DOI: 10.1016/j.ijpharm.2018.03.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
As the life expectancy of the world population increases, osteoporotic (OP) fracture risk increase. Therefore in the present study a novel injectable thermo-responsive hydrogel loaded with microspheres of 17β-estradiol, microspheres of bone morphogenetic protein-2 (BMP-2) and plasma rich in growth factors (PRGF) was applied locally to regenerate a calvaria critical bone defect in OP female rats. Three systems were characterized: Tetronic® 1307 (T-1307) reinforced with alginate (T-A), T-A with PRGF and T-A-PRGF with microspheres. The addition of the microspheres increased the viscosity but the temperature for the maximum viscosity did not change (22-24 °C). The drugs were released during 6 weeks in one fast phase (three days) followed by a long slow phase. In vivo evaluation was made in non-OP and OP rats treated with T-A, T-A with microspheres of 17β-estradiol (T-A-βE), T-A-βE prepared with PRGF (T-A-PRGF-βE), T-A-βE with microspheres of BMP-2 (T-A-βE-BMP-2) and the combination of the three (T-A-PRGF-βE-BMP). After 12 weeks, histological and histomorphometric analyzes showed a synergic effect due to the addition of BMP-2 to the T-A-βE formulation. The PRGF did not increased the bone repair. The new bone filling the OP defect was less mineralized than in the non-OP groups.
Collapse
|
9
|
Plasma Rich in Growth Factors Stimulates Proliferation and Mineralization in Mesenchymal Stem Cells from Human Bone Marrow . ACTA ACUST UNITED AC 2017. [DOI: 10.5466/ijoms.16.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|