1
|
Nicolae CL, Pîrvulescu DC, Niculescu AG, Epistatu D, Mihaiescu DE, Antohi AM, Grumezescu AM, Croitoru GA. An Up-to-Date Review of Materials Science Advances in Bone Grafting for Oral and Maxillofacial Pathology. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4782. [PMID: 39410353 PMCID: PMC11478239 DOI: 10.3390/ma17194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Bone grafting in oral and maxillofacial surgery has evolved significantly due to developments in materials science, offering innovative alternatives for the repair of bone defects. A few grafts are currently used in clinical settings, including autografts, xenografts, and allografts. However, despite their benefits, they have some challenges, such as limited availability, the possibility of disease transmission, and lack of personalization for the defect. Synthetic bone grafts have gained attention since they have the potential to overcome these limitations. Moreover, new technologies like nanotechnology, 3D printing, and 3D bioprinting have allowed the incorporation of molecules or substances within grafts to aid in bone repair. The addition of different moieties, such as growth factors, stem cells, and nanomaterials, has been reported to help mimic the natural bone healing process more closely, promoting faster and more complete regeneration. In this regard, this review explores the currently available bone grafts, the possibility of incorporating substances and molecules into their composition to accelerate and improve bone regeneration, and advanced graft manufacturing techniques. Furthermore, the presented current clinical applications and success stories for novel bone grafts emphasize the future potential of synthetic grafts and biomaterial innovations in improving patient outcomes in oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Dan Eduard Mihaiescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Alexandru Mihai Antohi
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| |
Collapse
|
2
|
Shakya A, Li Y, Chang NW, Liu X. Supra-Alveolar Bone Regeneration: Progress, Challenges, and Future Perspectives. COMPOSITES. PART B, ENGINEERING 2024; 283:111673. [PMID: 39071449 PMCID: PMC11270636 DOI: 10.1016/j.compositesb.2024.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Periodontitis is a highly prevalent disease that damages the supporting tissues of a tooth, including the alveolar bone. Alveolar bone loss owing to periodontitis is broadly categorized as supra-alveolar and intra-alveolar bone loss. In intra-alveolar bone loss, the defect has an angular or oblique orientation to the long axis of the tooth in an apical direction. In contrast, the defect is perpendicular to the long axis of the tooth in supra-alveolar bone loss. Unlike intra-alveolar bone defects, supra-alveolar bone defects lack supporting adjacent space, which makes supra-alveolar bone regeneration more challenging. In addition, the limited availability of resources in terms of vascularity and underlying tissues is another obstacle to supra-alveolar bone regeneration. Currently, supra-alveolar bone loss is the least predictable periodontal defect type in regenerative periodontal therapy. In addition, supra-alveolar bone loss is much more common than other alveolar bone loss. Despite its prevalence, research on supra-alveolar bone regeneration remains sparse, indicating an unmet need for significant research efforts in this area. This review summarize recent advances, obstacles, and future directions in the field of supra-alveolar bone regeneration. We discuss the biomaterials, bioactive molecules, and cells that have been tested for supra-alveolar bone regeneration, followed by pre-clinical and clinical approaches employed in this field. Additionally, we highlight obstacles and present future directions that will propel supra-alveolar bone research forward.
Collapse
Affiliation(s)
- Ajay Shakya
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246
| | - Yingzi Li
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246
- Chemical and Biomedical Engineering Department, University of Missouri, Columbia, MO 65211
| | - Nai-wen Chang
- Department of Periodontology, Texas A&M University School of Dentistry, Dallas, TX 75246
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246
- Chemical and Biomedical Engineering Department, University of Missouri, Columbia, MO 65211
| |
Collapse
|
3
|
van der Heide D, Hatt LP, Wirth S, Pirera ME, Armiento AR, Stoddart MJ. In vitroosteogenesis of hMSCs on collagen membranes embedded within LEGO ®-inspired 3D printed PCL constructs for mandibular bone repair. Biofabrication 2024; 16:045020. [PMID: 39079546 DOI: 10.1088/1758-5090/ad6931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO®-inspired interlocking mechanism enabling spatial distribution of biological components. To highlight itsin vitroosteogenic potential, human mesenchymal stromal cells are cultured onto Bio-Gide®Compressed collagen (Col) membranes, which are embedded within the layered construct for 28 d. The osteogenic response is assessed through the measurement of proliferation, relevant markers for osteogenesis including alkaline phosphatase (ALP) activity, expression of transcriptional genes (SP7, RUNX2/SOX9) as well matrix-related genes (COL1A1, ALPL IBSP, SPP1), osteoprotegerin secretion.In vitroosteogenic differentiation results showed increased levels of these osteogenic markers, indicating the layered construct's potential to support osteogenesis. In this study, a novel workflow of 3D printing a patient-specific LEGO®-inspired layered construct that can spatially deliver biological elements was successfully demonstrated. These layered constructs have the potential to be employed as a bone tissue engineering strategy, with particular focus on the repair of large mandibular defects.
Collapse
Affiliation(s)
- Daphne van der Heide
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Luan Phelipe Hatt
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
- Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Sylvie Wirth
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Maria E Pirera
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | | | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| |
Collapse
|
4
|
Kaigler D, Misch J, Alrmali A, Inglehart MR. Periodontists and stem cell-based therapy for alveolar bone regeneration: A national survey. J Periodontol 2024; 95:789-798. [PMID: 38196330 DOI: 10.1002/jper.23-0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Stem cell-based therapy for bone regeneration has received attention in medical settings but has not yet been used in clinical practice for treating alveolar bone defects. The objectives of this study were to explore whether periodontists had heard about this approach, and if so how, how interested they were to learn about it, which attitudes and behavioral intentions they had related to using stem cell-based grafting, and what they would like to know before using this approach. METHODS Anonymous survey data were collected from 481 members of the American Academy of Periodontology (response rate: 19.41%). RESULTS Responses showed 35.3% had heard about stem cell-based therapy, mostly from publications (9.6%) and meetings (8.3%); 76.1% wanted to learn about it through in-person continuing education (CE) courses, 68.6% in online CE courses, and 57.1% from manuals; 73% considered this approach promising; and 54.9% preferred it to traditional approaches. It was important to them that it would result in more bone volume (93%), better bone quality (90.4%), and accelerated healing (83.2%). Also, 60.1% considered it likely/very likely that they would adopt this approach, 54% that patients would prefer it, and 62.1% that it would benefit their practice. When asked what they would like to know about this approach, information about short- and long-term outcomes, cost, and logistical considerations were most frequently named. CONCLUSIONS These findings provide the basis to develop educational interventions for periodontists about this novel approach and inform future research activities aimed to translate this approach to clinical practice.
Collapse
Affiliation(s)
- Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Misch
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Abdusalam Alrmali
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Medicine, Oral Pathology, Oral and Maxillofacial Surgery, University of Tripoli School of Dentistry, Tripoli, Libya
| | - Marita R Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Psychology, College of Literature, Science and Arts (LS & A), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Abedi M, Shafiee M, Afshari F, Mohammadi H, Ghasemi Y. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Appl Biochem Biotechnol 2024; 196:5563-5603. [PMID: 38133881 DOI: 10.1007/s12010-023-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Assisted reproductive technologies are key to solving the problems of aging and organ defects. Collagen is compatible with living tissues and has many different chemical properties; it has great potential for use in reproductive medicine and the engineering of reproductive tissues. It is a natural substance that has been used a lot in science and medicine. Collagen is a substance that can be obtained from many different animals. It can be made naturally or created using scientific methods. Using pure collagen has some drawbacks regarding its physical and chemical characteristics. Because of this, when collagen is processed in various ways, it can better meet the specific needs as a material for repairing tissues. In simpler terms, collagen can be used to help regenerate bones, cartilage, and skin. It can also be used in cardiovascular repair and other areas. There are different ways to process collagen, such as cross-linking it, making it more structured, adding minerals to it, or using it as a carrier for other substances. All of these methods help advance the field of tissue engineering. This review summarizes and discusses the current progress of collagen-based materials for reproductive medicine.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran.
| | - Mina Shafiee
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Farideh Afshari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Flynn R, Foschi F, Maloney B, Creavin G, Duncan HF. The impact of bone grafting with/without barrier membrane placement on the outcome of apical surgery: A systematic review and meta-analysis. Int Endod J 2024; 57:1006-1020. [PMID: 38491954 DOI: 10.1111/iej.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Regenerative techniques are increasingly being advocated in endodontic apical surgery (AS) to enhance the healing of periapical lesions. Various grafting and membrane materials are employed as adjuncts to modern AS. OBJECTIVES This systematic review aimed to answer the following PICO question: In patients with apical periodontitis (P) what is the impact of bone grafting with/without barrier membrane materials (I) compared with surgery without grafting materials (C) on the outcome of AS evaluated clinically and radiographically (O). METHODS A systematic search was conducted in four databases (Embase, Web of Science, PubMed and Cochrane Central Register of Controlled Trials) until 1 August 2023. Google Scholar was also manually searched. Studies with a prospective randomized design were included. Cochrane risk-of-bias (RoB) tool 2.0 assessed bias. Two independent reviewers performed the study selection, data extraction and appraisal of studies. Meta-analysis was performed using R3.5.1 software. RESULTS From the identified 2582 studies, eight randomized clinical trials were included for meta-analysis. Two studies had low RoB, while six had some concerns. Analysis revealed significantly better outcomes when surgery involved bone regeneration techniques than conventional surgery (OR = 2.18, 95% CI: 1.32-4.31, p = .004). Subgroup analyses on individual grafts (OR = 0.22, 95% CI: -0.99 to 1.44, p = .720) (OR = -0.09, 95% CI: -1.42 to 1.23, p = .885) and membranes (OR = -1.09, 95% CI: -2.94 to 0.76, p = .247) and their combinations (OR = 0.03, 95% CI: -1.50 to 1.55, p = .970) did not yield any significant results. The type of membrane used did not significantly impact the outcome (OR = -1.09, 95% CI: -2.94 to 0.76, p = .247) nor did altering the combination of graft/membrane. DISCUSSION This systematic review examined the effects of bone grafting with/without membrane placement on the outcome of AS. It highlights the potential advantages of regenerative techniques and the need for further research in this area. CONCLUSIONS Based on current evidence, bone grafting with/without barrier membrane placement significantly improves healing after AS. Subgroup analysis of resorbable membranes or grafting did not significantly influence the outcome. The combination of membrane and graft was also not significant. Future well-designed, randomized controlled trials in this area are essential before these materials can be recommended for routine use to enhance healing outcomes in AS. REGISTRATION PROSPERO (CRD42021255171).
Collapse
Affiliation(s)
| | - Federico Foschi
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
- Peninsula Dental School, University of Plymouth, Plymouth, UK
| | - Brian Maloney
- Dublin Dental University Hospital, Trinity College Dublin, Dublin 2, Ireland
| | | | - Henry F Duncan
- Dublin Dental University Hospital, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Gangrade A, Zehtabi F, Rashad A, Haghniaz R, Falcone N, Mandal K, Khosravi S, Deka S, Yamauchi A, Voskanian L, Kim HJ, Ermis M, Khademhosseini A, de Barros NR. Nanobioactive Blood-Derived Shear-Thinning Biomaterial for Tissue Engineering Applications. APPLIED MATERIALS TODAY 2024; 38:102250. [PMID: 39006868 PMCID: PMC11242922 DOI: 10.1016/j.apmt.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The conventional technique for successful bone grafts, involving the use of a patienťs own tissue (autografts), is challenged by limited availability and donor site morbidity. While allografts and xenografts offer alternatives, they come with the risk of rejection. This underscores the pressing need for tailor-made artificial bone graft materials. In this context, injectable hydrogels are emerging as a promising solution for bone regeneration, especially in complex maxillofacial reconstruction cases. These hydrogels can seamlessly adapt to irregular shapes and conservatively fill defects. Our study introduces a shear-thinning biomaterial by blending silicate nanoplatelets (SNs) enriched with human blood-derived plasma rich in growth factors (PRGF) for personalized applications. Notably, our investigations unveil that injectable hydrogel formulations comprising 7.5% PRGF yield sustained protein and growth factor release, affording precise control over critical growth factors essential for tissue regeneration. Moreover, our hydrogel exhibits exceptional biocompatibility in vitro and in vivo and demonstrates hemostatic properties. The hydrogel also presents a robust angiogenic potential and an inherent capacity to promote bone differentiation, proven through Alizarin Red staining, gene expression, and immunostaining assessments of bone-related biomarkers. Given these impressive attributes, our hydrogel stands out as a leading candidate for maxillofacial bone regeneration application. Beyond this, our findings hold immense potential in revolutionizing the field of regenerative medicine, offering an influential platform for crafting precise and effective therapeutic strategies.
Collapse
Affiliation(s)
- Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Sangeeta Deka
- Indian Institute of Technology Guwahati, Assam, India, Pin-781039
| | - Alana Yamauchi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
- College of Pharmacy, Korea University, 30019, Republic of Korea
- Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
8
|
Zhang Y, Jian Y, Jiang X, Li X, Wu X, Zhong J, Jia X, Li Q, Wang X, Zhao K, Yao Y. Stepwise degradable PGA-SF core-shell electrospinning scaffold with superior tenacity in wetting regime for promoting bone regeneration. Mater Today Bio 2024; 26:101023. [PMID: 38525312 PMCID: PMC10959703 DOI: 10.1016/j.mtbio.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Regenerating bone in the oral and maxillofacial region is clinically challenging due to the complicated osteogenic environment and the limitation of existing bone graft materials. Constructing bone graft materials with controlled degradation and stable mechanical properties in a physiological environment is of utmost importance. In this study, we used silk fibroin (SF) and polyglycolic acid (PGA) to fabricate a coaxial PGA-SF fibrous scaffold (PGA-SF-FS) to meet demands for bone grafts. The SF shell exerted excellent osteogenic activity while protecting PGA from rapid degradation and the PGA core equipped scaffold with excellent tenacity. The experiments related to biocompatibility and osteogenesis (e.g., cell attachment, proliferation, differentiation, and mineralization) demonstrated the superior ability of PGA-SF-FS to improve cell growth and osteogenic differentiation. Furthermore, in vivo testing using Sprague-Dawley rat cranial defect model showed that PGA-SF-FS accelerates bone regeneration as the implantation time increases, and its stepwise degradation helps to match the remodeling kinetics of the host bone tissue. Besides, immunohistochemical staining of CD31 and Col-1 confirmed the ability of PGA-SF-FS to enhance revascularization and osteogenesis response. Our results suggest that PGA-SF-FS fully utilizing the advantages of both components, exhibites stepwise degradation and superior tenacity in wetting regime, making it a promising candidate in the treatment of bone defects.
Collapse
Affiliation(s)
- Yuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yutao Jian
- Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuerong Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Juan Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoshi Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiulan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaodong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ke Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yitong Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
9
|
Naini AY, Kobravi S, Jafari A, Lotfalizadeh M, Lotfalizadeh N, Farhadi S. Comparing the effects of Bone +B® xenograft and InterOss® xenograft bone material on rabbit calvaria bone defect regeneration. Clin Exp Dent Res 2024; 10:e875. [PMID: 38798121 PMCID: PMC11128774 DOI: 10.1002/cre2.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The bone regeneration therapy is often used in patients with inadequate bone support for implants, particularly following tooth extractions. Xenografts derived from animal tissues are effective bone reconstructive options that resist resorption and pose a low risk of transmitting disease. Therefore, these implants may be a good option for enhancing and stabilizing maxillary sinuses. The purpose of this study was to compare two xenografts, Bone+B® and InterOss®, for the reconstruction of rabbit calvaria defects. METHODS AND MATERIALS The study involved seven male New Zealand white rabbits. In the surgical procedure, 21 spots were created on both sides of the midline calvarium by creating three 8-millimeter defects. A control group was used, as well as two treatment groups utilizing Bone+B® Grafts and InterOss® Grafts. After 3 months, the rabbits were euthanized, followed by pathological evaluation. Analysis of these samples focused on bone formation, xenograft remaining material, and inflammation levels, using Adobe Photoshop CS 8.0 and SPSS version 24. RESULTS With the application of Bone+B® graft, bone formation ranged from 32% to 45%, with a mean of 37.80% (±5.63), and the remaining material ranged from 28% to 37%, with a mean of 32.60% (±3.65). Using InterOss® grafts, bone formation was 61% to 75%, the mean was 65.83% (±4.75), and the remaining material was 9% to 18%, with a mean of 13.17% (±3.06). The bone formation in the control group ranged from 10% to 25%, with a mean of 17.17% (±6.11). InterOss® had lower inflammation levels than other groups, but the difference was not statistically significant (p > .05). CONCLUSION InterOss® bone powder is the best option for maxillofacial surgery and bone reconstruction. This is due to more bone formation, less remaining material, and a lower inflammation level. Compared to the control group, Bone+B® improves healing and bone quality, thus making it an alternative to InterOss®.
Collapse
Affiliation(s)
- Afshin Yadegari Naini
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry (Khorasgan)Isfahan Azad UniversityIsfahanIran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran medical sciencesIslamic Azad UniversityTehranIran
| | - Aida Jafari
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry (Khorasgan)Isfahan Azad UniversityIsfahanIran
| | | | - Narges Lotfalizadeh
- Department of Clinical Sciences, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Sareh Farhadi
- Department of Oral & Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
10
|
De Lauretis A, Øvrebø Ø, Romandini M, Lyngstadaas SP, Rossi F, Haugen HJ. From Basic Science to Clinical Practice: A Review of Current Periodontal/Mucogingival Regenerative Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308848. [PMID: 38380549 PMCID: PMC11077667 DOI: 10.1002/advs.202308848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Periodontitis is a dysbiosis-driven inflammatory disease affecting the tooth-supporting tissues, characterized by their progressive resorption, which can ultimately lead to tooth loss. A step-wise therapeutic approach is employed for periodontitis. After an initial behavioral and non-surgical phase, intra-bony or furcation defects may be amenable to regenerative procedures. This review discusses the regenerative technologies employed for periodontal regeneration, highlighting the current limitations and future research areas. The search, performed on the MEDLINE database, has identified the available biomaterials, including biologicals (autologous platelet concentrates, hydrogels), bone grafts (pure or putty), and membranes. Biologicals and bone grafts have been critically analyzed in terms of composition, mechanism of action, and clinical applications. Although a certain degree of periodontal regeneration is predictable in intra-bony and class II furcation defects, complete defect closure is hardly achieved. Moreover, treating class III furcation defects remains challenging. The key properties required for functional regeneration are discussed, and none of the commercially available biomaterials possess all the ideal characteristics. Therefore, research is needed to promote the advancement of more effective and targeted regenerative therapies for periodontitis. Lastly, improving the design and reporting of clinical studies is suggested by strictly adhering to the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement.
Collapse
Affiliation(s)
- Angela De Lauretis
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Øystein Øvrebø
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Mario Romandini
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| |
Collapse
|
11
|
Baru O, Buduru SD, Berindan-Neagoe I, Leucuta DC, Roman AR, Tălmăceanu D, Silvasan H, Badea ME. Autologous leucocyte and platelet rich in fibrin (L-PRF) - is it a competitive solution for bone augmentation in maxillary sinus lift? A 6-month radiological comparison between xenografts and L-PRF. Med Pharm Rep 2024; 97:222-233. [PMID: 38746034 PMCID: PMC11090277 DOI: 10.15386/mpr-2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/24/2024] [Indexed: 05/16/2024] Open
Abstract
Maxillary lateral sinus floor elevation, or external sinus lift, is a widespread surgical intervention in the dental field. Insertion of implants in the posterior region of the maxilla often requires reconstruction of the remaining native bone that has insufficient volume. Background and aims Much of the research published involves using artificial products, like xenografts and resorbable collagen membranes, after a prior Cone Beam Computer Tomography (CBCT) investigation. Nowadays, more accessible access, less financial costs, a biological approach, and faster healing are objectives that surround this procedure. Leucocytes and platelets rich in Fibrin (L-PRF) are a natural component with a high concentration of growth factors. Due to its regenerative properties and lack of complications, it is used in several medical fields, like orthopedics, dermatology, and oral surgery. This retrospective study aims to compare results in bone height and volume obtained through external sinus lift, either by using xenografts or autologous plasma rich in fibrin, by evaluating the quantity of new bone formation from a radiological point of view. Methods Fifty-eight Caucasian patients were included in this retrospective study; 48 were submitted to xenograft procedure, and 10 were selected for L-PRF grafting material with simultaneous implant placement. Lack of clinical and histological studies performed on patients with L-PRF surgeries limited us in choosing a larger group for the radiological analysis. CBCT evaluation was performed before surgery and 6 months after. All patients selected for the study presented good general and oral health, acute oral and sinus infections excluded; smoking and periodontal disease were also criteria of exclusion. Two operators performed the measurements in pre-established landmarks in different time frames. The two independent groups were compared with the Wilcoxon rank-sum test for quantitative data. Qualitative characteristics were described as counts and percentages. All analyses were performed in an R environment for statistical computing and graphics. Results Mean bone height gain in the xenograft group in the regions was as follows: 7.44 for the anterior landmark, 12.14 for the median and 8.28 for the distal. The mean group height gained for the L-PRF group was 0.1 anteriorly, -0.18 for the median measurement, and 0.23 distally. We obtained excellent overall reliability for all the height measurements between the two operators. Conclusions Further studies must be conducted to establish new sets of surgical protocols in case L-PRF alone is found to be a reliable, stable, biological alternative to the well-documented xenografts in external sinus lifts. Radiological results, although promising, must be further applied in long term clinical survival of the implants in the grafted sites. Also, studies combining L-PRF in conjunction with xenograft might bring improved clinical results in terms of reduced postoperative complications and accelerated healing.
Collapse
Affiliation(s)
- Oana Baru
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Smaranda Dana Buduru
- Department Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Raluca Roman
- Department of Maxillofacial Surgery and Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | - Mîndra Eugenia Badea
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Devina AA, Halim FC, Sulijaya B, Sumaringsih PR, Dewi RS. Simultaneous Implant and Guided Bone Regeneration Using Bovine-Derived Xenograft and Acellular Dermal Matrix in Aesthetic Zone. Dent J (Basel) 2024; 12:52. [PMID: 38534276 DOI: 10.3390/dj12030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION Implant placement in the maxillary anterior area requires sufficient quantity and quality of both soft and hard tissue. In cases where soft and hard tissues are insufficient, additional regeneration using biomaterials is recommended. Treatment using bovine-derived xenograft and acellular dermal matrix (ADM) may increase bone volume and soft tissue thickness. Case and management: A 65-year-old woman sought help for discomfort and aesthetic issues with her denture, reporting missing teeth (11, 12, 13, 14, and 21) and bone volume shrinkage due to disuse atrophy. Intraoral examination revealed 1 mm gingival thickness. CBCT showed labio-palatal bone thickness of 6.0 mm, 5.8 mm, and 4.7 mm for teeth 21, 12 and 14, respectively. Implant planning and surgical guide fabrication were carried out before the surgery. Surgery included the placement of implants 3.3 mm in diameter and 12 mm in length, with the use of xenograft and ADM. Three months post-op, improvements in soft and hard tissues were observed, with a final prosthesis being a long-span implant-supported bridge. CONCLUSIONS Disuse alveolar atrophy causes soft and hard tissue deficiency. The use of xenograft and ADM show favourable results even on a geriatric patient.
Collapse
Affiliation(s)
- Anggun Alfreda Devina
- Periodontology Specialist Program, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Felita Clarissa Halim
- Periodontology Specialist Program, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Patricia Rinanti Sumaringsih
- Prosthodontics Specialist Program, Department of Prosthodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Ratna Sari Dewi
- Department of Prosthodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
13
|
Beitlitum I, Rayyan F, Pokhojaev A, Tal H, Sarig R. A novel micro-CT analysis for evaluating the regenerative potential of bone augmentation xenografts in rabbit calvarias. Sci Rep 2024; 14:4321. [PMID: 38383533 PMCID: PMC10881464 DOI: 10.1038/s41598-024-54313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Guided Bone Regeneration is a common procedure, yet, as new grafting materials are being introduced into the market, a reliable evaluation method is required. Critical size defect in animal models provides an accurate simulation, followed by histological sections to evaluate the new bone formation. However, histology is destructive, two-dimensional and technique-sensitive. In this study we developed a novel volumetric Micro-CT analysis to quantify new bone formation characteristics. Eight adult female New Zealand white rabbits were subjected to calvarial critical-size defects. Four 8 mm in diameter circular defects were preformed in each animal, to allow random allocation of four treatment modalities. All calvarias were scanned using Micro-CT. Each defect was segmented into four equal parts: pristine bone, outer, middle, and inner. Amira software (v. 6.3, www.fei.com ) was used to calculate the new bone volume in each region and compare it to that of the pristine bone. All grafting materials demonstrated that new bone formation decreased as it moved inward. Only the inner region differed across grafting materials (p = 0.001). The new Micro-CT analysis allowed us to divide each defect into 3D regions providing better understanding of the bone formation process. Amongst the various advantages of the Micro-CT, it enables us to quantify the graft materials and the newly formed bone independently, and to describe the defect morphology in 3D (bi- vs. uni-cortical defects). Providing an insight into the inner region of the defect can better predict the regenerative potential of the bone augmentation graft material. Therefore, the suggested Micro-CT analysis is beneficial for further developing of clinical approaches.
Collapse
Affiliation(s)
- Ilan Beitlitum
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Fatma Rayyan
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ariel Pokhojaev
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Haim Tal
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Rachel Sarig
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Faculty of Medicine, Tel-Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
14
|
Yotsova R, Peev S. Biological Properties and Medical Applications of Carbonate Apatite: A Systematic Review. Pharmaceutics 2024; 16:291. [PMID: 38399345 PMCID: PMC10892468 DOI: 10.3390/pharmaceutics16020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bone defects represent an everyday challenge for clinicians who work in the fields of orthopedic surgery, maxillofacial and oral surgery, otorhinolaryngology, and dental implantology. Various bone substitutes have been developed and utilized, according to the needs of bone reconstructive surgery. Carbonate apatite has gained popularity in recent years, due to its excellent tissue behavior and osteoconductive potential. This systematic review aims to evaluate the role of carbonate apatite in bone reconstructive surgery and tissue engineering, analyze its advantages and limitations, and suggest further directions for research and development. The Web of Science, PubMed, and Scopus electronic databases were searched for relevant review articles, published from January 2014 to 21 July 2023. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eighteen studies were included in the present review. The biological properties and medical applications of carbonate apatite (CO3Ap) are discussed and evaluated. The majority of articles demonstrated that CO3Ap has excellent biocompatibility, resorbability, and osteoconductivity. Furthermore, it resembles bone tissue and causes minimal immunological reactions. Therefore, it may be successfully utilized in various medical applications, such as bone substitution, scaffolding, implant coating, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Ralitsa Yotsova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, bul. Tsar Osvoboditel 84, 9002 Varna, Bulgaria
| | - Stefan Peev
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, bul. Tsar Osvoboditel 84, 9002 Varna, Bulgaria;
| |
Collapse
|
15
|
He F, Wang L, Umrath F, Naros A, Reinert S, Alexander D. Three-Dimensionally Cultured Jaw Periosteal Cells Attenuate Macrophage Activation of CD4 + T Cells and Inhibit Osteoclastogenesis. Int J Mol Sci 2024; 25:2355. [PMID: 38397031 PMCID: PMC10889513 DOI: 10.3390/ijms25042355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The implementation of a successful therapeutic approach that includes tissue-engineered grafts requires detailed analyses of graft-immune cell interactions in order to predict possible immune reactions after implantation. The phenotypic plasticity of macrophages plays a central role in immune cell chemotaxis, inflammatory regulation and bone regeneration. The present study addresses effects emanating from JPC-seeded β-TCP constructs (3DJPCs) co-cultivated with THP-1 derived M1/M2 macrophages within a horizontal co-culture system. After five days of co-culture, macrophage phenotype and chemokine secretion were analyzed by flow cytometry, quantitative PCR and proteome arrays. The results showed that pro-inflammatory factors in M1 macrophages were inhibited by 3DJPCs, while anti-inflammatory factors were activated, possibly affected by the multiple chemokines secreted by 3D-cultured JPCs. In addition, osteoclast markers of polarized macrophages were inhibited by osteogenically induced 3DJPCs. Functional assays revealed a significantly lower percentage of proliferating CD4+ T cells in the groups treated with secretomes from M1/M2 macrophages previously co-cultured with 3DJPCs compared to controls without secretomes. Quantifications of pit area resorption assays showed evidence that supernatants from 3DJPCs co-cultured with M1/M2 macrophages were able to completely suppress osteoclast maturation, compared to the control group without secretomes. These findings demonstrate the ability of 3D cultured JPCs to modulate macrophage plasticity.
Collapse
Affiliation(s)
- Fang He
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Liuran Wang
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
- Clinic for Orthopaedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany
| | - Andreas Naros
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.H.); (L.W.); (F.U.); (A.N.); (S.R.)
| |
Collapse
|
16
|
Betha H, Rajmohan M, Subhada B, Thakkar R, Ranjith Surya B, Shetty A, Tiwari R. Assessment of Postoperative Edema in Different Bone Graft Cases in Vertical Defects in Periodontal Surgery: An Original Research. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S258-S260. [PMID: 38595343 PMCID: PMC11000930 DOI: 10.4103/jpbs.jpbs_484_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 04/11/2024] Open
Abstract
Background To replace missing periodontal tissues in vertical defects during periodontal surgery, bone graft materials are frequently used. A frequent occurrence that can affect healing outcomes is postoperative edema. The purpose of this study was to evaluate postoperative edema in various vertical bone graft defects following periodontal surgery. Materials and Methods 50 participants were split into two groups for a prospective study: Group A received xenografts, whereas Group B received synthetic grafts. Up to 14 days after surgery, baseline and routine postoperative edema measurements were made. Edema levels in each group were compared using statistical analysis. Results At all postoperative time points, Group A showed substantially more edema than Group B (P < 0.05). Furthermore, edema persisted longer in Group A than it did in Group B. Conclusion In conclusion, the substance of the bone graft used in vertical defects during periodontal surgery affects postoperative edema. Compared to synthetic grafts, xenografts caused swelling to last longer and at higher levels. To maximize healing results, clinicians should take these findings into account when choosing graft materials.
Collapse
Affiliation(s)
- Hymasree Betha
- Periodontist, CLOVE Dental, Visakhapatnam, Andhra Pradesh, India
| | - M. Rajmohan
- Department of Dental Surgery, KAPV Government Medical College and Hospital, Trichy, Tamil Nadu, India
| | - B. Subhada
- Department of Periodontics, Sri Sai College of Dental Surgery, Vikarabad, Telangana, India
| | - Radhika Thakkar
- Eastman Institute for Oral Health, University of Rochester, New York, United States
| | - Bezgam Ranjith Surya
- Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Athma Shetty
- Department of Prosthodontics and Crown and Bridge, AB Shetty Memorial Institute of Dental Sciences, Nitte Deemed to be University, Mangalore, Karnataka, India
| | - Rahul Tiwari
- Oral and Maxillofacial Surgeon, CLOVE Dental, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
17
|
Heimes D, Pabst A, Becker P, Hartmann A, Kloss F, Tunkel J, Smeets R, Kämmerer PW. Comparison of morbidity-related parameters between autologous and allogeneic bone grafts for alveolar ridge augmentation from patients' perspective-A questionnaire-based cohort study. Clin Implant Dent Relat Res 2024; 26:170-182. [PMID: 37438839 DOI: 10.1111/cid.13242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Alveolar ridge augmentation is often required before dental implant placement. In this context, autologous bone grafts are considered the biological gold standard. Still, bone block harvesting is accompanied by some serious potential disadvantages and possible complications, such as pain, bleeding, and nerve irritation. Several studies aimed to compare autologous to allogeneic bone grafts concerning bone quality and implant survival rates; this is the first prospective study analyzing and comparing morbidity-related parameters after alveolar ridge augmentation using autogenous and allogeneic bone blocks from patients' perspective. METHODS Using a questionnaire, 36 patients were asked to evaluate the surgery as well as the post-operative period concerning pain, stress, sensibility deficits, satisfaction with, and consequences from the surgery as well as the preferred procedure for future alveolar ridge augmentations. RESULTS No significant differences were shown regarding stress and pain during and after surgery, whereas the rate of nerve irritations was twice as high in the autologous group. The swelling was significantly higher in patients with autologous bone blocks (p = 0.001). Nevertheless, the overall satisfaction of patients of both groups was very high, with over 8/10 points. CONCLUSIONS The swelling was the main reason for patients' discomfort in both groups and was significantly higher after autologous bone augmentation. Since this side effect seems to be a highly relevant factor for patients' comfort and satisfaction, it needs to be discussed during preoperative consultation to allow shared decision-making considering the anticipated morbidity.
Collapse
Affiliation(s)
- Diana Heimes
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Koblenz, Germany
| | - Philipp Becker
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Koblenz, Germany
| | - Amely Hartmann
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
- Private Practice for Oral Surgery, Filderstadt, Germany
| | - Frank Kloss
- Private Practice for Oral and Maxillofacial Surgery, Lienz, Austria
| | - Jochen Tunkel
- Private Practice for Oral Surgery and Periodontology, Bad Oeynhausen, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
18
|
Deandra FA, Sulijaya B, Sudjatmika DA, Harsas NA. Selection of bone graft material and proper timing of periodontal surgery for orthodontic patients: A systematic review. Heliyon 2024; 10:e24201. [PMID: 38268591 PMCID: PMC10806355 DOI: 10.1016/j.heliyon.2024.e24201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
Introduction Bone loss progression due to periodontitis can lead to pathologic tooth migration, ultimately compromising the overall structure and function of the oral cavity. In pathologic tooth migration, a periodontal-orthodontic interdisciplinary approach is necessary. The combination of a bone graft and orthodontic treatment has shown promising results for periodontal regeneration. The treatment sequence and selection of a bone graft define the success of the therapy. Objective This study aims to discuss the protocol of the interdisciplinary approach to regenerative periodontal surgery in cases of intrabony defects requiring orthodontic treatment. Material & methods Literature searches were conducted on four online databases (PubMed, Wiley, ScienceDirect, and Google Scholar). The keywords used were (intrabony defect OR vertical bone defect) AND (bone graft OR periodontal regeneration) AND (orthodontic). Out of 1656 studies that were retrieved initially, 14 full-text articles were checked for eligibility assessment. Finally, a total of seven studies met all of the requirements for inclusion in this study. This study includes two randomized controlled trials (RCTs), which are considered the highest level of evidence, however it is important to note that the overall evidence base is heterogeneous, inclusive of various study designs. Discussion Periodontal tissue damage must be addressed before considering orthodontic therapy, including cases with intrabony defects. On the basis of the seven studies, orthodontic therapy can be initiated as early as four weeks after surgery or as late as one year after periodontal surgery. Different types of bone graft materials, such as autografts, allografts, xenografts, and alloplasts, are used in the included studies. Three out of seven studies used autogenous graft combined with xenograft or enamel matrix derivative as the graft material as it is osteoconductive, osteogenic, and osteoinductive. Regular periodontal tissue maintenance therapy should be performed every 2-6 months, before, during, and after orthodontic treatment. Conclusion Making a proper diagnosis and treatment sequence is key to the success of a periodontal-orthodontic treatment. In addition, identifying the appropriate timing between periodontal surgery and orthodontic movement, selecting the most suitable bone graft material, and ensuring regular maintenance of periodontal tissue are important considerations.
Collapse
Affiliation(s)
- Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | | | - Nadhia Anindhita Harsas
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
19
|
Cruz P, Bortoli JD, Benalcázar-Jalkh EB, Boutros SM, Bhola M, Grande F, Nayak VV, Tovar N, Coelho PG, Witek L. Atypical histological presentation of bone regeneration after insertion of cryoprotected allogeneic bone graft. Med Oral Patol Oral Cir Bucal 2024; 29:e103-e110. [PMID: 37992144 PMCID: PMC10765327 DOI: 10.4317/medoral.26094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/05/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND To evaluate bone regenerative capacity of cryoprotected corticocancellous allogeneic bone graft performed in type II and III post-extraction sockets for ridge preservation after twelve weeks in-vivo. MATERIAL AND METHODS Twenty-seven type II or III bony-walled extraction sockets (mandible and maxilla) were selected for this study. Following atraumatic tooth-extraction a cryoprotected corticocancellous allogeneic bone graft material and a resorbable porcine-derived collagen membrane were used for ridge preservation. During re-entry surgery at approximately 12 weeks, bone core biopsies were obtained using a 3.2 mm trephine drill and samples were histologically processed and subjected to qualitative and quantitative histomorphometric analysis. Quantitative data was analyzed using a general linear mixed model with results presented as mean values with the corresponding 95% confidence interval values. RESULTS Healing without incident and ridge preservation allowed for the placement of dental implants after 12 weeks in 25 out of the 27 treated socket sites. Analyses yielded an average of ~21.0±7% of old/native bone, ~17±5.5% of newly regenerated bone (total of ~38±12.8% for all bone), 0.23±0.14% of new bone presenting with nucleating sites within the matrix, ~52±5.12% of soft tissue, and 3.6±2.09% of damaged bone. The average regenerated bone was statistically analogous to that of old/native bone (p=0.355). Furthermore, an atypical histological pattern of bone regeneration was observed, with newly formed bone exhibiting "infiltration-like" behavior and with new bone nucleating sites observed within the demineralized bone matrix. CONCLUSIONS Cryoprotected corticocancellous allogeneic bone-graft demonstrated osteoconductive, osteoinductive, and osteogenic properties, yielding unique healing patterns which does warrant further investigation.
Collapse
Affiliation(s)
- P Cruz
- Biomaterials Division New York University College of Dentistry 345 E. 24th St, Room 902D 10010, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B 2023; 11:11405-11425. [PMID: 38010166 DOI: 10.1039/d3tb01874a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zinc (Zn) is one of the most important trace elements in the human body and plays a key role in various physiological processes, especially in bone metabolism. Zn-containing materials have been reported to enhance bone repair through promoting cell proliferation, osteogenic activity, angiogenesis, and inhibiting osteoclast differentiation. Therefore, Zn-based biomaterials are potential substitutes for traditional bone grafts. In this review, the specific mechanisms of bone formation promotion by Zn-based biomaterials were discussed, and recent developments in their application in bone tissue engineering were summarized. Moreover, the challenges and perspectives of Zn-based biomaterials were concluded, revealing their attractive potential and development directions in the future.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
21
|
La Monaca G, Di Giorgio G, Pranno N, Serafini G, De Biase A, Cristalli MP. Implant-Prosthetic Rehabilitation of Mandibular Posttraumatic Severe Dentoalveolar Loss With a Reconstructive Staged Approach: A Clinical Report With 3-Year Follow-Up. J ORAL IMPLANTOL 2023; 49:567-572. [PMID: 38279654 DOI: 10.1563/aaid-joi-d-23-00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
This clinical report describes the oral rehabilitation of a 25-year-old male patient who lost the lower incisors, right canine, and a significant amount of anterior mandibular bony and soft tissue following severe dentoalveolar trauma due to a car accident. The patient's young age, anterior esthetic zone in the lower jaw, previous mandibular fracture, and extended bony and soft-tissue defect hindering ideal 3-dimensional implant placement oriented the therapeutic plan toward a staged approach, with several reconstructive surgical procedures before implant rehabilitation. The treatment involved deepening the labiobuccal vestibule and lingual sulcus to correct cicatricial shrinkage due to previous surgical fixation of the mandibular fracture, vertical guided bony augmentation to regenerate adequate volumes of bone, free gingival graft to achieve sufficient height and thickness of peri-implant soft tissues, and a prosthetic-driven surgical procedure to place the implants in a good functional and esthetic position. This therapeutic approach restored function and esthetics and achieved outcome stability at 3-year follow-up.
Collapse
Affiliation(s)
- Gerardo La Monaca
- Department of Oral and Maxillo-Facial Sciences, Sapienza, University of Rome, Rome, Italy
| | - Gianni Di Giorgio
- Department of Oral and Maxillo-Facial Sciences, Sapienza, University of Rome, Rome, Italy
| | - Nicola Pranno
- Department of Oral and Maxillo-Facial Sciences, Sapienza, University of Rome, Rome, Italy
| | - Giorgio Serafini
- Department of Oral and Maxillo-Facial Sciences, Sapienza, University of Rome, Rome, Italy
| | - Alberto De Biase
- Department of Oral and Maxillo-Facial Sciences, Sapienza, University of Rome, Rome, Italy
| | - Maria Paola Cristalli
- Department of Oral and Maxillo-Facial Sciences, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
22
|
Luo Y, Chen H, Xiu P, Zeng J, Song Y, Li T. Comparative evaluation of multi-fold rib and structural iliac bone grafts in single-segment thoracic and thoracolumbar spinal tuberculosis: clinical and radiological outcomes. J Orthop Surg Res 2023; 18:917. [PMID: 38041140 PMCID: PMC10693100 DOI: 10.1186/s13018-023-04416-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVE To compare clinical and radiological outcomes of multi-fold rib and structural iliac bone grafts, the primary autologous graft techniques in anterolateral-only surgery for single-segment thoracic and thoracolumbar spinal tuberculosis. METHODS This retrospective study included 99 patients treated from January 2014 to March 2022, categorized into 64 with multi-fold rib grafts (group A) and 35 with structural iliac bone grafts (group B). Outcomes assessed included hospital stay, operation time, intraoperative blood loss, postoperative drainage, complications, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), the Visual Analog Scale (VAS) for pain, the Oswestry Disability Index (ODI), bone fusion time, and the American Spinal Injury Association (ASIA) impairment scale grade. Segmental kyphotic angle and intervertebral height were measured radiologically before surgery and follow-up. RESULTS The mean follow-up was 63.50 ± 26.05 months for group A and 64.97 ± 26.43 months for group B (P > 0.05). All patients had achieved a clinical cure. Group A had a shorter operation time (P = 0.004). Within one week post-surgery, group B reported higher VAS scores (P < 0.0001). Neurological performance and quality of life significantly improved in both groups. No significant differences were observed in segmental kyphotic angle and intervertebral height between the groups pre- and postoperatively (P > 0.05). However, group A showed a greater segmental kyphotic angle at the final follow-up, while group B had better maintenance of kyphotic angle correction and intervertebral height (P < 0.05). Bone fusion was achieved in all patients without differences in fusion time (P > 0.05). CONCLUSIONS Multi-fold rib grafts resulted in shorter operation times and less postoperative pain, while structural iliac bone grafts provided better long-term maintenance of spinal alignment and stability, suggesting their use in cases where long-term outcomes are critical.
Collapse
Affiliation(s)
- Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, China
| | - Hua Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, China
| | - Peng Xiu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, China
| | - Jiancheng Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, China
| | - Yueming Song
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, China
| | - Tao Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, China.
| |
Collapse
|
23
|
Limlawan P, Insin N, Marger L, Freudenreich M, Durual S, Vacharaksa A. 3D-printed TCP-HA scaffolds delivering MicroRNA-302a-3p improve bone regeneration in a mouse calvarial model. BDJ Open 2023; 9:50. [PMID: 38001073 PMCID: PMC10673873 DOI: 10.1038/s41405-023-00177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE To demonstrate hydroxyapatite nanoparticles modified with cationic functional molecules. 3-aminopropyltriethoxysilane (HA-NPs-APTES) carrying microRNA-302a-3p (miR) in the 3D-printed tricalcium phosphate/Hydroxyapatite (TCP/HA) scaffold can increase healing of the critical-sized bone defect. MATERIALS AND METHODS 3D-printed TCP/HA were modified with HA-NPs-APTES by two methods (M1, M2). The dispersion of particles was visualized by fluorescent microscopy. Biocompatibility of the scaffolds was tested by alizarin assay. Delivery of miR to the cells and osteogenic gene expression were evaluated by qPCR. After selecting best method (M2), scaffolds, scaffolds+HA-NPs-APTES with or without miR were implanted in 4 mm mouse calvarium defect (n = 4 per group). After 2,4 and 6 weeks, bone regeneration were evaluated by microCT and histology sections. RESULTS Both M1 and M2 scaffolds were biocompatible with cell adhesion on its surface. M2 scaffold showed significant increase of miR, suggesting successful delivery, resulted in downregulation of its target mRNA COUP-TFII, and upregulation of RUNX2 mRNA. Calvarium defect with M2 scaffold also showed significantly higher BV/TV and higher number of filled spaces at all time points. Histomorphometry demonstrated new bone formed at the center of the HA-NPs-APTES-miR scaffold earlier than controls. CONCLUSION TCP/HA scaffold modified with HA-NPs-APTES facilitated delivery of miR and enhanced bone regeneration.
Collapse
Affiliation(s)
- Pirawish Limlawan
- Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Numpon Insin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Laurine Marger
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, University of Geneva, 1 Rue Michel Servet, 1204, Geneva, Switzerland
| | - Mélanie Freudenreich
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, University of Geneva, 1 Rue Michel Servet, 1204, Geneva, Switzerland
| | - Stéphane Durual
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, University of Geneva, 1 Rue Michel Servet, 1204, Geneva, Switzerland
| | - Anjalee Vacharaksa
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
- Master of Science Program in Geriatric Dentistry and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Zhang J, Wang J, You J, Qin X, Chen H, Hu X, Zhao Y, Xia Y. Surface demineralized freeze-dried bone allograft followed by reimplantation in a failed mandibular dental implant. Regen Biomater 2023; 11:rbad102. [PMID: 38173777 PMCID: PMC10761198 DOI: 10.1093/rb/rbad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
The removal of a failed implant with high torque causes significant damage to the surrounding tissue, compromising bone regeneration and subsequent osseointegration in the defect area. Here, we report a case of carrier screw fracture followed by immediate implant removal, bone grafting and delayed reimplantation. A dental implant with a fractured central carrier screw was removed using the bur-forceps technique. The resulting three-wall bone defect was filled with granular surface demineralized freeze-dried bone allograft (SD-FDBA). Cone-beam computerized tomography was performed at 1 week, 6 months and 15 months postoperatively and standardized for quantitative evaluation. The alveolar bone width and height at 15 months post-surgery were about 91% of the original values, with a slightly lower bone density, calculated using the gray value ratio. The graft site was reopened and was found to be completely healed with dense and vascularized bone along with some residual bone graft. Reimplantation followed by restoration was performed 8 months later. The quality of regenerated bone following SD-FDBA grafting was adequate for osseointegration and long-term implant success. The excellent osteogenic properties of SD-FDBA are attributed to its human origin, cortical bone-like structure, partly demineralized surfaces and bone morphogenetic protein-2-containing nature. Further investigation with more cases and longer follow-up was required to confirm the final clinical effect.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Jie Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Jiayi You
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Xuan Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Huimin Chen
- Department of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xiantong Hu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, PR China
- State Key Laboratory of Military Stomatology, Xi'an 710032, PR China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, PR China
- State Key Laboratory of Military Stomatology, Xi'an 710032, PR China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| |
Collapse
|
25
|
Santos MS, dos Santos AB, Carvalho MS. New Insights in Hydrogels for Periodontal Regeneration. J Funct Biomater 2023; 14:545. [PMID: 37998114 PMCID: PMC10672517 DOI: 10.3390/jfb14110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Periodontitis is a destructive inflammatory disease characterized by microbial infection that damages the tissues supporting the tooth (alveolar bone, gingiva, periodontal ligament, and cementum), ultimately resulting in the loss of teeth. The ultimate goal of periodontal therapy is to achieve the regeneration of all of the periodontal tissues. Thus, tissue engineering approaches have been evolving from simple membranes or grafts to more complex constructs. Hydrogels are highly hydrophilic polymeric networks with the ability to simulate the natural microenvironment of cells. In particular, hydrogels offer several advantages when compared to other forms of scaffolds, such as tissue mimicry and sustained drug delivery. Moreover, hydrogels can maintain a moist environment similar to the oral cavity. Hydrogels allow for precise placement and retention of regenerative materials at the defect site, minimizing the potential for off-target effects and ensuring that the treatment is focused on the specific defect site. As a mechanism of action, the sustained release of drugs presented by hydrogels allows for control of the disease by reducing the inflammation and attracting host cells to the defect site. Several therapeutic agents, such as antibiotics, anti-inflammatory and osteogenic drugs, have been loaded into hydrogels, presenting effective benefits in periodontal health and allowing for sustained drug release. This review discusses the causes and consequences of periodontal disease, as well as the advantages and limitations of current treatments applied in clinics. The main components of hydrogels for periodontal regeneration are discussed focusing on their different characteristics, outcomes, and strategies for drug delivery. Novel methods for the fabrication of hydrogels are highlighted, and clinical studies regarding the periodontal applications of hydrogels are reviewed. Finally, limitations in current research are discussed, and potential future directions are proposed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Alexandra B. dos Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
26
|
Abdelrasoul M, El-Fattah AA, Kotry G, Ramadan O, Essawy M, Kamaldin J, Kandil S. Regeneration of critical-sized grade II furcation using a novel injectable melatonin-loaded scaffold. Oral Dis 2023; 29:3583-3598. [PMID: 35839150 DOI: 10.1111/odi.14314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Periodontal regenerative therapy using bone-substituting materials has gained favorable clinical significance in enhancing osseous regeneration. These materials should be biocompatible, osteogenic, malleable, and biodegradable. This study assessed the periodontal regenerative capacity of a novel biodegradable bioactive hydrogel template of organic-inorganic composite loaded with melatonin. MATERIALS AND METHODS A melatonin-loaded alginate-chitosan/beta-tricalcium phosphate composite hydrogel was successfully prepared and characterized. Thirty-six critical-sized bilateral class II furcation defects were created in six Mongrel dogs, and were randomly divided and allocated to three cohorts; sham, unloaded composite, and melatonin-loaded. Periodontal regenerative capacity was evaluated via histologic and histomorphometric analysis. RESULTS Melatonin-treated group showed accelerated bone formation and advanced maturity, with a significant twofold increase in newly formed inter-radicular bone compared with the unloaded composite. The short-term regenerative efficacy was evident 4 weeks postoperatively as a significant increase in cementum length concurrent with reduction of entrapped epithelium. After 8 weeks, the scaffold produced a quality of newly synthesized bone similar to normal compact bone, with potent periodontal ligament attachment. CONCLUSIONS Melatonin-loaded hydrogel template accelerated formation and enhanced quality of newly formed bone, allowing complete periodontal regeneration. Furthermore, the scaffold prevented overgrowth and entrapment of epithelial cells in furcation defects.
Collapse
Affiliation(s)
- Mohamed Abdelrasoul
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Gehan Kotry
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Omneya Ramadan
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Marwa Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jahangir Kamaldin
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Bertam, Malaysia
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Sun Y, Xu C, Wang M, Wei L, Pieterse H, Wu Y, Liu Y. Radiographic and histological evaluation of bone formation induced by rhBMP-2-incorporated biomimetic calcium phosphate material in clinical alveolar sockets preservation. Int J Implant Dent 2023; 9:37. [PMID: 37843657 PMCID: PMC10579201 DOI: 10.1186/s40729-023-00491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
PURPOSE We assessed the efficiency of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) incorporated biomimetic calcium phosphate on β-tricalcium phosphate (β-TCP) (rhBMP-2/BioCaP/β-TCP) on bone formation in a model of socket preservation using cone beam computed tomography (CBCT) scanning and histological examination. METHODS Forty patients undergoing minimally invasive single-root tooth extraction for dental implantation were randomized to three groups according to the material used for socket preservation: filling with rhBMP-2/BioCaP/β-TCP, β-TCP, or natural healing (kept unfilled) (controls). The alveolar sockets (including the control group) were covered by two-layer collagen membranes and sutured. Two CBCT scans were taken, one immediately after socket preservation procedure (baseline) and another 6 weeks later. Gray values (GVs) obtained from CBCT were recorded. During insertion of the dental implant, biopsies were taken and analyzed histologically for new bone formation, residual material, and unmineralized bone tissue at the core of the biopsy. RESULTS The mean (± standard deviation) changes of GVs of the CBCT scans at the central area of filled materials were as follows: 373.19 ± 157.16 in the rhBMP-2/BioCaP/β-TCP group, 112.26 ± 197.25 in the β-TCP group, and -257 ± 273.51 in the control group. The decrease of GVs in the rhBMP-2/BioCaP/β-TCP group as compared with the β-TCP group was statistically significant (P < 0.001). Differences in new bone formation (P = 0.006) were also found: 21,18% ± 7.62% in the rhBMP-2/BioCaP/β-TCP group, 13.44% ± 6.03% in the β-TCP group, and 9.49% ± 0.08% in controls. The residual material was10.04% ± 4.57% in the rhBMP-2/BioCaP/β-TCP group vs. 20.60% ± 9.54%) in the β-TCP group (P < 0.001). Differences in unmineralized bone tissue (P < 0.001) were also found (68.78% ± 7.67%, 65.96% ± 12.64%, and 90.38% ± 7.5% in the rhBMP-2/BioCaP/β-TC, β-TCP, and control groups, respectively). CONCLUSIONS This study shows that rhBMP-2/BioCaP/β-TCP is a promising bone substitute with fast degradation and potent pro-osteogenic capacity that can be useful for socket preservation in implant dentistry. TRIAL REGISTRATION ChiCTR, ChiCTR2000035263. Registered 5 August 2020, https://www.chictr.org.cn/ChiCTR2000035263 .
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
- Department of Second Dental Center, Shanghai Ninth People's Hospital, School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chunfeng Xu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
- Department of Second Dental Center, Shanghai Ninth People's Hospital, School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Implantology, Yantai Stomatological Hospital, Binzhou Medical University, Yantai, China
| | - Herman Pieterse
- Profess Medical Consultancy BV, Heerhugowaard, The Netherlands
| | - Yiqun Wu
- Department of Second Dental Center, Shanghai Ninth People's Hospital, School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Yang G, Li Y, Zhang S, Wang Y, Yang L, Wan Q, Pei X, Chen J, Zhang X, Wang J. Double-Cross-Linked Hydrogel with Long-Lasting Underwater Adhesion: Enhancement of Maxillofacial In Situ and Onlay Bone Retention. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46639-46654. [PMID: 37787379 DOI: 10.1021/acsami.3c09117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Bone retention is a usual clinical problem existing in a lot of maxillofacial surgeries involving bone reconstruction and bone transplantation, which puts forward the requirements for bone adhesives that are stable, durable, biosafe, and biodegradable in wet environment. To relieve the suffering of patients during maxillofacial surgery with one-step operation and satisfying repair, herein, we developed a double-cross-linked A-O hydrogel named by its two components: [(3-Aminopropyl) methacrylamide]-co-{[Tris(hydroxymethyl) methyl] acrylamide} and oxidated methylcellulose. With excellent bone adhesion ability, it can maintain long-lasting stable underwater bone adhesion for over 14 days, holding a maximum adhesion strength of 2.32 MPa. Schiff-base reaction and high-density hydrogen bonds endow the hydrogel with strong cohesion and adhesion performance as well as maneuverable properties such as easy formation and injectability. A-O hydrogel not only presents rarely reported long-lasting underwater adhesion of hard tissue but also owns inherent biocompatibility and biodegradation properties with a porous structure that facilitates the survival of bone graft. Compared to the commercial cyanoacrylate adhesive (3 M Vetbond Tissue Adhesive), the A-O hydrogel is confirmed to be safer, more stable, and more effective in calvarial in situ bone retention model and onlay bone retention model of rat, providing a practical solution for the everyday scenario of clinical bone retention.
Collapse
Affiliation(s)
- Guangmei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Linxin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Maheshwari S, Taori T, Bajaj P, Reche A. Bicalcium Phosphate as an Asset in Regenerative Therapy. Cureus 2023; 15:e44079. [PMID: 37750142 PMCID: PMC10518049 DOI: 10.7759/cureus.44079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
After a loss of a tooth, alveolar bone resorption is immutable, leaving the area devoid of sufficient bone quality and mass for a successful and satisfactory implant or any other dental treatment. To treat this problem of irreversible bone loss, bone grafting is the primary solution and a well-accepted technique. The use of bone grafting procedures has increased in recent years. This review is about the various bone grafting techniques and best-situated material available currently along with their trump cards and limitations. In the thorough discussion regarding bone grafting materials and their substitutes, one alloplastic material has shown unbeaten and the most satisfactory properties than any other material, "bicalcium phosphate" (BCP). BCP is a mixture of hydroxyapatite (HA) and beta-tricalcium phosphate (B-TCP) usually obtained through sintering calcium-deficient apatite (CDA) at or above 700°C or by other methods such as hydrolysis or precipitation. The review also shows comparative studies done to understand the effect, most adequate balance, and impact of ratios of HA/B-TCP on the properties, structure, and success rate of this material. The objective of the review is to enlighten the principal characteristic of the most likely used bone graft material presently, i.e., BCP. The most impeccable characteristic of BCP is its capability to osteointegrate, which results in a superior interface. This interface depicts a dynamic process that includes physicochemical reactions, crystal-protein interactions, cell and tissue colonization, and bone remodeling. BCP has certain essential properties that could be put forth as its advantage over any other substitute. These properties include bioactivity, osteointegration, osteoinduction, osteogenesis, and biodegradation, which are mostly governed by modifying the HA/B-TCP ratio. Other applications of BCP are feasible, such as in drug administration and scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Shefali Maheshwari
- Department of Periodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanishka Taori
- Department of Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pavan Bajaj
- Department of Periodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Department of Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
30
|
Zubaidah N, Pratiwi DD, Masa MMSN, Setiawatie EM, Kunarti S. The Osteogenesis Mechanisms of Dental Alveolar Bone Socket Post Induction with Hydroxyapatite Bovine Tooth Graft: An Animal Experimental in Rattus norvegicus Strain Wistar. Eur J Dent 2023; 17:871-880. [PMID: 36307116 PMCID: PMC10569859 DOI: 10.1055/s-0042-1756691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES Surgical endodontics (hemisection) commonly involves the alveolar bone socket and the periradicular tissue. In today's era, optimizing the bone healing process is updated by using bone graft induction. This study explores the mechanisms of bone healing of the alveolar bone socket post-dental extraction of Wistar rats after administration of a bovine tooth graft (hydroxyapatite bovine tooth graft [HAp-BTG]). MATERIALS AND METHODS Fifty Wistar rats were randomly selected into two groups, control and treatment, and into five subgroups on days 3, 7, 14, 21, and 28. The postextraction socket was filled with polyethylene glycol (PEG) as the control and PEG + HAp-BTG as the treatment group. On days 3, 7, 14, 21, and 28, Wistar rats were sacrificed, mandibles were taken, paraffin blocks were made, cut 4 µm thick, and made into glass preparations for microscopic examination. The variable analysis was performed by staining hematoxylin-eosin for osteoblasts (OBs) and osteoclasts (OCs) and immunohistochemistry for runt-related transcription factor 2 (RUNX2), osterix (OSX), osteocalcin (OCN), bone morphogenic protein (BMP) 2. We analyzed the expressed cell count per microscope field. RESULTS In general, the number of cell expressions in the treatment group was significantly higher and faster, except for significantly lower OC. The high variables peak occurred on day 14 for RUNX2 and OCN, on day 7 for OSX, while OB significantly increased on day 21 and remained until day 28. The decrease of OC cells occurred on day 7 and remained low until 28 days. BMP2 was first dominantly induced by HAp-BTG, then the others. CONCLUSION HAp-BTG can induce higher and faster bone healing biomarkers. BMP2 is the dominant first impacted. On the 28th day, it did not significantly express the suppression of OC by OB, which entered the bone formation and remodeling step.
Collapse
Affiliation(s)
- Nanik Zubaidah
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Indonesia
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dian Dwi Pratiwi
- Post Graduate Program of Conservative Dentistry Specialist, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Margaretha S. Nogo Masa
- Post Graduate Program of Conservative Dentistry Specialist, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Sri Kunarti
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
31
|
Bai J, Li H, Wang L, Shi Y, Su X, Xu C, Guo Q, Feng J, Sun X, Cheng Y, Kang J, Wen J, Wu F. Effect of silk fibroin scaffold loaded with 17-β estradiol on the proliferation and differentiation of BMSCs. Regen Ther 2023; 23:76-83. [PMID: 37131535 PMCID: PMC10149272 DOI: 10.1016/j.reth.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023] Open
Abstract
In this study, different concentrations of 17-β estradiol silk fibroin (SF)porous scaffolds (SFPS) were prepared using freeze-drying technique, with a hope for optimal concentration and apply it locally to the bone defect area. In this study, the porous scaffold morphology structure was characterized by SEM, FTIR and universal capacity testing machines, and the in vitro cytocompatibility and biological activity of scaffold materials were studied by cell adhesion, viability and proliferation experiments. The results showed that SFPS boasts better physicochemical properties, while 17-β estradiol SF scaffolds with low concentrations of 10-10 mol/L and 10-12 mol/L had more growth and proliferation of SF scaffolds with higher concentrations, and 10-10 mol/L was the optimal concentration of 17-β estradiol SFPS, which was more conducive to cell adhesion and proliferation. On the other hand, after osteogenesis induction of BMSCs inoculated on 17-β estradiol SFPS at different concentrations, it was found that the expression of alkaline phosphatase in BMSCs on different concentrations of 17-β estradiol porous scaffolds was not large. No conflict of interest exits in the submission of this manuscript.
Collapse
Affiliation(s)
- Juan Bai
- Department of Prosthodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Haotian Li
- First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
| | - Lu Wang
- Department of Prosthodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yue Shi
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaomin Su
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Changzhen Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qiaoling Guo
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jing Feng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xilin Sun
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yitong Cheng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jie Kang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jiayu Wen
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Feng Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| |
Collapse
|
32
|
Ferraz MP. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114117. [PMID: 37297251 DOI: 10.3390/ma16114117] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This review provides an overview of various materials used in dentistry and oral and maxillofacial surgeries to replace or repair bone defects. The choice of material depends on factors such as tissue viability, size, shape, and defect volume. While small bone defects can regenerate naturally, extensive defects or loss or pathological fractures require surgical intervention and the use of substitute bones. Autologous bone, taken from the patient's own body, is the gold standard for bone grafting but has drawbacks such as uncertain prognosis, surgery at the donor site, and limited availability. Other alternatives for medium and small-sized defects include allografts (from human donors), xenografts (from animals), and synthetic materials with osteoconductive properties. Allografts are carefully selected and processed human bone materials, while xenografts are derived from animals and possess similar chemical composition to human bone. Synthetic materials such as ceramics and bioactive glasses are used for small defects but may lack osteoinductivity and moldability. Calcium-phosphate-based ceramics, particularly hydroxyapatite, are extensively studied and commonly used due to their compositional similarity to natural bone. Additional components, such as growth factors, autogenous bone, and therapeutic elements, can be incorporated into synthetic or xenogeneic scaffolds to enhance their osteogenic properties. This review aims to provide a comprehensive analysis of grafting materials in dentistry, discussing their properties, advantages, and disadvantages. It also highlights the challenges of analyzing in vivo and clinical studies to select the most suitable option for specific situations.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
33
|
Albaqami FF, Althurwi HN, Alharthy KM, Hamad AM, Awartani FA. Rutin Gel with Bone Graft Accelerates Bone Formation in a Rabbit Model by Inhibiting MMPs and Enhancing Collagen Activities. Pharmaceuticals (Basel) 2023; 16:ph16050774. [PMID: 37242557 DOI: 10.3390/ph16050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Bone graft techniques are used to compensate for bone loss in areas with deficient regeneration. However, matrix metalloproteases (MMPs) can limit bone formation by degrading extracellular matrices, which are required for bone regrowth. Noteworthily, rutin is a natural flavonoid compound that inhibits the genetic expression of various MMPs. Therefore, rutin may serve as an inexpensive and stable alternative to the growth factors used to accelerate dental bone graft healing. This study aimed to evaluate the potential of mixing rutin gel with allograft bone to accelerate the healing of bone defects in an in vivo rabbit model. Bone defects were surgically induced in New Zealand rabbits (n = 3 per group) and subsequently treated with bone grafts along with rutin or control gel. Overall, treatment with rutin significantly prevented the expression of several MMPs and increased type III collagen in the gingiva around the surgical site. Additionally, rutin-treated animals showed enhanced bone formation with higher bone marrow content in the jawbone defect area compared with the control group. Taken together, these findings demonstrate that rutin gel, when added to bone grafts, quickly enhances bone formation and may serve as a suitable alternative to expensive growth factors for the same purpose.
Collapse
Affiliation(s)
- Fahad F Albaqami
- Postgraduate Doctorate Program, Periodontics and Community Dentistry Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Hassan N Althurwi
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M Alharthy
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abubaker M Hamad
- Department of Nursing, College of Health Sciences and Nursing, Al-Rayan Colleges, Al-Madeena Al-Munowara 41411, Saudi Arabia
| | - Fatin A Awartani
- Periodontics and Community Dentistry Department, College of Dentistry, King Saud University, P.O. Box 52500, Riyadh 11563, Saudi Arabia
| |
Collapse
|
34
|
Chen J, Gui X, Qiu T, Lv Y, Fan Y, Zhang X, Zhou C, Guo W. DLP 3D printing of high-resolution root scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration. BIOMATERIALS ADVANCES 2023; 151:213475. [PMID: 37267749 DOI: 10.1016/j.bioadv.2023.213475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Digital light projection (DLP) printing of hydroxyapatite (HAp) bioceramic provides a promising strategy for fabrication of complex personalized bio-tooth root scaffold with high-resolution. However, it is still a challenge to fabricate bionic bio-tooth root with satisfied bioactivity and biomechanics. This research studied the HAp-based bioceramic scaffold with bionic bioactivity and biomechanics for personalized bio-root regeneration. Compared to natural decellularized dentine (NDD) scaffolds with unitary shape and restricted mechanical properties, those DLP printing bio-tooth roots with natural size, high precision appearance, excellent structure, and a smooth surface were successfully manufactured, which met various shape and structure requirements for personalized bio-tooth regeneration. Moreover, the bioceramic sintering at 1250 °C enhanced the physicochemical properties of HAp and exhibited good elastic modulus (11.72 ± 0.53 GPa), which was almost twice of early NDD (4.76 ± 0.75 GPa). To further improve the surface activity of sintered biomimetic, the nano-HAw (nano-hydroxyapatite whiskers) coating deposited by hydrothermal treatment increased the mechanical properties and surface hydrophilicity, which indicated positive effects on dental follicle stem cells (DFSCs)' proliferation and enhanced the DFSCs osteoblastic differentiation in vitro. Subcutaneous transplantation in nude mice and in-situ transplantation in rat alveolar fossa proved that the nano-HAw-containing scaffold could promote the DFSCs differentiate into periodontal ligament-like enthesis formation. In conclusion, by combining the optimized sintering temperature and modified nano-HAw interface through hydrothermal treatment, the DLP-printing of HAp-based bioceramic with favorable bioactivity and biomechanics is a promising candidate for personalized bio-root regeneration.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Tao Qiu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Lv
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Morgan N, Meeus J, Shujaat S, Cortellini S, Bornstein MM, Jacobs R. CBCT for Diagnostics, Treatment Planning and Monitoring of Sinus Floor Elevation Procedures. Diagnostics (Basel) 2023; 13:1684. [PMID: 37238169 PMCID: PMC10217207 DOI: 10.3390/diagnostics13101684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Sinus floor elevation (SFE) is a standard surgical technique used to compensate for alveolar bone resorption in the posterior maxilla. Such a surgical procedure requires radiographic imaging pre- and postoperatively for diagnosis, treatment planning, and outcome assessment. Cone beam computed tomography (CBCT) has become a well-established imaging modality in the dentomaxillofacial region. The following narrative review is aimed to provide clinicians with an overview of the role of three-dimensional (3D) CBCT imaging for diagnostics, treatment planning, and postoperative monitoring of SFE procedures. CBCT imaging prior to SFE provides surgeons with a more detailed view of the surgical site, allows for the detection of potential pathologies three-dimensionally, and helps to virtually plan the procedure more precisely while reducing patient morbidity. In addition, it serves as a useful follow-up tool for assessing sinus and bone graft changes. Meanwhile, using CBCT imaging has to be standardized and justified based on the recognized diagnostic imaging guidelines, taking into account both the technical and clinical considerations. Future studies are recommended to incorporate artificial intelligence-based solutions for automating and standardizing the diagnostic and decision-making process in the context of SFE procedures to further improve the standards of patient care.
Collapse
Affiliation(s)
- Nermin Morgan
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral Medicine, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Jan Meeus
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Campus Sint-Rafael, 3000 Leuven, Belgium
| | - Sohaib Shujaat
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Campus Sint-Rafael, 3000 Leuven, Belgium
- King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Simone Cortellini
- Department of Oral Health Sciences, Section of Periodontology, KU Leuven, 3000 Leuven, Belgium
- Department of Dentistry, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Michael M. Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, 4058 Basel, Switzerland
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Campus Sint-Rafael, 3000 Leuven, Belgium
- Department of Dental Medicine, Karolinska Institute, 141 04 Huddinge, Sweden
| |
Collapse
|
36
|
Bernatskiy BS, Puišys A. A Novel Approach for Implant Rehabilitation Combined with Immediate Bone and Soft-Tissue Augmentation in a Compromised Socket—A B2S Approach: Case Report with a 2-Year Follow-Up. Case Rep Dent 2023; 2023:1376588. [PMID: 37025607 PMCID: PMC10072960 DOI: 10.1155/2023/1376588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
In this case report, we aimed to describe a novel approach for aesthetic rehabilitation of the anterior maxilla that combined immediate implant installation with the “Bone2Soft Tissue Reconstruction” (B2S technique), which involves the use of a triple graft harvested from the maxillary tuberosity. The regeneration potential of a tuberosity graft appeared to surpass that of corticocancellous bone grafts harvested from other intraoral donor sites and allowed for quicker regeneration of both bone and soft tissue. The B2S technique extended the indications for immediate implant placement and ridge augmentation to cases involving severe bone resorption and other complex clinical scenarios. Owing to the good visualization facilitated by open-flap access, the surgical procedures can be completed in a single intervention, which will be beneficial for both doctors and patients.
Collapse
|
37
|
Reconstruction of Severely Atrophied Mandible and Simultaneous Implant Insertion with an Inverted Sandwich Technique. Case Rep Dent 2023; 2023:2973079. [PMID: 36643591 PMCID: PMC9833922 DOI: 10.1155/2023/2973079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Objectives To reconstruct and rehabilitate a severely atrophied mandible. Case presentation. A 40-year-old female patient with the chief complaint of denture instability was admitted to our care. In our opinion, the optimum reconstructive method for their severely atrophied mandible (width of 4 mm) was bone grafting with an inverted sandwich technique. 2 split-thickness autogenous calvarial grafts were attained. 4 onlay bone blocks were prepared, placed with an inverted sandwich technique, and fixed with 8 lag screws. 4 implants (Osstem, ⌀4×10 mm) were placed simultaneously, and an immediate post-operation cone beam computed tomography confirmed the proper placement of the grafts and implants. No complications were reported within 4 and 8 months following graft and implant placement. Final impressions for full dental rehabilitation were taken at the 8-month follow-up. Conclusion Split-thickness calvarial grafts and simultaneous implant placement seem to be a very efficient and promising approach for major reconstruction of the mandible. However, further studies are recommended.
Collapse
|
38
|
The Cytokine and Bone Protein Expression by Ellagic Acid-Hydroxyapatite in Bone Remodelling Model. ScientificWorldJournal 2022; 2022:6740853. [PMID: 36561943 PMCID: PMC9767739 DOI: 10.1155/2022/6740853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Ellagic acid, a phenolic compound with anti-inflammatory potential, can be used to accelerate the bone healing process and affect human health, while hydroxyapatite is the most commonly used bone graft material. Using a combination of the two materials results in reduced inflammation and increased osteogenesis. This study aimed to determine the effects of combining ellagic acid and hydroxyapatite in bone marker remodelling by analysing the expression of tumour necrosis factor-α (TNF-α), interleukin 10 (IL-10), bone morphogenetic 4 protein (BMP-4), and osteopontin (OPN). Methods Thirty Wistar rats were used in the study. A defect was created in each animal's femur using a low-speed diamond bur. In the control group, the bone was then treated with polyethylene glycol (PEG). In one of the other groups, the bone was treated with hydroxyapatite, and in the other, with ellagic acid-hydroxyapatite. The femur was biopsied 7 days after the procedure and again 14 days after the procedure, and an indirect immunohistochemical (IHC) examination was performed for TNF-α, IL-10, BMP-4, and OPN expression. Results The ellagic acid-hydroxyapatite decreased TNF-α expression in the bone tissue after 7 days and again after 14 days (p < 0.05). On the other hand, it increased IL-10, BMP-4, and OPN expression (p < 0.05) during the same time periods. Conclusion Ellagic acid-hydroxyapatite plays a role in bone marker remodelling by decreasing the expression of TNF-α and increasing the expression of IL-10, BMP-4, and OPN. This hydroxyapatite combination can therefore be recommended for use as bone graft material.
Collapse
|
39
|
Park WB, Kang P, Park W, Han JY. Use of a Lateral Sinus Bony Window as an Intraoral Donor Site for Guided Bone Regeneration in Wide Post-Extraction Defects. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121785. [PMID: 36556988 PMCID: PMC9782459 DOI: 10.3390/medicina58121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Maxillary sinus augmentation (MSA) and guided bone regeneration (GBR) have shown successful clinical, radiological, and histological outcomes for implant-related bone reconstruction and have been used to augment bony defects of various shapes and sizes. This study demonstrated that the lateral sinus bony window obtained during MSA can be used as an autogenous block bone graft for the augmentation of wide post-extraction defects. During the uncovering procedure performed 6 months after surgery, the grafted lateral bony window was well integrated with the adjacent native bone, and complete bone filling was observed in all bony defects around the implants. All of the implants survived. Within the limitations of this study, autogenous block bone obtained from lateral window sites can be used as novel donors for the resolution of wide bony defects around implants.
Collapse
Affiliation(s)
- Won-Bae Park
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
- Private Practice in Periodontics and Implant Dentistry, Seoul 02771, Republic of Korea
| | - Philip Kang
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | - Wonhee Park
- Department of Prosthodontics, Division of Dentistry, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Ji-Young Han
- Department of Periodontology, Division of Dentistry, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
- Correspondence: ; Tel.: +82-2-2290-8671
| |
Collapse
|
40
|
Kadkhodazadeh M, Shafizadeh M, Rahmatian M, Safi Y, Amid R. Determination of the Volume and Density of Mandibular Ramus as a Donor Site Using CBCT. J Maxillofac Oral Surg 2022; 21:1140-1147. [PMID: 36896092 PMCID: PMC9989044 DOI: 10.1007/s12663-021-01546-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/06/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction This study aimed to assess the quantity and quality of available bone to provide the autologous bone graft from mandibular ramus. Material and Methods CBCT scans were collected and mandibular ramus was evaluated by measuring a variety of parameters including volume, bone height, cortical, and cancellous bone thickness. Data analysis was performed using descriptive statistics and inferential statistics. We used the Kolmogorov-Smirnov test for the evaluation of data normality. We then applied Pearson correlation and independent t-test for normal variables, and Spearman and Mann-Whitney correlation tests for abnormal variables. Statistical analysis was performed using SPSS version 19 and P value < 0.05 was considered significant. Results A total of 52 women and 32 men (aged 21 to 70) were included in this study. The mean bone volume was 2.7 ± 0.70 cm3 [95%confidence interval (CI) 1.3-4.5]. The mean bone density in the middle section was 1016.36 ± 231.58 Gy value (95% CI 475.6-1520.9). Kolmogorov-Smirnov test revealed that the variables such as apical cortical/cancellous ratio (P = 0.005), middle-cancellous bone thickness (P = 0.016), and middle cortical/cancellous ratio (P = 0.005) were abnormal and the rest were normal. Bone density, as well as the amount of cortical bone in the middle and apical regions, had a significant reverse correlation with age (P < 0.001). Conclusion The volume, density, and cortical/cancellous ratio are independent of sex. The reverse relationship between age and bone density, as well as the amount of cortical bone in several parts, indicates a decrease in bone quality with aging.
Collapse
Affiliation(s)
- Mahdi Kadkhodazadeh
- Dental Research Center, Periodontics Department, Dental School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Marziyeh Shafizadeh
- Dental Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Mohammadreza Rahmatian
- Dental Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Yaser Safi
- Radiology Department, Dental School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Reza Amid
- Periodontics Department, Dental School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| |
Collapse
|
41
|
Atsuta I, Mizokami T, Jinno Y, Ji B, Xie T, Ayukawa Y. Synergistic Effect of Carbonate Apatite and Autogenous Bone on Osteogenesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8100. [PMID: 36431586 PMCID: PMC9693365 DOI: 10.3390/ma15228100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Bone augmentation using artificial bone is an important option in dental defect prostheses. A bone substitute using carbonate apatite (CO3Ap), an inorganic component of bone, was reported to have promising bone formation and bone replacement ability. However, the osteoinductivity of artificial bone is less than autogenous bone (AB). In this study, CO3Ap with AB is demonstrated as a clinically effective bone substitute. For in vitro experiments, an osteoclast-like cell (RAW-D) was cultured in the presence of AB, CO3Ap, or both (Mix), and the number of osteoclasts was evaluated. Osteoblasts were also cultured under the same conditions, and the number of adherent cells was evaluated. For in vivo experiments, a few holes were created in the rat tibia and AB, CO3Ap, or Mix were added. At 0, 14, and 21 days, the tissue morphology of the wound area was observed, and the thickness of the cortical bone was measured. In vitro, Mix did not increase the number of osteoclasts or osteoblasts. However, in vivo, the rate of bone replacement remarkably increased with Mix on dome-shape. A bone-grafting material combining osteoinductive AB with abundant artificial bone is expected to be clinically easy to use and able to form bone.
Collapse
Affiliation(s)
- Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
| | - Tokihisa Mizokami
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
- Mizokami Dental Office, Fukuoka 8190366, Japan
| | - Yohei Jinno
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
| | - Bin Ji
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
| | - Tingyu Xie
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 8128582, Japan
| |
Collapse
|
42
|
Fabricating ZSM-5 zeolite/ polycaprolactone nano-fibers co-loaded with dexamethasone and ascorbic acid: Potential application in osteogenic differentiation of human adipose-derived stem cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Farhan YAA, Abdelsameaa SES, Elgamily M, Awad S. Impact of Different Preparations of Tooth Graft vs Xenogeneic Bone Graft on Bone Healing: An Experimental Study. J Contemp Dent Pract 2022; 23:1163-1172. [PMID: 37073942 DOI: 10.5005/jp-journals-10024-3438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
AIM This study aims to compare the effect of demineralized xenogeneic tooth graft in its two forms, particulate and block, with bovine xenograft in the healing of a rabbit tibial bone defect model. MATERIALS AND METHODS Two monocortical bony defects were made in the right tibias of 36 rabbits, and were divided into four groups. Group I defects were left empty, while group II, III, and IV were filled with bovine xenograft, demineralized particulate tooth graft, and demineralized perforated block tooth graft, respectively for evaluation of the bone healing process. Three rabbits from each group were euthanized at 2, 4, and 6 weeks after surgery. The bone specimens were processed and stained with hematoxylin and eosin (H&E) and osteopontin (OPN) immunohistochemical staining. The results were subjected to image analysis and quantitative evaluation. RESULTS Demineralized particulate tooth graft showed the best bone healing capacity compared to all other groups at all time points tested, as it showed a large amount of the formed bone, rapid closure of the defect with a significant increase in OPN expression, and the least amount of the residual grafted particles. CONCLUSION In comparison to bovine xenograft and demineralized dentin block graft, the demineralized particulate tooth grafting material is a promising bone grafting substitute as it proved to be osteoconductive, biocompatible, and bioresorbable. CLINICAL SIGNIFICANCE Demineralized tooth grafting material can aid in the regeneration of large bone defects, leading to improvement in the filling of the bone defects which can help in oral and maxillofacial reconstruction.
Collapse
Affiliation(s)
| | | | - Mahitabe Elgamily
- Department of Oral Biology, Mansoura University, Mansoura, Egypt, Phone: +01000777402, e-mail:
| | - Sally Awad
- Department of Oral and Maxillofacial Surgery, Mansoura University, Mansoura, Egypt
| |
Collapse
|
44
|
Arias-Betancur A, Badilla-Wenzel N, Astete-Sanhueza Á, Farfán-Beltrán N, Dias FJ. Carrier systems for bone morphogenetic proteins: An overview of biomaterials used for dentoalveolar and maxillofacial bone regeneration. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:316-327. [PMID: 36281233 PMCID: PMC9587372 DOI: 10.1016/j.jdsr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Different types of biomaterials have been used to fabricate carriers to deliver bone morphogenetic proteins (BMPs) in both dentoalveolar and maxillofacial bone regeneration procedures. Despite that absorbable collagen sponge (ACS) is considered the gold standard for BMP delivery, there is still some concerns regarding its use mainly due to its poor mechanical properties. To overcome this, novel systems are being developed, however, due to the wide variety of biomaterial combination, the heterogeneous assessment of newly formed tissue, and the intended clinical applications, there is still no consensus regarding which is more efficient in a particular clinical scenario. The combination of two or more biomaterials in different topological configurations has allowed specific controlled-release patterns for BMPs, improving their biological and mechanical properties compared with classical single-material carriers. However, more basic research is needed. Since the BMPs can be used in multiple clinical scenarios having different biological and mechanical needs, novel carriers should be developed in a context-specific manner. Thus, the purpose of this review is to gather current knowledge about biomaterials used to fabricate delivery systems for BMPs in both dentoalveolar and maxillofacial contexts. Aspects related with the biological, physical and mechanical characteristics of each biomaterial are also presented and discussed. Strategies for bone formation and regeneration are a major concern in dentistry. Topical delivery of bone morphogenetic proteins (BMPs) allows rapid bone formation. BMPs requires proper carrier system to allow controlled and sustained release. Carrier should also fulfill mechanical requirements of bone defect sites. By using complex composites, it would be possible to develop new carriers for BMPs.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Badilla-Wenzel
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Álvaro Astete-Sanhueza
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicole Farfán-Beltrán
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile.,Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Fernando José Dias
- Department of Integral Adult Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
45
|
Kumar S, Desai N, Joshi S, Hirani T, Gajjar S, Patel C, Bhakkand SR, Girdhar GA, Govindool SR, Wan Ahmad Fakuradzi WFS, Haque M. Biphasic Calcium Phosphate Versus Demineralized Freeze-Dried Bone Allograft in the Treatment of Periodontal Disease: A Clinical and Radiographical Evaluation. Cureus 2022; 14:e29131. [PMID: 36133502 PMCID: PMC9470539 DOI: 10.7759/cureus.29131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Aim The study aimed to clinically and radiographically evaluate the effect of biphasic calcium phosphate (BCP) versus demineralized freeze-dried bone allograft (DFDBA) in treating periodontal disease. Method The study consisted of 44 patients. The sites were randomly assigned to receive one of two treatment modalities (BCP at site 1 and demineralized freeze-dried bone at site 2) by a computerized method. All the clinical data were measured with the help of a University of North Carolina-15 (UNC-15) probe at the baseline, three months, and six months postoperatively. Radiovisiographs were taken using a Rinn XCP® (Dentsply/Rinn Corp, Elgin, IL) system and an oral grid using the paralleling technique. A manual calculation of the defect area was undertaken at the end of six months and was compared with the other groups. Result The linear bone growth recorded for site 1 at the end of six months was 3.8 ± 1.14 mm, and site 2 was 4.6 ± 1.07 mm. The intergroup comparison showed more remarkable linear bone growth in site 2, which was statistically insignificant, with a mean difference of 0.8 ± 1.23 mm and a p-value of 0.07. Conclusion Improvements were observed on all the documented parameters. However, the sites treated with DFDBA showed better periodontal regeneration.
Collapse
|
46
|
Fujioka-Kobayashi M, Katagiri H, Lang NP, Imber JC, Schaller B, Saulacic N. Addition of Synthetic Biomaterials to Deproteinized Bovine Bone Mineral (DBBM) for Bone Augmentation-A Preclinical In Vivo Study. Int J Mol Sci 2022; 23:10516. [PMID: 36142427 PMCID: PMC9505841 DOI: 10.3390/ijms231810516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Aim: To investigate the effect of synthetic bone substitutes, α-tricalcium phosphate (α-TCP) or bi-layered biphasic calcium-phosphate (BBCP) combined with deproteinized bovine bone mineral (DBBM), on bone formation. (2) Methods: Thirty critical size defects were randomly treated with the following five different treatment modalities: (1) negative control (NC, empty), (2) DBBM, (3) α-TCP + DBBM (1:1), (4) BBCP 3%HA/97%α-TCP + DBBM (1:1), and (5) BBCP 6%HA/94%α-TCP + DBBM (1:1). The samples, at four weeks post-surgery, were investigated by micro-CT and histological analysis. (3) Results: A similar level of new bone formation was demonstrated in the DBBM with α-TCP bone substitute groups when compared to the negative control by histomorphometry. DBBM alone showed significantly lower new bone area than the negative control (p = 0.0252). In contrast to DBBM, the micro-CT analysis revealed resorption of the α-TCP + DBBM, BBCP 3%HA/97%α-TCP + DBBM and BBCP 6%HA/94%α-TCP + DBBM, as evidenced by a decrease of material density (p = 0.0083, p = 0.0050 and p = 0.0191, respectively), without changing their volume. (4) Conclusions: New bone formation was evident in all defects augmented with biomaterials, proving the osteoconductive properties of the tested material combinations. There was little impact of the HA coating degree on α-TCP in bone augmentation potential and material resorption for four weeks when mixed with DBBM.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Hiroki Katagiri
- Department of Cranio-Maxillofacial Surgery, University Hospital, University of Bern, 3010 Bern, Switzerland
- Advanced Research Center, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata 951-8580, Japan
| | - Niklaus P. Lang
- Department of Cranio-Maxillofacial Surgery, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
47
|
Besleaga C, Nan B, Popa AC, Balescu LM, Nedelcu L, Neto AS, Pasuk I, Leonat L, Popescu-Pelin G, Ferreira JMF, Stan GE. Sr and Mg Doped Bi-Phasic Calcium Phosphate Macroporous Bone Graft Substitutes Fabricated by Robocasting: A Structural and Cytocompatibility Assessment. J Funct Biomater 2022; 13:jfb13030123. [PMID: 36135559 PMCID: PMC9502687 DOI: 10.3390/jfb13030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022] Open
Abstract
Bi-phasic calcium phosphates (BCPs) are considered prominent candidate materials for the fabrication of bone graft substitutes. Currently, supplemental cation-doping is suggested as a powerful path to boost biofunctionality, however, there is still a lack of knowledge on the structural role of such substituents in BCPs, which in turn, could influence the intensity and extent of the biological effects. In this work, pure and Mg- and Sr-doped BCP scaffolds were fabricated by robocasting from hydrothermally synthesized powders, and then preliminarily tested in vitro and thoroughly investigated physically and chemically. Collectively, the osteoblast cell culture assays indicated that all types of BCP scaffolds (pure, Sr- or Sr–Mg-doped) delivered in vitro performances similar to the biological control, with emphasis on the Sr–Mg-doped ones. An important result was that double Mg–Sr doping obtained the ceramic with the highest β-tricalcium phosphate (β-TCP)/hydroxyapatite mass concentration ratio of ~1.8. Remarkably, Mg and Sr were found to be predominantly incorporated in the β-TCP lattice. These findings could be important for the future development of BCP-based bone graft substitutes since the higher dissolution rate of β-TCP enables an easier release of the therapeutic ions. This may pave the road toward medical devices with more predictable in vivo performance.
Collapse
Affiliation(s)
- Cristina Besleaga
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Bo Nan
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Liviu Nedelcu
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Ana Sofia Neto
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Lucia Leonat
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania
| | - José M. F. Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.M.F.F.); (G.E.S.)
| | - George E. Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania
- Correspondence: (J.M.F.F.); (G.E.S.)
| |
Collapse
|
48
|
Li XF, Chen JJ. Nanobiomaterials in the Repair and Reconstruction of Ankle Trauma Skin Flap Surgical Infection Clinical Research Study. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper discusses the value and surgical techniques of applying nano-silver combined skin flaps to repair large-area soft tissue defects in the calves and ankles. From January 2016 to December 2020, combined skin flap transplantation was used to treat 36 patients with large-area
soft tissue defects in the calf and ankle, and nano-silver was used for wound wet compress. The study found 3 cases of vascular crisis in this group, and vascular exploration was carried out. After the arterial crisis was relieved, 1 case of free flap survived, 1 case of free flap edge necrosis,
wound healing after dressing change, and 1 case of vein Partial necrosis of the free skin flap after embolization exploration. The remaining 33 patients with transplanted tissues all survived, and the wounds were repaired in one stage. The total success rate was 97.2% (35/36). The postoperative
follow-up was 4 to 36 months, with an average of 16 months. The flap was soft and good in appearance, and the function of the affected limb and ankle was recovered satisfactorily. For this reason, we can conclude that the use of different forms of combined skin flap transplantation provides
a feasible and effective technical method for the repair of large-area soft tissue defects in the calf and ankle. The nano-silver coating on the wound can effectively reduce the disability rate. Restore limb function.
Collapse
Affiliation(s)
- Xiao-Fei Li
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Jun-Jiang Chen
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| |
Collapse
|
49
|
Brockmeyer P, Wiechens B, Sevinc T, Schliephake H, Hahn W. Informational content of two-dimensional panoramic radiographs and lateral cephalometric radiographs with respect to the bone volume of intraoral donor regions considering CBCT imaging. BMC Oral Health 2022; 22:318. [PMID: 35907826 PMCID: PMC9339174 DOI: 10.1186/s12903-022-02344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To test the hypothesis that cephalometric parameters in two-dimensional routine dental radiographs correlate with the bone volume of intraoral bone donor sites. METHODS One-hundred and eight radiographs [36 panoramic radiographs (PRs), 36 lateral cephalometric radiographs (LCRs), and 36 cone-beam computed tomography scans (CBCT)] of 36 patients (all three imaging techniques applied according to the needs of treatment planning), were analyzed individually. Cephalometric parameters (PR and LCR) were correlated with the bone volume measurement in three-dimensional CBCT scans in three intraoral donor sites (chin, mandibular retromolar region, and zygomatic alveolar crest). RESULTS The mean bone volumes measured for the chin were (3.10 ± 1.11 cm³ SD), the mandibular retromolar region (1.66 ± 0.54 cm³ SD), and the zygomatic alveolar crest (0.17 ± 0.04 cm³ SD). Cephalometric parameters were significantly correlated (all p-values < 0.05) with the bone volume in the chin and the mandibular retromolar region. The bone volume of the zygomatic alveolar crest exhibited no correlations (p > 0.05) with cephalometric parameters. However, it was significantly correlated (p < 0.01) with the mandibular retromolar bone volume. No gender-specific differences (p > 0.05) were observed concerning bone volumes in all bone harvesting regions. Nevertheless, the male population's interforaminal distance in the chin region was significantly higher (p = 0.001). CONCLUSIONS PRs and LCRs can be used at the initial stage of peri-implant augmentation planning to deduce conclusions about the bone volume in different intraoral bone donor sites. It can help describe indications and justify additional diagnostic options, such as three-dimensional radiologic techniques.
Collapse
Affiliation(s)
- Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, D-37075, Goettingen, Germany.
| | - Bernhard Wiechens
- Department of Orthodontics, University Medical Center Goettingen, Goettingen, Germany
| | | | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, D-37075, Goettingen, Germany
| | - Wolfram Hahn
- Department of Orthodontics, University Medical Center Goettingen, Goettingen, Germany.,Private Office, Goettingen, Germany
| |
Collapse
|
50
|
Sangkert S, Juncheed K, Meesane J. Osteoconductive Silk Fibroin Binders for Bone Repair in Alveolar Cleft Palate: Fabrication, Structure, Properties, and In Vitro Testing. J Funct Biomater 2022; 13:jfb13020080. [PMID: 35735935 PMCID: PMC9224859 DOI: 10.3390/jfb13020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoconductive silk fibroin (SF) binders were fabricated for the bone repair of an alveolar cleft defect. Binders were prefigureared by mixing different ratios of a mixture of random coils and SF aggregation with SF fibrils: 100:0 (SFB100), 75:25 (SFB75), 50:50 (SFB50), 25:75 (SFB25), and 0:100 (SFB0). The gelation, molecular organization, structures, topography, and morphology of the binders were characterized and observed. Their physical, mechanical, and biological properties were tested. The SF binders showed gelation via self-assembly of SF aggregation and fibrillation. SFB75, SFB50, and SFB25 had molecular formation via the amide groups and showed more structural stability than SFB100. The morphology of SFB0 demonstrated the largest pore size. SFB0 showed a lowest hydrophilicity. SFB100 showed the highest SF release. SFB25 had the highest maximum load. SFB50 exhibited the lowest elongation at break. Binders with SF fibrils showed more cell viability and higher cell proliferation, ALP activity, calcium deposition, and protein synthesis than without SF fibrils. Finally, the results were deduced: SFB25 demonstrated suitable performance that is promising for the bone repair of an alveolar cleft defect.
Collapse
|