1
|
Lee H, Kim YJ, Yang YJ, Lee JH, Lee HH. Development of antibacterial dual-cure dental resin composites via tetrapod-shaped zinc oxide incorporation. Dent Mater 2024:S0109-5641(24)00223-9. [PMID: 39117497 DOI: 10.1016/j.dental.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES This study aimed to evaluate the effects of incorporating the 0-20 wt% tetrapod-shaped zinc oxide (tZnO) whiskers on the mechanical, antibacterial, and cytotoxic properties exhibited by experimental dual-cure resin composites. METHODS Commercially obtained tZnO whiskers underwent surface modification using 3-methacryloxypropyltrimethoxysilane (γ-MPS). Subsequently, four groups of resin composites containing 0, 5, 10, and 20 wt% silanized tZnO along with barium borosilicate glass (BaBSG) fillers were fabricated while maintaining total filler loading at 60 wt%. Mechanical properties were examined utilizing specimens produced adhering to ISO 4049:2019 guidelines where applicable. Depth of cure was quantified immediately, while three-point flexural strength, flexural modulus, fracture toughness, Vickers hardness, compressive strength, and diametral tensile strength were assessed after 24 h of storage in 37 °C distilled water. Planktonic bacteria of Streptococcus mutans (S. mutans) were cultured and tested for antibacterial activity using disk diffusion and microbial anti-adhesion assays. Cytotoxicity was examined by preparing extracts from specimens in a cell culture medium and exposing stem cells from human exfoliated deciduous teeth (SHED) to serial dilutions of these extracts, then assessing cell viability and survival using CCK-8 assay and live/dead staining. RESULTS Elevating tZnO loading yielded significant reductions in depth of cure, compressive (from 296.4 to 254.6 MPa), and diametral tensile strength (from 42.7 to 31.0 MPa), while flexural strength (91.3-94.1 MPa), flexural modulus (6.4-6.6 GPa), fracture toughness (0.96-1.04 MPa·m0.5), and Vickers hardness (36.5-37.4 kgf·mm-2) remained the same. Composites integrating tZnO displayed markedly enhanced antibacterial activity against S. mutans, based on anti-adhesion tests and live/dead staining. No cytotoxicity was observed for SHED treated with extracts from resin composites possessing up to 20 wt% tZnO whiskers. SIGNIFICANCE This study demonstrates that incorporating up to 20 wt% silanized tZnO in place of traditional barium glass particles appreciably enhances dual-cure resin composite antibacterial function against S. mutans without compromising mechanical properties.
Collapse
Affiliation(s)
- Hwalim Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| | - Ye-Jin Yang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| | - Jung-Hwan Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| |
Collapse
|
2
|
Akhlaghian M, Khaledi AA, Mosaddad SA, Dabiri S, Giti R, Kadkhodae F, Gholami S. The internal and marginal adaptation of lithium disilicate endocrowns fabricated using intra and extraoral scanners: An in-vitro study. PLoS One 2024; 19:e0301361. [PMID: 38625957 PMCID: PMC11021016 DOI: 10.1371/journal.pone.0301361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 04/18/2024] Open
Abstract
OBJECTIVES The impression technique highly influences the adaptation of ceramic restorations. Not enough information is available to compare the marginal (MF) and internal fit (IF) of endocrowns fabricated with various digitization techniques. Therefore, this in-vitro study aimed to compare the MF and IF of lithium disilicate (LDS) endocrowns fabricated through direct and indirect digital scanning methods. MATERIALS AND METHODS One extracted maxillary molar was used to fabricate endocrowns. The digitization of the model was performed with (G1) direct scanning (n = 10) utilizing an intraoral scanner (IOS), (G2) indirectly scanning the conventional impression taken from the model using the same IOS (n = 10), (G3) indirectly digitalizing the obtained impression using an extraoral scanner (EOS) (n = 10), and (G4) scanning the poured cast using the same EOS (n = 10). The MF and IF of the endocrowns were measured using the replica method and a digital stereomicroscope. The Kruskal-Wallis test was used to analyze data. RESULTS The studied groups differed significantly (p<0.001). G2 (130.31±7.87 μm) and G3 (48.43±19.14 μm) showed the largest and smallest mean vertical marginal gap, respectively. G2 and G3 led to the highest and lowest internal gaps in all regions, respectively. With significant differences among the internal regions (p<0.001), the pulpal area demonstrated the most considerable misfit in all groups. CONCLUSIONS Scanning the impression using an extraoral scanner showed smaller marginal and internal gaps.
Collapse
Affiliation(s)
- Marzieh Akhlaghian
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Amir-Alireza Khaledi
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
- Faculty of Odontology, Department of Conservative Dentistry and Bucofacial Prosthesis, Complutense University of Madrid, Madrid, Spain
| | - Sana Dabiri
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rashin Giti
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Farhad Kadkhodae
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Gholami
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Vural Uzay K, Atalay C, Miletić I, Gurgan S. Effects of Different Whitening Agents on the Color and Translucency of Different Resin Composites. Acta Stomatol Croat 2023; 57:316-328. [PMID: 38283313 PMCID: PMC10812918 DOI: 10.15644/asc57/4/3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Objectives To examine the effects of different whitening agents on the color and translucency of different resin composites, in vitro. Material and methods A total of 315 specimens (10.0 ×2.0 mm) were fabricated from two microhybrid (G-aenial anterior [G-Ant]) and (G-aenial posterior [G-Post]) and a nano hybrid (G-aenial A'CHORD [ G-ACH]) resin composites and each group was randomly distributed into seven experimental groups (n=15) as follows; 1- control (C); 2- in-office whitening agent (IOW); 3- at-home whitening agent (AHW); 4- prefilled tray (PT); 5- whitening pen (WP); 6- whitening toothpaste (WT) and 7- whitening mouthwash (WMW). The specimens were subjected to staining except control group before application of the different whitening procedures. The color of specimens was measured after 24 h (T0), after staining (T1) and after whitening (T2). Color change [CIEDE2000 (ΔE00)], translucency parameter (TP) values and changes in whiteness index (WID) were calculated. Data were analyzed statistically (p<0.05). Results No significant 𝑊ID differences were detected among the tested resin composites at T0 and T1 (p>0.05), whereas a significant difference was observed at T2 (p<0.005). AHW and IOW produced higher color change than PT, WP, WT and WMR. Significant TP changes were found after the application of IOW and AHW in G-Ant. Conclusion The effect of whitening products on the whitening index, color and translucency of resin composites are material and substrate dependent.
Collapse
Affiliation(s)
- Koc Vural Uzay
- Hacettepe University, Department of Restorative Dentistry, School of Dentistry, Sıhhıye/Ankara, Turkey
| | - Cansu Atalay
- Hacettepe University, Department of Restorative Dentistry, School of Dentistry, Sıhhıye/Ankara, Turkey
| | - Ivana Miletić
- University of Zagreb, School of Dental Medicine, Department of Endodontics and Restorative Dentistry, Zagreb, Croatia
| | - Sevil Gurgan
- Hacettepe University, Department of Restorative Dentistry, School of Dentistry, Sıhhıye/Ankara, Turkey
| |
Collapse
|
4
|
Somrit P, Tantilertanant Y, Srisawasdi S. Primer application technique and remaining dentin thickness affected microtensile bond strength of contemporary dentin adhesives under simulated pulp pressure. Clin Oral Investig 2023; 27:139-149. [PMID: 36109375 DOI: 10.1007/s00784-022-04699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/26/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To evaluate the effect of application techniques, type of adhesives and remaining dentin thicknesses on microtensile bond strength (µTBS) of 3 adhesive systems. MATERIALS AND METHODS 112 flat occlusal dentinal surfaces of third molar were randomly allocated into 16 groups based on 2 remaining dentin thicknesses (RDT), 2 application techniques, and 3 adhesive systems (Optibond FL, OFL; Clearfil SE Bond, CSE; and Single Bond Universal, SB); SB was applied in either etch-and-rinse (ER) or self-etch (SE) mode. Simulated pulpal pressure was performed during restorative procedure and water storage. The stick-shaped specimens from each tooth underwent µTBS testing. The data were evaluated using a paired t test and ANOVA followed by a post hoc test. The fractured specimens were evaluated for mode of failure using a stereomicroscope. RESULTS The mean µTBS values were significantly affected by RDT, application technique, and types of adhesives. Neither RDT nor application technique affected µTBS of SB in ER mode, whereas application technique affected both conventional and universal self-etch adhesives. RDT also influenced µTBS of OFL. CONCLUSIONS RDT and application technique differently affected the µTBS of dentin bonding which was product-related. Etch-and-rinse systems had higher bond strength to superficial than to deep dentin, whereas self-etch systems were more sensitive to both RDT and application technique. CLINICAL RELEVANCE The universal adhesive is less sensitive to intrinsic wetness and can be used according to manufacturer's instructions.
Collapse
Affiliation(s)
- Paphawee Somrit
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Yanee Tantilertanant
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirivimol Srisawasdi
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Albelasy EH, Hamama HH, Chew HP, Montaser M, Mahmoud SH. Secondary caries and marginal adaptation of ion-releasing versus resin composite restorations: a systematic review and meta-analysis of randomized clinical trials. Sci Rep 2022; 12:19244. [PMID: 36357453 PMCID: PMC9649593 DOI: 10.1038/s41598-022-19622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
This systematic review was aimed to evaluate occurrence of secondary caries and marginal adaptation in ion-releasing materials versus resin composite. Electronic search of PubMed, Scopus, and Open Grey databases with no date or language restrictions until May 21st, 2021, was conducted. Randomized clinical trials that compared ion-releasing restorations versus resin composite were included. For quantitative analysis, a random-effects meta-analysis with risk difference as an effect measure and a 95% confidence interval was used. Quality of evidence was assessed using The Grading of Recommendations, Assessment, Development, and Evaluation criteria. The risk of bias was evaluated using the Cochran Collaboration Risk of Bias tool. The inclusion criteria were met by 22 studies, and 10 studies were included in the meta-analysis. Three follow-up periods (1 year, 18 months-2 years, and 3 years) were evaluated. The overall quality of evidence for secondary caries and marginal adaptation outcomes was low. The results of the meta-analysis showed no significant difference (p > 0.05) in both outcomes between ion-releasing materials and resin composite. The occurrence of secondary caries was not dependent on the nature of the restorative material. It is more likely a complex process that involves the same risk factors as primary carious lesions.
Collapse
Affiliation(s)
- Eman H Albelasy
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Algomhoria Street, Mansoura, Aldakhlia, 35516, Egypt
- Research Visiting Scholar, Minnesota Dental Research Centre for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hamdi H Hamama
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Algomhoria Street, Mansoura, Aldakhlia, 35516, Egypt.
- Restorative Dentistry Department, Faculty of Dentistry, New-Mansoura University, New-Mansoura, Egypt.
| | - Hooi Pin Chew
- Minnesota Dental Research Centre for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marmar Montaser
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Algomhoria Street, Mansoura, Aldakhlia, 35516, Egypt
| | - Salah H Mahmoud
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Algomhoria Street, Mansoura, Aldakhlia, 35516, Egypt
- Conservative Dentistry Department, Faculty of Dentistry, Horus University, New-Damietta, Egypt
| |
Collapse
|
6
|
Baik KM, Dabbagh RAA. Knowledge About Deep Margin Elevation Among Different Practicing Dental Specialists in Saudi Arabia. ANNALS OF DENTAL SPECIALTY 2022. [DOI: 10.51847/n0yjg9s7lc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Application of β-Tricalcium Phosphate in Adhesive Dentin Bonding. Polymers (Basel) 2021; 13:polym13172855. [PMID: 34502894 PMCID: PMC8434446 DOI: 10.3390/polym13172855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The study aimed at synthesizing β-tricalcium phosphate (β-TCP) nanoparticles and comparing the mechanical properties and dentin interaction of two adhesives: experimental adhesive (EA) and EA with 5 wt.% β-TCP nanoparticles (β-TCP-5%). These filler nanoparticles were synthesized and then characterized with scanning electron microscopy (SEM) and micro-Raman spectroscopy. The β-TCP nanoparticles were incorporated in the adhesives to form two groups: gp-1: EA (control) and gp-2: β-TCP-5%. These adhesives were characterized by SEM, energy-dispersive X-ray (EDX) spectroscopy and were also assessed for their micro-tensile bond strength (μTBS) with (TC) and without thermocycling (NTC). Fourier Transform Infrared (FTIR) spectroscopy was performed to evaluate the degree of conversion (DC) of two adhesives. The β-TCP filler was seen as irregularly shaped agglomerates on SEM. The micro-Raman spectra revealed characteristic peaks associated with β-TCP nanoparticles. Both adhesives presented suitable dentin interaction, which was demonstrated by the formation of resin tags of variable depths. The EDX analysis verified the existence of calcium (Ca) and phosphate (P) for the β-TCP-5% group. The greatest μTBS values were shown by β-TCP-5% group samples when they were non-thermocycled (NTC) (β-TCP-5%-NTC: 34.11 ± 3.46) followed by the thermocycled (TC) samples of the same group (β-TCP-5%-TC: 30.38 ± 3.66), compared with the EA group. Although the DC presented by β-TCP-5% group was comparable to the EA group, it was still lower. The addition of β-TCP nanoparticles in the adhesive improved its μTBS and resulted in a suitable dentin interaction, seen in the form of hybrid layer and resin tag formation. Nonetheless, a decreased DC was observed for the β-TCP-5% adhesive. Future studies probing the effect of different filler concentrations on various properties of the adhesive are warranted.
Collapse
|
8
|
Almutairi B, Kattan HF, BinMahfooz AM, Qutub OA, Basunbul G, ArRejaie AS, Farooq I, Vohra F, Abduljabbar T. Synergistic effect of graphene oxide/calcium phosphate nanofiller in a dentin adhesive on its dentin bond integrity and degree of conversion. A scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared, micro-Raman, and bond strength study. Microsc Res Tech 2021; 84:2082-2094. [PMID: 33913221 DOI: 10.1002/jemt.23764] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/06/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
The objective was to formulate and analyze a dentin adhesive incorporated with graphene oxide (GO) nanoparticle and calcium phosphate (CaP) composite. Methods comprising of scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, shear bond strength (SBS), and Fourier transform infrared (FTIR) spectroscopy were used to characterize nanoparticle composite, dentin bond toughness, degree of conversion (DC), and adhesive-dentin interaction. Postsynthesis of GO nanoparticles, they were functionalized with CaP using standard process. The GO-CaP composite was not added to experimental adhesive (negative control group, GO-CaP-0%), and added at 2.5 and 5 wt% to yield GO-CaP-2.5% and GO-CaP 5% groups, respectively. Teeth were set to form bonded samples utilizing adhesives in three groups for SBS testing, with and without thermocycling. The homogenous diffusion of GO-CaP composite was verified in the adhesive. Resin tags having standard penetrations were observed on SEM micrographs. The EDX analysis confirmed the occurrence of calcium, phosphorus, and carbon ions in the composite containing adhesives. The SBS test revealed highest mean values for GO-CaP-5% followed by GO-CaP-2.5%. The FTIR spectra verified the presence of apatite peaks and the micro-Raman spectra showed characteristic D and G bands for GO nanoparticles. GO-CaP composite in dentin adhesive may improve its bond strength. The addition of 5 wt% resulted in a bond strength that was superior to all other groups. GO-CaP-5% group demonstrated lower DC (to control), uniform distribution of GO and CaP composite within adhesive, appropriate dentin interaction, and resin tag formation.
Collapse
Affiliation(s)
- Basil Almutairi
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Hiba F Kattan
- Preventive Dental Science Department, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdulelah M BinMahfooz
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A Qutub
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer Basunbul
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aws S ArRejaie
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University; Research Chair for Biological Research in Dental Health, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University; Research Chair for Biological Research in Dental Health, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Oivanen M, Keulemans F, Garoushi S, Vallittu PK, Lassila L. The effect of refractive index of fillers and polymer matrix on translucency and color matching of dental resin composite. Biomater Investig Dent 2021; 8:48-53. [PMID: 33855302 PMCID: PMC8018547 DOI: 10.1080/26415275.2021.1906879] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective When restorative resin composites absorb light from the surrounding tooth structures, it creates a color-match, which is known as ‘a chameleon effect’. In this study, series of co-monomer mixtures were prepared with an increasing refraction index (RI) and mixed with glass fillers. The aim of this study was to optimize the mismatch of RI of resin/fillers to create the chameleon effect. Materials and Methods BisGMA/TEGDMA resins were prepared with seven different mix fractions from 20 to 80%. Two different series (A&B) of submicron (Ø 0.7 μm) silanized fillers (70 wt%) (A: Schott RI = 1.53, B: Esschem RI = 1.54) were mixed with resins (30 wt%). Disc-shaped specimens (1 mm thickness, Ø10 mm) for each composite combination (n = 3) were prepared and light cured for 20 s. Commercial resin composite (OmniChroma, Tokuyama Dental) was used as control. The translucency parameter (TP) was measured using a spectrophotometer. The color matching abilities of the experimental composites were visually analyzed. Data were statistically analyzed using ANOVA. Results The composition of resin and type of fillers had a statistically significant effect on TP values (p < .05). The highest TP values were achieved around 50%-50% fractions of Bis-GMA and TEGDMA for series A and around 60%-40% fraction of Bis-GMA and TEGDMA for series B. Data showed that a high or low fraction of BisGMA resulted in a low translucent composite. Experimental resin composite (80% Bis-GMA) from series A was behaving similarly to Omnichroma in reference to TP values and color matching. Conclusions Including fillers with RI of 1.53 into BisGMA/TEGDMA resin with RI of 1.524 resulted in composite resin providing a good color match with surrounding structure ‘chameleon effect’.
Collapse
Affiliation(s)
- Maija Oivanen
- Department of Biomaterials Science and Turku Clinical Biomaterials Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Filip Keulemans
- Department of Biomaterials Science and Turku Clinical Biomaterials Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland.,City of Turku Welfare Division, Oral Health Care, Turku, Finland
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Alhenaki AM, Attar EA, Alshahrani A, Farooq I, Vohra F, Abduljabbar T. Dentin Bond Integrity of Filled and Unfilled Resin Adhesive Enhanced with Silica Nanoparticles-An SEM, EDX, Micro-Raman, FTIR and Micro-Tensile Bond Strength Study. Polymers (Basel) 2021; 13:polym13071093. [PMID: 33808159 PMCID: PMC8037508 DOI: 10.3390/polym13071093] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to synthesize and assess unfilled and filled (silica nanoparticles) dentin adhesive polymer. Methods encompassing scanning electron microscopy (SEM)-namely, energy dispersive X-ray spectroscopy (EDX), micro-tensile bond strength (µTBS) test, Fourier transform infrared (FTIR), and micro-Raman spectroscopy-were utilized to investigate Si particles' shape and incorporation, dentin bond toughness, degree of conversion (DC), and adhesive-dentin interaction. The Si particles were incorporated in the experimental adhesive (EA) at 0, 5, 10, and 15 wt. % to yield Si-EA-0% (negative control group), Si-EA-5%, Si-EA-10%, and Si-EA-15% groups, respectively. Teeth were set to form bonded samples using adhesives in four groups for µTBS testing, with and without aging. Si particles were spherical shaped and resin tags having standard penetrations were detected on SEM micrographs. The EDX analysis confirmed the occurrence of Si in the adhesive groups (maximum in the Si-EA-15% group). Micro-Raman spectroscopy revealed the presence of characteristic peaks at 638, 802, and 1300 cm-1 for the Si particles. The µTBS test revealed the highest mean values for Si-EA-15% followed by Si-EA-10%. The greatest DC was appreciated for the control group trailed by the Si-EA-5% group. The addition of Si particles of 15 and 10 wt. % in dentin adhesive showed improved bond strength. The addition of 15 wt. % resulted in a bond strength that was superior to all other groups. The Si-EA-15% group demonstrated acceptable DC, suitable dentin interaction, and resin tag formation.
Collapse
Affiliation(s)
- Aasem M. Alhenaki
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.M.A.); (A.A.); (F.V.)
| | - Esra A. Attar
- Oral and Maxillofacial Prosthodontics Department, Faculty of Dentistry, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Abdullah Alshahrani
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.M.A.); (A.A.); (F.V.)
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| | - Fahim Vohra
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.M.A.); (A.A.); (F.V.)
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.M.A.); (A.A.); (F.V.)
- Correspondence:
| |
Collapse
|