1
|
Lei Y, Yu L, Yang Z, Quan K, Qing Z. Biotemplated Platinum Nanozymes: Synthesis, Catalytic Regulation and Biomedical Applications. Chembiochem 2024; 25:e202400548. [PMID: 39166345 DOI: 10.1002/cbic.202400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
Platinum (Pt) nanozymes with multiple intrinsic enzyme-mimicking activities have attracted extensive attention in biomedical fields due to their high catalytic activity, ease of modification, and convenient storage. However, the Pt nanozymes synthesized by the traditional method often suffer from uncontrollable morphology and poor stability under physicochemical conditions, resulting in unsatisfactory catalytic behavior in practical applications. To optimize the catalytic ability, biological templates have been introduced recently, which can guide the deposition of platinum ions on their surface to form specific morphologies and then stabilize the resulting Pt nanozymes. Given the promising potential of biotemplated Pt nanozymes in practical applications, it is essential to conduct a systematic and comprehensive review to summarize their recent research progress. In this review, we first categorize the biological templates and discuss the mechanisms as well as characteristics of each type of biotemplate in directing the growth of Pt nanozyme. Factors that impact the growth of biotemplated Pt nanozymes are then analyzed, followed by summarizing their biomedical applications. Finally, the challenges and opportunities in this field are outlined. This review article aims to provide theoretical guidance for developing Pt nanozymes with robust functionalities in biomedical applications.
Collapse
Affiliation(s)
- Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Lihong Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zeyang Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Ke Quan
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| |
Collapse
|
2
|
Mohamed HEA, Khalil AT, Hkiri K, Ayaz M, Usman A, Sadiq A, Ullah F, Khan MA, Ullah I, Maaza M. Potential nanomedicinal applications and physicochemical nature of Hyphaene thebaica-reduced nano-samaria. Microsc Res Tech 2024; 87:2829-2841. [PMID: 39007412 DOI: 10.1002/jemt.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/03/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm2O3 NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424-, and 561 cm-1. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm2O3 nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 μg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 μg/mL and LC50 value of 1081 μg/mL. HT-Sm2O3 NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 μg/mL. MTT assay results indicated that HT-Sm2O3 NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC50 value of 104.6 μg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC50 value of 413.25 μg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC50 value of 320 μg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC50 value of 380 μg/mL for α-glucosidase and 952 μg/mL for α-amylase was calculated. Overall, our study suggested that the Sm2O3 NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.
Collapse
Affiliation(s)
- Hamza Elsayed Ahmad Mohamed
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khaoula Hkiri
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Assad Usman
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arif Khan
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Ikram Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| |
Collapse
|
3
|
Ismail E, Mohamed A, Maboza E, Dhlamini MS, Adam RZ. Callistemon citrinus: A plant‐mediated synthesis of sustainable Rhodium nanoparticles and their antimicrobial activity. APPLIED RESEARCH 2024; 3. [DOI: 10.1002/appl.202300130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 01/03/2025]
Abstract
AbstractThis work investigates the potential of using Callistemon citrinu flower extract, commonly known as bottlebrush, in the environmentally friendly synthesis of Rhodium nanoparticles (Rh NPs). Callistemon citrinu flower extract contains a high concentration of flavonoids and other phytochemicals. Hence, the extract was used to provide the essential components for an environmentally, sustainable synthesis method of Rh NPs. Different characterization analyses were used to evaluate the different properties of the synthesized particles. UV spectroscopy analysis demonstrated a continuous UV absorption spectrum attributed to the formation of Rh NPs. The XRD data and SAED analysis showed an amorphous nature of the synthesized Rh NPs. The HRTEM imaging provided morphological information about the Rh NPs tested sample, where the efficiency of Callistemon citrinu flower extract as a capping agent was reported. Furthermore, Raman spectra displayed the characteristic vibrational bands of the synthesized Rh NPs. The antimicrobial activity of the synthesized samples was tested against several dental pathogens, that play a role in dental caries, Staphylococcus aureus (SA), Bacillus subtilis (BS), Candida albicans (CA), Escherichia coli (Eco), and Staphylococcus epidermidis (S. Epi). In comparison with the control, Chlorhexidine (CHX), Rh NPs showed a greater impact on C. albicans (20 ≤ Zone of inhibition (ZOI) (mm) ≤ 26). The statistical analysis demonstrated that Rh NPs had a greater mean ZOI than the Callistemon citrinu flower extract. These results reveal the considerable potential and biological capacity Rh NPs have as an antifungal agent for dental applications.
Collapse
Affiliation(s)
- Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry University of the Western Cape Parow, Cape Town South Africa
- Physics Department, Faculty of Science (Girl's branch) Al Azhar University Nasr City Egypt
| | - Abubaker Mohamed
- Department of Prosthodontics, Faculty of Dentistry University of the Western Cape Parow, Cape Town South Africa
| | - Ernest Maboza
- Oral and Dental Research Laboratory, Faculty of Dentistry University of the Western Cape Parow, Cape Town South Africa
| | - Mokhotjwa Simon Dhlamini
- Department of Physics, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa
| | - Razia Z. Adam
- Department of Prosthodontics, Faculty of Dentistry University of the Western Cape Parow, Cape Town South Africa
| |
Collapse
|
4
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Marvi PK, Ahmed SR, Das P, Ghosh R, Srinivasan S, Rajabzadeh AR. Prunella vulgaris-phytosynthesized platinum nanoparticles: Insights into nanozymatic activity for H 2O 2 and glutamate detection and antioxidant capacity. Talanta 2024; 274:125998. [PMID: 38574541 DOI: 10.1016/j.talanta.2024.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Artificial nanozymes (enzyme-mimics), specifically metallic nanomaterials, have garnered significant attention recently due to their reduced preparation cost and enhanced stability in a wide range of environments. The present investigation highlights, for the first time, a straightforward green synthesis of biogenic platinum nanoparticles (PtNPs) from a natural resource, namely Prunella vulgaris (Pr). To demonstrate the effectiveness of the phytochemical extract as an effective reducing agent, the PtNPs were characterized by various techniques such as UV-vis spectroscopy, High-resolution Transmission electron microscopy (HR-TEM), zeta-potential analysis, Fourier-transform infrared spectroscopy (FTIR), and Energy dispersive spectroscopy (EDS). The formation of PtNPs with narrow size distribution was verified. Surface decoration of PtNPs was demonstrated with multitudinous functional groups springing from the herbal extract. To demonstrate their use as viable nanozymes, the peroxidase-like activity of Pr/PtNPs was evaluated through a colorimetric assay. Highly sensitive visual detection of H2O2 with discrete linear ranges and a low detection limit of 3.43 μM was demonstrated. Additionally, peroxidase-like catalytic activity was leveraged to develop a colorimetric platform to quantify glutamate biomarker levels with a high degree of selectivity, the limit of detection (LOD) being 7.00 μM. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test was used to explore the scavenging nature of the PtNPs via the degradation of DPPH. Overall, the colorimetric assay developed using the Pr/PtNP nanozymes in this work could be used in a broad spectrum of applications, ranging from biomedicine and food science to environmental monitoring.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Raja Ghosh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
6
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
7
|
Abdel-Baky YM, Omer AM, El-Fakharany EM, Ammar YA, Abusaif MS, Ragab A. Developing a new multi-featured chitosan-quinoline Schiff base with potent antibacterial, antioxidant, and antidiabetic activities: design and molecular modeling simulation. Sci Rep 2023; 13:22792. [PMID: 38123716 PMCID: PMC10733428 DOI: 10.1038/s41598-023-50130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
A new chitosan Schiff base was developed via the reaction of chitosan (CH) with 2-chloro-3-formyl-7-ethoxy quinoline (Q) derivative. The alteration in the chemical structure and morphology of CHQ derivative was confirmed by 1H NMR, FT-IR spectroscopy and SEM analysis. The antibacterial activity was considerably promoted with increasing quinoline concentration up to 1 M with maximal inhibition reached 96 and 77% against Staphylococcus haemolyticus and Escherichia coli, respectively. Additionally, CHQ derivative afforded higher ABTS·+ radical scavenging activity reached 59% compared to 13% for native chitosan, approving its acceptable antioxidant activity. Moreover, the developed CHQ derivative can stimulate the glucose uptake in HepG-2 and yeast cells, while better inhibition of α-amylase and α-glucosidase was accomplished with maximum values of 99.78 and 92.10%, respectively. Furthermore, the molecular docking simulation clarified the binding mode of CHQ derivative inside the active site of α-amylase and α-glucosidase, suggesting its potential use as diabetes mellitus drug. The DFT calculations indicated an improvement in the electronic properties of CHQ with a lower energy band gap reached 4.05eV compared to 5.94eV for CH. The cytotoxicity assay revealed the safety of CHQ towards normal HSF cells, hypothesizing its possible application as non-toxic antibacterial, antioxidant, and antidiabetic agent for biomedical applications.
Collapse
Affiliation(s)
- Yasser M Abdel-Baky
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed M Omer
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
8
|
Naggar AH, Seaf-Elnasr TA, Thabet M, El-Monaem EMA, Chong KF, Bakr ZH, Alsohaimi IH, Ali HM, El-Nasser KS, Gomaa H. A hybrid mesoporous composite of SnO 2 and MgO for adsorption and photocatalytic degradation of anionic dye from a real industrial effluent water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108247-108262. [PMID: 37747604 DOI: 10.1007/s11356-023-29649-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Water pollution by synthetic anionic dyes is one of the most critical ecological concerns and challenges. Therefore, there is an urgent need to find an efficient adsorbent and photocatalyst for dye removal. In the present study, we aimed to fabricate a hybrid mesoporous composite of spongy sphere-like SnO2 and three-dimensional (3D) cubic-like MgO (SnO2/MgO) as a promising adsorbent/photocatalyst to remove the anionic sunset yellow (SSY) dye from real wastewater at neutral pH conditions. The as-synthesized SnO2 and MgO composite was investigated using XRD, SEM, EDX, TEM, XPS, BET, and zeta potential. The experimental study of the SSY removal using SnO2/MgO composite was performed at different conditions, such as pH, stirring time, dose, and temperature. More than 99% of 10 mg/L SSY was effectively adsorbed from aqueous solution using 40 mg of SnO2/MgO composite at pH 7 and a stirring time of 60 min. The SSY adsorption behavior was well fitted by pseudo-second order and the Langmuir model, indicating that the SSY was chemisorbed to the composite-active sites as a monolayer. On the other hand, photocatalytic degradation process exhibited better results in terms of speed of removal and used quantity of photocatalyst, where 20 mg of SnO2/MgO composite can be used to remove > 99% of SSY dye within 30 min. Mechanism of SSY adsorption and photocatalytic degradation was discussed. In addition, elution experiments demonstrated that the SnO2/MgO composite as an SSY adsorbent could be reused for nine cycles without considerable reduction in the SSY adsorption efficiency. Therefore, this work exhibited that the mesoporous SnO2/MgO composite can be considered an effective adsorbent/photocatalyst to remove SSY dye from real industrial effluent water at neutral pH conditions.
Collapse
Affiliation(s)
- Ahmed H Naggar
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Kingdom of Saudi Arabia
| | - Tarek A Seaf-Elnasr
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia.
| | - Mahmoud Thabet
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Kwok F Chong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Gambang, Malaysia
| | - Zinab H Bakr
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
| | - Hazim M Ali
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Forensic Chemistry Department, Forensic Medicine Authority, Cairo, Egypt
| | - Karam S El-Nasser
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
9
|
El-Fakharany EM, El-Maradny YA, Ashry M, Abdel-Wahhab KG, Shabana ME, El-Gendi H. Green synthesis, characterization, anti-SARS-CoV-2 entry, and replication of lactoferrin-coated zinc nanoparticles with halting lung fibrosis induced in adult male albino rats. Sci Rep 2023; 13:15921. [DOI: https:/doi.org/10.1038/s41598-023-42702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
AbstractThe ethanolic extract of Coleus forskohlii Briq leaves was employed in the green synthesis of zinc nanoparticles (Zn-NPs) by an immediate, one-step, and cost-effective method in the present study. Zn-NPs were coated with purified bovine lactoferrin (LF) and characterized through different instrumental analysis. The biosynthesized Zn-NPs were white in color revealing oval to spherical-shaped particles with an average size of 77 ± 5.50 nm, whereas LF-coated Zn-NPs (LF-Zn-NPs) revealed a larger particles size of up to 98 ± 6.40 nm. The biosynthesized Zn-NPs and LF-Zn-NPs revealed negatively charged surfaces with zeta-potentials of – 20.25 ± 0.35 and – 44.3 ± 3.25 mV, respectively. Interestingly, the LF-Zn-NPs showed potent in vitro retardation for SARS-CoV-2 entry to host cells by binding to the ACE2-receptor and spike protein receptor binding domain at IC50 values of 59.66 and μg/mL, respectively. Additionally, the results indicated the ability of LF-Zn-NPs to inhibit SARS-CoV-2 replication by interfering with RNA-dependent RNA polymerase “RdRp” activity at IC50 of 49.23 μg/mL. In vivo, the LF-Zn-NPs displayed a protective and therapeutic activity against induced pulmonary fibrosis in Bleomycin-treated male albino rats owing to its anti-inflammatory, antioxidant, and significant reduction in CRP, LDH, ferritin, and D-dimer levels. The obtained findings offer a promising route for biosynthesized Zn-NPs and LF-Zn-NPs as promising candidates against COVID-19.
Collapse
|
10
|
El-Fakharany EM, El-Maradny YA, Ashry M, Abdel-Wahhab KG, Shabana ME, El-Gendi H. Green synthesis, characterization, anti-SARS-CoV-2 entry, and replication of lactoferrin-coated zinc nanoparticles with halting lung fibrosis induced in adult male albino rats. Sci Rep 2023; 13:15921. [PMID: 37741872 PMCID: PMC10518009 DOI: 10.1038/s41598-023-42702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
The ethanolic extract of Coleus forskohlii Briq leaves was employed in the green synthesis of zinc nanoparticles (Zn-NPs) by an immediate, one-step, and cost-effective method in the present study. Zn-NPs were coated with purified bovine lactoferrin (LF) and characterized through different instrumental analysis. The biosynthesized Zn-NPs were white in color revealing oval to spherical-shaped particles with an average size of 77 ± 5.50 nm, whereas LF-coated Zn-NPs (LF-Zn-NPs) revealed a larger particles size of up to 98 ± 6.40 nm. The biosynthesized Zn-NPs and LF-Zn-NPs revealed negatively charged surfaces with zeta-potentials of - 20.25 ± 0.35 and - 44.3 ± 3.25 mV, respectively. Interestingly, the LF-Zn-NPs showed potent in vitro retardation for SARS-CoV-2 entry to host cells by binding to the ACE2-receptor and spike protein receptor binding domain at IC50 values of 59.66 and μg/mL, respectively. Additionally, the results indicated the ability of LF-Zn-NPs to inhibit SARS-CoV-2 replication by interfering with RNA-dependent RNA polymerase "RdRp" activity at IC50 of 49.23 μg/mL. In vivo, the LF-Zn-NPs displayed a protective and therapeutic activity against induced pulmonary fibrosis in Bleomycin-treated male albino rats owing to its anti-inflammatory, antioxidant, and significant reduction in CRP, LDH, ferritin, and D-dimer levels. The obtained findings offer a promising route for biosynthesized Zn-NPs and LF-Zn-NPs as promising candidates against COVID-19.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alamein, 51718, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | | | | | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
11
|
Eltaweil AS, Abd El-Monaem EM, El-Subruiti GM, Ali BM, Abd El-Latif MM, Omer AM. Graphene oxide incorporated cellulose acetate beads for efficient removal of methylene blue dye; isotherms, kinetic, mechanism and co-existing ions studies. JOURNAL OF POROUS MATERIALS 2023; 30:607-618. [DOI: 10.1007/s10934-022-01347-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 09/01/2023]
Abstract
AbstractIn this investigation, new porous adsorbent beads were formulated via the incorporation of graphene oxide (GO) into cellulose acetate beads (CA) for the adsorptive removal of methylene blue (MB) dye. The experimental results signified that the adsorption of MB dye increased with the increase in the GO ratio from 10 to 25%. In addition, the adsorption process obeyed PSO kinetic model and Langmuir isotherm model with a maximum adsorption capacity reaching 369.85 mg/g. More importantly, it was proposed that the adsorption mechanism of MB dye onto GO@CA proceeded via electrostatic interactions, H-bonding, van der Waals forces, n-π and π -π interactions. Besides, the fabricated beads exhibited an excellent ability to recycle and reuse after five successive cycles. In addition, there was a high selectivity of GO@CA beads towards MB molecules in the presence of co-existing cations such as Fe2+, Zn2+, Cu2+ and Ni2+.
Collapse
|
12
|
Naznin A, Dhar PK, Dutta SK, Chakrabarty S, Karmakar UK, Kundu P, Hossain MS, Barai HR, Haque MR. Synthesis of Magnetic Iron Oxide-Incorporated Cellulose Composite Particles: An Investigation on Antioxidant Properties and Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15030732. [PMID: 36986593 PMCID: PMC10055761 DOI: 10.3390/pharmaceutics15030732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, polymer-supported magnetic iron oxide nanoparticles (MIO-NPs) have gained a lot of attention in biomedical and healthcare applications due to their unique magnetic properties, low toxicity, cost-effectiveness, biocompatibility, and biodegradability. In this study, waste tissue papers (WTP) and sugarcane bagasse (SCB) were utilized to prepare magnetic iron oxide (MIO)-incorporated WTP/MIO and SCB/MIO nanocomposite particles (NCPs) based on in situ co-precipitation methods, and they were characterized using advanced spectroscopic techniques. In addition, their anti-oxidant and drug-delivery properties were investigated. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analyses revealed that the shapes of the MIO-NPs, SCB/MIO-NCPs, and WTP/MIO-NCPs were agglomerated and irregularly spherical with a crystallite size of 12.38 nm, 10.85 nm, and 11.47 nm, respectively. Vibrational sample magnetometry (VSM) analysis showed that both the NPs and the NCPs were paramagnetic. The free radical scavenging assay ascertained that the WTP/MIO-NCPs, SCB/MIO-NCPs, and MIO-NPs exhibited almost negligible antioxidant activity in comparison to ascorbic acid. The swelling capacities of the SCB/MIO-NCPs and WTP/MIO-NCPs were 155.0% and 159.5%, respectively, which were much higher than the swelling efficiencies of cellulose-SCB (58.3%) and cellulose-WTP (61.6%). The order of metronidazole drug loading after 3 days was: cellulose-SCB < cellulose-WTP < MIO-NPs < SCB/MIO-NCPs < WTP/MIO-NCPs, whereas the sequence of the drug-releasing rate after 240 min was: WTP/MIO-NCPs < SCB/MIO-NCPs < MIO-NPs < cellulose-WTP < cellulose-SCB. Overall, the results of this study showed that the incorporation of MIO-NPs in the cellulose matrix increased the swelling capacity, drug-loading capacity, and drug-releasing time. Therefore, cellulose/MIO-NCPs obtained from waste materials such as SCB and WTP can be used as a potential vehicle for medical applications, especially in a metronidazole drug delivery system.
Collapse
Affiliation(s)
- Arifa Naznin
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Palash Kumar Dhar
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
- Correspondence: (P.K.D.); (H.R.B.)
| | | | | | | | - Pritam Kundu
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Muhammad Sarwar Hossain
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (P.K.D.); (H.R.B.)
| | - Md. Rezaul Haque
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
13
|
One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities. Pharmaceutics 2023; 15:pharmaceutics15020529. [PMID: 36839850 PMCID: PMC9958700 DOI: 10.3390/pharmaceutics15020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Among various routes of metallic nanoparticle (NPs) fabrication, phytosynthesis has significant advantages over other conventional approaches. Plant-mediated synthesis of NPs is a fast, one-step, ecobenign, and inexpensive method with high scalability. Herein, silver (Ag) and gold (Au)-NPs were extracellularly synthesized using aqueous Haloxylon salicornicum (H@Ag-, H@Au-NPs) leaf extracts. GC-MS was performed to analyze the chemical compositions of H. salicornicum extract. H@Ag- and H@Au-NPs were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission and scanning electron microscopy, and Zetasizer. H@Ag- and H@Au-NPs have surface plasmon resonance at 435.5 and 530.3 nm, respectively. FTIR and GC-MS data suggest that secondary plant metabolites and hydrocarbons might be responsible for the reduction and stabilization of NPs. XRD demonstrated that both NPs have a crystalline nature. H@Ag-NPs have a uniform spherical shape, whereas H@Au-NPs are spherical with few oval and triangular shapes, and their average nanosizes were 19.1 ± 0.8 and 8.1 ± 0.3 nm, respectively. Hydrodynamic diameters of H@Ag-NPs and H@Au-NPs were 184.7 nm, 56.4, and 295.4 nm, and their potential charges were -24.0 and -24.4 mV, respectively. The inhibitory activity of 500 µg/mL H@Ag- and H@Au-NPs was tested against Sw480, Sw620, HCT-116, and Caco-2 colon cancer cell lines and two normal cell lines, including HFs and Vero. H@Ag-NPs revealed potent anticancer activity against all cancer cells at low concentrations. Sw480 was the most sensitive cell to H@Ag-NPs, whereas Sw620 was the least permeable one. These findings suggested that the antiproliferative activity of H@Ag-NPs is cell-response-dependent and may be influenced by a variety of factors, including the cellular metabolic state, which influences cellular charge and interactions with charged NPs. Although H@Au-NPs were smaller, their reactivity against cancer cells was weak, suggesting that the chemical properties, metal structure, quantity and chemistry of the functional groups on the NP surface may influence their reactivity. The biocidal activity of 1 mg/mL H@Ag- and H@Au-NPs against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Klebsiella pneumoniae was assessed. H@Ag-NPs showed biocidal activity against Gram-positive bacteria compared to Gram-negative bacteria, whereas H@Au-NPs showed no inhibitory activity. FRAP and DPPH assays were used to determine the scavenging activity of the plant extracts and both NPs. H@Ag-NPs (1 mg/mL) had the greatest scavenging activity compared to tested drugs. These findings suggest that H@Ag-NPs are potent anticancer, antibacterial, and antioxidant agents, while H@Au-NPs may be used as a drug vehicle for pharmaceutical applications.
Collapse
|
14
|
Novel Cytocompatible Chitosan Schiff Base Derivative as a Potent Antibacterial, Antidiabetic, and Anticancer Agent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThis study intends to develop a novel bioactive chitosan Schiff base (CTS-SB) derivative via coupling of chitosan (CTS) with 4-((5, 5-dimethyl-3-oxocyclohex-1-en-1-yl) amino) benzene-sulfonamide. The alteration in the chemical structure of CTS-SB was verified using 1H NMR and FT-IR analysis, while the thermal and morphological properties were inspected by TGA and SEM characterization tools, respectively. Ion exchange capacity of the developed CTS-SB derivative recorded a maximal value of 12.1 meq/g compared to 10.1 meq/g for pristine CTS. In addition, antibacterial activity of CTS-SB derivative was greatly boosted against Escherichia coli (E coli) and Staphylococcus aureus (S. aureus) bacteria. Minimum inhibition concentration of CTS-SB derivative was perceived at 50 µg/mL, while the highest concentration (250 µg/mL) could inhibit the growth of S. aureus up to 91%. What’s more, enhanced antidiabetic activity by CTS-SB derivative, which displayed higher inhibitory values of α-amylase (57.9%) and α-glucosidase (63.9%), compared to those of pure CTS (49.8 and 53.4%), respectively Furthermore, cytotoxicity investigation on HepG-2 cell line revealed potential anticancer activity along with good safety margin against primary human skin fibroblasts (HSF cells) and decent cytocompatibility. Collectively, the gained results hypothesized that CTS-SB derivative could be effectively applied as a promising antibacterial, anticancer and antidiabetic agent for advanced biomedical applications.
Collapse
|
15
|
Binesh N, Farhadian N, Mohammadzadeh A, Karimi M. Dual‐drug delivery of sodium ceftriaxone and metronidazole by applying salt‐assisted chitosan nanoparticles: Stability, drug release, and time‐kill assay study against
Bacteroides fragilis. J Appl Polym Sci 2023. [DOI: 10.1002/app.53284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Nafiseh Binesh
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Alireza Mohammadzadeh
- Microbiology Department, Faculty of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Mohammad Karimi
- Emergency Medicine Department Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|
16
|
Asam Raza M, Farwa U, Waseem Mumtaz M, Kainat J, Sabir A, Al-Sehemi AG. Green synthesis of gold and silver nanoparticles as antidiabetic and anticancerous agents. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2275666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/21/2023] [Indexed: 01/05/2025]
Affiliation(s)
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | | - Javeria Kainat
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Areej Sabir
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
17
|
Mikhailova EO. Green Synthesis of Platinum Nanoparticles for Biomedical Applications. J Funct Biomater 2022; 13:260. [PMID: 36412901 PMCID: PMC9680517 DOI: 10.3390/jfb13040260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The diverse biological properties of platinum nanoparticles (PtNPs) make them ideal for use in the development of new tools in therapy, diagnostics, and other biomedical purposes. "Green" PtNPs synthesis is of great interest as it is eco-friendly, less energy-consuming and minimizes the amount of toxic by-products. This review is devoted to the biosynthesis properties of platinum nanoparticles based on living organisms (bacteria, fungi, algae, and plants) use. The participation of various biological compounds in PtNPs synthesis is highlighted. The biological activities of "green" platinum nanoparticles (antimicrobial, anticancer, antioxidant, etc.), the proposed mechanisms of influence on target cells and the potential for their further biomedical application are discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
18
|
Adsorption and Photocatalytic Degradation Properties of Bimetallic Ag/MgO/Biochar Nanocomposites. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3631584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Ag/MgO/biochar nanostructures were fabricated using a solvent-free ball milling process as an effective adsorbent. Development of functional materials capable of completely removing organic pollutants from water and their adequate adsorption present challenges. The addition of MgO nanoparticles diffused equally on biochar surfaces in the biochar matrix, according to various characterization data. In decomposing biochar and compressing MgO, powdered metal enhanced mesopores and macropores of nanocomposites. XPS analysis indicates the potential synthesis of modified biochar nanocomposites. Adequate amounts of MgO added to biochar improved the ability of the nanocomposites to remove methylene blue (M.B.) through photosynthesis and adsorption. Photocatalytic analysis was carried out for the proposed novel composites to remove tetracycline (T.C.) subjected to different conditions. The photodegradation efficiency was found 80.26% for TC concentration, 50 ppm, H2O2 of 100 mM pH: 5-6 of Ag/MgO/biochar (0.01 g) at 25° temperature. Treatment of various organic wastewaters by metal oxide/biochar nanocomposites with strong adsorption and photocatalytic degradation capabilities is made possible by this research.
Collapse
|
19
|
Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022; 14:2135. [PMID: 36297570 PMCID: PMC9610297 DOI: 10.3390/pharmaceutics14102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.
Collapse
Affiliation(s)
- Espoir K. Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa 012, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
20
|
Synthesis and Adsorbent Performance of Modified Biochar with Ag/MgO Nanocomposites for Heat Storage Application. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7423102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heat storage is a major problem in the world. Many research is going on the heat storage application. This research investigates the novel Ag/MgO/biochar nanocomposites for heat storage. Ag/MgO/biochar nanocomposites were fabricated using solvent-free ball milling techniques. According to several analytical measurements, the Ag/MgO nanoparticles in biochar are uniformly dispersed across the carbon interface. This type of adsorbent material has been characterized by different techniques such as X-ray diffraction pattern analysis (XRD), FTIR analysis, scanning electron microscope (SEM), and transmission electron microscope (TEM) as all indicate the surface morphology and successful ball milling synthesis of Ag/MgO nanocomposites. The UV visible spectroscopy wavelength range of AgNPs and MgONPs is 330 nm and 470 nm, respectively. FTIR analysis revealed that different functional groups of modified biochar nanocomposites such as O-H group are 3728 cm-1 and for C-H bond is 932 cm-1, C-O group is 1420 cm-1, and C=O is 1785 cm-1, respectively. Adsorption tests showed that 1.0 gL-1 dosage with 60% phosphate removal, an ion, and 0.2 gL-1 of dosages that had 85% methylene blue decomposition, a charged synthetic dye, were the lowest absorption levels. This research suggests that ball milling offers the advantages of stabilization and chemical adaptability for customized remediation of different atmospheric contaminants. Ball milling is a facile and feasible process to fabricate carbon-metal-oxide nanomaterials.
Collapse
|
21
|
Eltaweil AS, Hashem OA, Abdel-Hamid H, Abd El-Monaem EM, Ayoup MS. Synthesis of a new magnetic Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base for Cr(VI) removal. Int J Biol Macromol 2022; 222:1465-1475. [PMID: 36113599 DOI: 10.1016/j.ijbiomac.2022.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
In this study, a novel magnetic organic-inorganic composite was fabricated. Where, Chitosan, sulfacetamide and ethylacetoacetae were used to prepare a new Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base (SEH-CSB) with a variety of active sites that capable of forming coordinate covalent bonds with Cr(VI). This was followed by modification of the formed SHE-CSB with NiFe2O4 to obtain the magnetic Chitosan-Schiff-base (NiFe2O4@SEH-CSB). NiFe2O4@SEH-CSB was characterized using FTIR, zeta potential, SEM, VSM and XPS. Results clarified that SHE played a crucial role in the removal of Cr(VI). The removal of Cr(VI) on NiFe2O4@SEH-CSB was found to be more fitted to pseudo-2nd order kinetics model and Freundlich isotherm. Besides, the maximum adsorption capacity of NiFe2O4@SEH-CSB for Cr(VI) was found to be 373.61 mg/g. The plausible mechanism for the removal of Cr(VI) on NiFe2O4@SEH-CSB composite suggested coulombic interaction, outer-sphere complexation, ion-exchange, surface complexation and coordinate-covalent bond pathways. The magnetic property enabled easy recycling of NiFe2O4@SEH-CSB composite.
Collapse
Affiliation(s)
| | - Omar A Hashem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
22
|
Shawer R, El-Leithy ES, Abdel-Rashid RS, Eltaweil AS, Baeshen RS, Mori N. Preparation of Lambda-Cyhalothrin-Loaded Chitosan Nanoparticles and Their Bioactivity against Drosophila suzukii. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3110. [PMID: 36144898 PMCID: PMC9503733 DOI: 10.3390/nano12183110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The encapsulation of pesticides within nanoparticles is a promising approach of advanced technology in sustainable agriculture. Lambda-cyhalothrin (LC) was encapsulated by the ionotropic gelation technique into chitosan (CS)/tripolyphosphate (TPP) and CS/alginate (ALG) matrixes. CS-LC nanoparticles were characterized, and their efficacy was then evaluated against the key pest of soft fruits in Europe and the United States, Drosophila suzukii. The encapsulation efficiency (74%), nanoparticle yield (80%), polydispersity index (0.341), zeta potential (-23.1 mV) and particle size (278 nm) were determined at the optimum conditions. FTIR confirmed the cross-linkage between CS and TPP/ALG in the nanoparticles. The optimum formula recommended by the fractional factorial design was associated with the formulation variables of CS of high or low molecular weight, cross-linking agent (TPP), LC concentration (1.5% w/v) and stirring rate (1500 rpm), showing the highest desirability value (0.5511). CS-LC nanoparticles of the lowest particle size (278 nm) exhibited the highest percent mortality of D. suzukii males (86%) and females (84%), exceeding that caused by the commercial product (Karate-zeon® 10% CS) at 2 HAT. This is the first work to use the ionic gelation technique to make LC nanoparticles, to the best of our knowledge. The encapsulation of chemical pesticides within biodegradable polymeric nanoparticles could be helpful for establishing a sustainable IPM strategy with benefits for human and environmental health and the lifetime of pesticides.
Collapse
Affiliation(s)
- Rady Shawer
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Eman S. El-Leithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Rania S. Abdel-Rashid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Abdelazeem S. Eltaweil
- Department of Chemistry, Faculty of Sciences, Alexandria University, Alexandria 21526, Egypt
| | - Rowida S. Baeshen
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71421, Saudi Arabia
| | - Nicola Mori
- Department of Biotechnology, Verona University, 37134 Verona, Italy
| |
Collapse
|
23
|
Hosny M, Fawzy M, Eltaweil AS. Phytofabrication of bimetallic silver-copper/biochar nanocomposite for environmental and medical applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115238. [PMID: 35576706 DOI: 10.1016/j.jenvman.2022.115238] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 05/28/2023]
Abstract
In the current study, a novel, green, low-cost, and sustainable path for the phyto-fabrication of Ag-Cu biochar nanocomposite (Ag-Cu/biochar) by Atriplex halimus biomass and aqueous extract is described. Surface plasmon resonance peaks were detected at 450 nm and 580 nm signifying the formation of both silver and copper nanoparticles, respectively on the biochar surface. XRD analysis confirmed the crystal structure of the phytosynthesized Ag-Cu/biochar whereas FT-IR, SEM, EDX, and XPS analyses confirmed the successful phytofabrication of the composite. Ag and Cu nanoparticles loaded on the biochar surface were almost spherically-shaped with a particle size ranging from 25 nm to 45 nm. Zeta potential of -25.5 mV showed the stability of Ag-Cu/biochar. The potential of this novel nanocomposite in the removal of doxycycline (DOX) was evident under different conditions as it reached nearly 100% under the optimum reaction conditions (DOX concentration; 50 ppm, pH; 9, a dose of Ag-Cu/biochar; 0.01 g, temperature; 25 °C, and H2O2 concentration; 100 mM). The promising regeneration of Ag-Cu/biochar was evident as the removal efficiency was 81% after 6 consecutive cycles. Ag-Cu/biochar was also shown an excellent antimicrobial activity against gram-negative bacteria as well a promising antioxidant activity.
Collapse
Affiliation(s)
- Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt.
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511, Alexandria, Egypt; National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Egypt.
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, 21321, Alexandria, Egypt.
| |
Collapse
|
24
|
A Review on the Delivery of Plant-Based Antidiabetic Agents Using Nanocarriers: Current Status and Their Role in Combatting Hyperglycaemia. Polymers (Basel) 2022; 14:polym14152991. [PMID: 35893954 PMCID: PMC9330056 DOI: 10.3390/polym14152991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.
Collapse
|
25
|
Ismail NAS, Lee JX, Yusof F. Platinum Nanoparticles: The Potential Antioxidant in the Human Lung Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11050986. [PMID: 35624849 PMCID: PMC9137660 DOI: 10.3390/antiox11050986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress-related conditions associated with lung cells, specifically lung cancer, often lead to a poor prognosis. We hypothesized that platinum nanoparticles (PtNPs) can play a role in reversing oxidative stress in human lung adenocarcinoma A549 epithelial lung cell lines. Hydrogen peroxide (H2O2) was used to induce oxidative stress in cells, and the ability of PtNPs to lower the oxidative stress in the H2O2 treated epithelial lung cell line was determined. The differential capacity of PtNPs to remove H2O2 was studied through cell viability, nanoparticle uptake, DNA damage, ROS production, and antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Results indicated that a higher concentration of PtNPs exhibited a higher antioxidant capacity and was able to reduce DNA damage and quench ROS production in the presence of 350 µM H2O2. All antioxidant enzymes’ activities also increased in the PtNPs treatment. Our data suggested that PtNPs could be a promising antioxidant in the treatment of lung cancer.
Collapse
|
26
|
Seckin H, Tiri RNE, Meydan I, Aygun A, Gunduz MK, Sen F. An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt-Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications. ENVIRONMENTAL RESEARCH 2022; 208:112708. [PMID: 35026187 DOI: 10.1016/j.envres.2022.112708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Green synthesis is an effective and friendly method for the environment, especially in recent years has been used in many areas. It finds application opportunities in many fields such as physics, chemistry, electronics, food, and especially health and is the subject of intensive studies in this field. OBJECTIVES The synthesized Pt-Pd NPs were aimed to be used as a bio-based photocatalyst under sunlight to prevent wastewater pollution. In addition, it is aimed to use Pt-Pd NPs as biological agents in different applications in the future. METHODS In this study, the platinum-palladium nanoparticles were synthesized by the extract of Hibiscus sabdariffa, the characterization of the nanoparticles was carried out by different methods (ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), infrared transform spectroscopy atomic force microscopy (AFM), and ray diffraction (XRD) analysis). And we discussed several different parameters related to human health by obtaining platinum-palladium bimetallic nanoparticles (Pt-Pd NPs) with a green synthesis method. These parameters are antioxidant properties (total phenolic, flavonoid, and DPPH scavenging activity), antibacterial activity, and lipid peroxidation inhibition activity. Gallic acid was used as standard phenolic, and quercetin was used as standard flavonoid reagents. The newly synthesized Hibiscus sabdariffa mediated green synthesized Pt-Pd NPs were compared with gram-positive and gram-negative bacteria, the high antibacterial activity was shown by gram-positive bacteria. The photodegradation of Pt-Pd NPs was carried out against MB dye for 180 min. RESULTS TEM results show that the average size of Pt-Pd NPs is around 4.40 nm. The total amount of phenolic compounds contained in 0.2 mg/ml of Pt-Pd NPs was equivalent to 14.962 ± 7.890 μg/ml gallic acid and the total amount of flavonoid component was found to be equal to 28.9986 ± 0.204 μg/ml quercetin. Hibiscus sabdariffa mediated green synthesized Pt-Pd NPs was found to have very effective for lipid peroxidation inhibition activity in the FeCl2-H2O2 system. The maximum DPPH scavenging activity was determined as 97.35% at 200 μg/ml. The photocatalytic activity of Pt-Pd NPs was analysed against Methylene blue (MB) and the maximum degradation percentage was observed to be 83.46% at 180 min. CONCLUSIONS The biogenic Pt-Pd NPs showed a high effective photocatalytic and biological activity.
Collapse
Affiliation(s)
- Hamdullah Seckin
- Van Vocational School of Health Services, Van Yüzüncü Yıl University, Zeve Campus, 65080, Van, Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkiye
| | - Ismet Meydan
- Van Vocational School of Health Services, Van Yüzüncü Yıl University, Zeve Campus, 65080, Van, Turkiye
| | - Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkiye
| | - Meliha Koldemir Gunduz
- Kütahya Health Sciences University, Central Research Laboratory Application and Research Centre, Kütahya, Turkiye
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkiye.
| |
Collapse
|
27
|
Lightweight and anisotropic cellulose nanofibril/rectorite composite sponges for efficient dye adsorption and selective separation. Int J Biol Macromol 2022; 207:130-139. [PMID: 35257726 DOI: 10.1016/j.ijbiomac.2022.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
Constructing lightweight and porous adsorbents which can effectively remove dye contaminants is of great significance in the field of the sewage treatment. In this work, anisotropic cellulose nanofibril (CNF) composite sponges assisted by rectorites are fabricated through directional freeze-drying. The resulted composite sponge exhibits the superior saturated adsorption capacity and removal efficiency of 120.0 mg/g and 96.1% for methylene blue (MB), respectively, which is better than the pure CNF sponge and rectorite powders. This is attributed to the strong electrostatic interaction between CNFs and MB, and good cation exchange property of rectorites inside the three-dimensional (3D) highly porous composite sponge. The MB adsorption process of the composite sponge fits to the pseudo-second-order kinetic model and the Langmuir isotherm model well, which is affected by both boundary layer and intraparticle diffusion, resulting in a theoretical maximum adsorption capacity of 214.6 mg/g. Moreover, it also possesses a selective adsorption capacity for anionic and cationic dyes, which is expected to realize the separation treatment of different dyes according to actual application requirements.
Collapse
|
28
|
Hosny M, Fawzy M, Eltaweil AS. Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci Rep 2022; 12:7316. [PMID: 35513449 PMCID: PMC9072416 DOI: 10.1038/s41598-022-11014-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
In this work, a simple and green synthesis procedure for phytofabrication Zinc oxide-silver supported biochar nanocomposite (Ag/ZnO@BC) via Persicaria salicifolia biomass is investigated for the first time to uphold numerous green chemistry such as less hazardous chemical syntheses. XRD technique showed the crystal structure of the phytosynthesized Ag/ZnO@BC, whereas UV-visible spectroscopy, FT-IR, SEM, EDX, TEM, and XPS analyses indicated the successful biosynthesis of the nanocomposite. Testing the photocatalytic potential of this novel nanocomposite in the removal of TC under different conditions unraveled its powerful photodegradation efficiency that reached 70.3% under the optimum reaction conditions: TC concentration; 50 ppm, pH; 6, a dose of Ag/ZnO@BC; 0.01 g, temperature; 25 °C, and H2O2 concentration; 100 mM. The reusability of Ag/ZnO@BC was evident as it reached 53% after six cycles of regeneration. Ag/ZnO@BC was also shown to be a potent antimicrobial agent against Klebsiella pneumonia as well as a promising antioxidant material. Therefore, the current work presented a novel nanocomposite that could be efficiently employed in various environmental and medical applications.
Collapse
Affiliation(s)
- Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt. .,National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt.
| | - Abdelazeem S Eltaweil
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| |
Collapse
|
29
|
Abd El-Monaem EM, Eltaweil AS, Elshishini HM, Hosny M, Abou Alsoaud MM, Attia NF, El-Subruiti GM, Omer AM. Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. ARAB J CHEM 2022; 15:103743. [PMID: 35126797 PMCID: PMC8800501 DOI: 10.1016/j.arabjc.2022.103743] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
During COVID-19 crisis, water pollution caused by pharmaceutical residuals have enormously aggravated since millions of patients worldwide are consuming tons of drugs daily. Antibiotics are the preponderance pharmaceutical pollutants in water bodies that surely cause a real threat to human life and ecosystems. The excellent characteristics of chitosan such as nontoxicity, easy functionality, biodegradability, availability in nature and the abundant hydroxyl and amine groups onto its backbone make it a promising adsorbent. Herein, we aimed to provide a comprehensive overview of recent published research papers regarding the removal of antibiotics by chitosan composite-based adsorbents. The structure, ionic form, optimum removal pH and λmax of the most common antibiotics including Tetracycline, Ciprofloxacin, Amoxicillin, Levofloxacin, Ceftriaxone, Erythromycin, Norfloxacin, Ofloxacin, Doxycycline, Cefotaxime and Sulfamethoxazole were summarized. The development of chitosan composite-based adsorbents in order to enhance their adsorption capacity, reusability and validity were presented. Moreover, the adsorption mechanisms of these antibiotics were explored to provide more information about adsorbate-adsorbent interactions. Besides the dominant factors on the adsorption process including pH, dosage, coexisting ions, etc. were discussed. Moreover, conclusions and future recommendations are provided to inspire for further researches.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163, Horrya Avenue, Alexandria, Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Mohamed M Abou Alsoaud
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| |
Collapse
|
30
|
Cellulose, clay and sodium alginate composites for the removal of methylene blue dye: Experimental and DFT studies. Int J Biol Macromol 2022; 209:576-585. [PMID: 35405153 DOI: 10.1016/j.ijbiomac.2022.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 01/11/2023]
Abstract
Cellulose/clay/sodium alginate composites were prepared and employed for the removal of methylene blue (MB) dye. Cellulose was extracted from a paper mill waste and used for composite preparation with sodium alginate (Na-Alg) and clay. MB dye removal was analyzed at different operating conditions (pH, initial concentration, temperature, composite dose). This dye was adsorbed up to 90% for an equilibrium time of 60 min at optimum level of adsorbent dose (0.05 g), temperature (30 °C) and pH (i.e., 7 and 11 for cellulose-Na-Alg and cellulose-Na-Alg-clay, respectively). Kinetics and isotherms of MB adsorption were quantified and modeled. Results showed that MB dye adsorption data followed the pseudo-first order kinetics and a statistical physics model was used to analyze the adsorption mechanism. Thermodynamic calculation revealed that the MB dye adsorption on these composites was an exothermic, spontaneous and feasible process. The composites were regenerated with HCl thus contributing to their reutilization in subsequent adsorption cycles. The DFT (density functional theory) calculations were executed to explain the interactions responsible for the adsorption of MB dye on the composites. Results revealed that the Na-Alg-cellulose composites were effective for the MB dye removal. Therefore, these composites can be considered as low-cost alternative adsorbents for the pollution remediation caused by dyes in industrial effluents and wastewater.
Collapse
|
31
|
Omer AM, Abd El-Monaem EM, Eltaweil AS. Novel reusable amine-functionalized cellulose acetate beads impregnated aminated graphene oxide for adsorptive removal of hexavalent chromium ions. Int J Biol Macromol 2022; 208:925-934. [PMID: 35364200 DOI: 10.1016/j.ijbiomac.2022.03.187] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/12/2022]
Abstract
In this study, a multi-featured adsorbent was developed for the adsorptive removal of hexavalent chromium (Cr6+) ions. Herein, aminated graphene oxide (GO-NH2) was firstly synthetized and incorporated into cellulose acetate beads (CA) which were followed by surface amine-functionalization process. Varies characterization tools such as FT-IR spectroscopy, SEM, TGA, XRD, BET, XPS and zeta potential were employed to ensure the successful fabrication of GO-NH2@CA-NH2 composite beads. An enhancement in the adsorption performance was attained, while the adsorption equilibrium was closely gotten within only 60 min. Therefore, the adsorption capacity was boosted with increasing GO-NH2 ratio in the beads matrix from 10 to 25%. Furthermore, the adsorption process agreed with Freundlich isotherm model with a supreme adsorption capacity of 410.21 mg/g at pH 2, while data followed the pseudo-second-order kinetic model. Besides, thermodynamic studies denoted that the adsorption process was endothermic, randomness and spontaneous. The composite beads retained better adsorption characteristics for seven sequential cycles with ease of separation. The proposed adsorption of Cr6+ onto GO-NH2@CA-NH2 surface occurred via the electrostatic interactions, reduction process and coordinate-covalent bonds. These findings hypothesize that the fabricated GO-NH2@CA-NH2 beads could be act as easy-separable and reusable adsorbent for efficient adsorption of Cr6+ ions.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | | |
Collapse
|
32
|
Rehman KU, Gouda M, Zaman U, Tahir K, Khan SU, Saeed S, Khojah E, El-Beltagy A, Zaky AA, Naeem M, Khan MI, Khattak NS. Optimization of Platinum Nanoparticles (PtNPs) Synthesis by Acid Phosphatase Mediated Eco-Benign Combined with Photocatalytic and Bioactivity Assessments. NANOMATERIALS 2022; 12:nano12071079. [PMID: 35407197 PMCID: PMC9000267 DOI: 10.3390/nano12071079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
Noble metal nanoparticles (NMNPs) are viable alternative green sources compared to the chemical available methods in several approach like Food, medical, biotechnology, and textile industries. The biological synthesis of platinum nanoparticles (PtNPs), as a strong photocatalytic agent, has proved as more effective and safer method. In this study, PtNPs were synthesized at four different temperatures (25 °C, 50 °C, 70 °C, and 100 °C). PtNPs synthesized at 100 °C were smaller and exhibited spherical morphology with a high degree of dispersion. A series of physicochemical characterizations were applied to investigate the synthesis, particle size, crystalline nature, and surface morphology of PtNPs. The biosynthesized PtNPs were tested for the photodegradation of methylene blue (MB) under visible light irradiations. The results showed that PtNPs exhibited remarkable photocatalytic activity by degrading 98% of MB only in 40 min. The acid phosphatase mediated PtNPs showed strong bacterial inhibition efficiency against S. aureus and E. coli. Furthermore, it showed high antioxidant activity (88%) against 1,1-diphenyl-2-picryl-hydrazil (DPPH). In conclusion, this study provided an overview of the applications of PtNPs in food chemistry, biotechnology, and textile industries for the deterioration of the natural and synthetic dyes and its potential application in the suppression of pathogenic microbes of the biological systems. Thus, it could be used as a novel approach in the food microbiology, biomedical and environmental applications.
Collapse
Affiliation(s)
- Khalil ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition and Food Science, Food Industries and Nutrition Research Institute, National Research Centre, Giza 12422, Egypt
- Correspondence: or (M.G.); (S.U.K.)
| | - Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (K.u.R.); (U.Z.); (K.T.)
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Abbottabad 22080, Pakistan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence: or (M.G.); (S.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (A.E.-B.)
| | - Alaa El-Beltagy
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (A.E.-B.)
| | - Ahmed A. Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Giza 12422, Egypt;
| | - Mohamed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo 11566, Egypt;
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Mang Haripur 22620, Pakistan;
| | - Noor Saeed Khattak
- Center for Materials Science, Islamia College University, Peshawar 25120, Pakistan;
| |
Collapse
|
33
|
Eltaweil AS, Abdelfatah AM, Hosny M, Fawzy M. Novel Biogenic Synthesis of a Ag@Biochar Nanocomposite as an Antimicrobial Agent and Photocatalyst for Methylene Blue Degradation. ACS OMEGA 2022; 7:8046-8059. [PMID: 35284719 PMCID: PMC8908515 DOI: 10.1021/acsomega.1c07209] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 05/08/2023]
Abstract
The conventional synthesis of nanomaterials employing physical and chemical methods usually requires high cost and toxic chemicals. Thus, a facile, ecofriendly, cost-effective, novel, and sustainable route for the synthesis of a silver-loaded biochar nanocomposite (Ag@biochar) using Chenopodium ambrosioides leaf extract and biomass is reported for the first time in this study to advocate many of the principles of green chemistry such as safer solvents and auxiliaries. UV spectroscopic analysis at 420 nm indicated the formation of silver nanoparticles (AgNPs). The band gap energy of Ag@biochar was 1.9 eV, confirming its potential use as a photocatalyst. Ag@biochar was found to be photoluminescent at 425 nm. AgNPs on the surface of biochar were predominantly spherical with a size range of 25-35 nm and a surface area of 47.61 m2/g. A zeta potential of -5.87 mV designated the stability of Ag@biochar. Testing the photocatalytic potential of Ag@biochar to remove methylene blue from wastewater demonstrated its high removal efficiency that reached 88.4% due to its high efficiency of electron transfer confirmed via electrochemical impedance spectroscopy analysis and retained 70.65% after six cycles of reuse. Ag@biochar was shown to be a powerful broad-spectrum antimicrobial agent as it completely prevented the growth of Escherichia coli and also inhibited the growth of Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, and Candida albicans with the inhibition zones of 19, 18, 22, and 16 mm, respectively.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Ahmed M. Abdelfatah
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo 33516, Egypt
| |
Collapse
|
34
|
Eltaweil AS, Abd El-Monaem EM, Elshishini HM, El-Aqapa HG, Hosny M, Abdelfatah AM, Ahmed MS, Hammad EN, El-Subruiti GM, Fawzy M, Omer AM. Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review. RSC Adv 2022; 12:8228-8248. [PMID: 35424751 PMCID: PMC8982349 DOI: 10.1039/d1ra09193j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
The huge development of the industrial sector has resulted in the release of large quantities of phosphate anions which adversely affect the environment, human health, and aquatic ecosystems. Naturally occurring biopolymers have attracted considerable attention as efficient adsorbents for phosphate anions due to their biocompatibility, biodegradability, environmentally-friendly nature, low-cost production, availability in nature, and ease of modification. Amongst them, alginate-based adsorbents are considered one of the most effective adsorbents for removing various types of pollutants from industrial wastewater. The presence of active COOH and OH- groups along the alginate backbone facilitate its physical and chemical modifications and participate in various possible adsorption mechanisms of phosphate anions. Herein, we focus our attention on presenting a comprehensive overview of recent advances in phosphate removal by alginate-based adsorbents. Modification of alginate by various materials, including clays, magnetic materials, layered double hydroxides, carbon materials, and multivalent metals, is addressed. The adsorption potentials of these modified forms for removing phosphate anions, in addition to their adsorption mechanisms are clearly discussed. It is concluded that ion exchange, complexation, precipitation, Lewis acid-base interaction and electrostatic interaction are the most common adsorption mechanisms of phosphate removal by alginate-based adsorbents. Pseudo-2nd order and Freundlich isotherms were figured out to be the major kinetic and isotherm models for the removal process of phosphate. The research findings revealed that some issues, including the high cost of production, leaching, and low efficiency of recyclability of alginate-based adsorbents still need to be resolved. Future trends that could inspire further studies to find the best solutions for removing phosphate anions from aquatic systems are also elaborated, such as the synthesis of magnetic-based alginate and various-shaped alginate nanocomposites that are capable of preventing the leaching of the active materials.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University 163, Horrya Avenue Alexandria Egypt
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Abdelfatah
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Maha S Ahmed
- Higher Institute of Science and Technology-King Mariout Egypt
| | - Eman Nasr Hammad
- Chemistry Department, Faculty of Science, Menoufia University Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) P. O. Box: 21934 New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
35
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
36
|
Hosny M, Eltaweil AS, Mostafa M, El-Badry YA, Hussein EE, Omer AM, Fawzy M. Facile Synthesis of Gold Nanoparticles for Anticancer, Antioxidant Applications, and Photocatalytic Degradation of Toxic Organic Pollutants. ACS OMEGA 2022; 7:3121-3133. [PMID: 35097307 PMCID: PMC8793085 DOI: 10.1021/acsomega.1c06714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/31/2021] [Indexed: 05/12/2023]
Abstract
In the current study, a facile, rapid, and ecologically safe photosynthesis of gold nanoparticles (AuNPs) that remained stable for 3 months is reported to advocate the main aspects of green chemistry, such as safer solvents and auxiliaries, and the use of renewable feedstock. Zi-AuNPs were phytosynthesized by the aqueous extract of Ziziphus spina-christi leaves, and numerous techniques were employed for their characterization. The results demonstrated the successful phytofabrication of crystalline AuNPs with brownish-black color, spherical nanoparticles with a size between 0 and 10 nm, a plasmon peak at 540 nm, and a surface charge of -25.7 mV. Zi-AuNPs showed an effective photodegradation efficiency (81.14%) against malachite green and a good recycling capacity of 69.2% after five cycles of regeneration. The cytotoxicity test by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay signified a high anticancer efficiency for both Zi-AuNPs and Z. spina-christi extract against human breast cancer cells (MCF7 cell line) with IC50's of 48 and 40.25 μg/mL, respectively. Highly efficient antioxidant capabilities were proven with 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal percentages of 67.5% for Zi-AuNPs and 92.34% for Z. spina-christi extract.
Collapse
Affiliation(s)
- Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- ,
| | - Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Mohamed Mostafa
- Department
of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Yaser A. El-Badry
- Chemistry
Department, Faculty of Science, Taif University, Khurma, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Enas E. Hussein
- National
Water Research Center, P.O. Box 74, Shubra El-Kheima 13411, Egypt
| | - Ahmed M. Omer
- Polymer Materials
Research Department, Advanced Technology and New Materials Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, El Sayeda Zeinab, Cairo 33516, Cairo Governorate, Egypt
| |
Collapse
|