1
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Salassi S, Caselli L, Cardellini J, Lavagna E, Montis C, Berti D, Rossi G. A Martini Coarse Grained Model of Citrate-Capped Gold Nanoparticles Interacting with Lipid Bilayers. J Chem Theory Comput 2021; 17:6597-6609. [PMID: 34491056 PMCID: PMC8515808 DOI: 10.1021/acs.jctc.1c00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 12/29/2022]
Abstract
Citrate capping is one of the most common strategies to achieve the colloidal stability of Au nanoparticles (NPs) with diameters ranging from a few to hundreds of nanometers. Citrate-capped Au nanoparticles (CNPs) represent a step of the synthesis of Au NPs with specific functionalities, as CNPs can be further functionalized via ligand-exchange reactions, leading to the replacement of citrate with other organic ligands. In vitro, CNPs are also used to address the fundamental aspects of NP-membrane interactions, as they can directly interact with cells or model cell membranes. Their affinity for the bilayer is again mediated by the exchange of citrate with lipid molecules. Here, we propose a new computational model of CNPs compatible with the coarse grained Martini force field. The model, which we develop and validate through an extensive comparison with new all-atom molecular dynamics (MD) simulations and UV-vis and Fourier transform infrared spectroscopy data, is aimed at the MD simulation of the interaction between citrate-capped NPs and model phosphatidylcholine lipid membranes. As a test application we show that, during the interaction between a single CNP and a flat planar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer, the citrate coating is spontaneously replaced by lipids on the surface of Au NPs, while the NP size and shape determine the final structural configuration of the NP-bilayer complex.
Collapse
Affiliation(s)
- Sebastian Salassi
- Department
of Physics, University of Genoa, Via Dodecaneso 33, Genoa 16146, Italy
| | - Lucrezia Caselli
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
- CSGI,
Consorzio Sistemi a Grande Interfase and Department of Chemistry “Ugo
Schiff” University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Jacopo Cardellini
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
- CSGI,
Consorzio Sistemi a Grande Interfase and Department of Chemistry “Ugo
Schiff” University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Enrico Lavagna
- Department
of Physics, University of Genoa, Via Dodecaneso 33, Genoa 16146, Italy
| | - Costanza Montis
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
- CSGI,
Consorzio Sistemi a Grande Interfase and Department of Chemistry “Ugo
Schiff” University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
- CSGI,
Consorzio Sistemi a Grande Interfase and Department of Chemistry “Ugo
Schiff” University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Giulia Rossi
- Department
of Physics, University of Genoa, Via Dodecaneso 33, Genoa 16146, Italy
| |
Collapse
|
3
|
Huang J, Grys DB, Griffiths J, de Nijs B, Kamp M, Lin Q, Baumberg JJ. Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy. SCIENCE ADVANCES 2021; 7:eabg1790. [PMID: 34088670 PMCID: PMC8177700 DOI: 10.1126/sciadv.abg1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2021] [Indexed: 05/06/2023]
Abstract
Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct tracking of chemical trajectories of single surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced within plasmonic nanojunctions to concentrate light to atomic length scales, optically isolating individual molecules. By stabilizing these atomic sites, we unveil single-molecule deprotonation and binding dynamics under ambient conditions. High-speed field-enhanced spectroscopy allows us to monitor chemical switching of a single carboxylic group between three discrete states. Combining this with theoretical calculation identifies reversible proton transfer dynamics (yielding effective single-molecule pH) and switching between molecule-metal coordination states, where the exact chemical pathway depends on the intitial protonation state. These findings open new domains to explore interfacial single-molecule mechanisms and optical manipulation of their reaction pathways.
Collapse
Affiliation(s)
- Junyang Huang
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - David-Benjamin Grys
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jack Griffiths
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK.
| | - Marlous Kamp
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Qianqi Lin
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK.
| |
Collapse
|
4
|
Franco-Ulloa S, Tatulli G, Bore SL, Moglianetti M, Pompa PP, Cascella M, De Vivo M. Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nat Commun 2020; 11:5422. [PMID: 33110063 PMCID: PMC7591489 DOI: 10.1038/s41467-020-19164-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
The fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability. Citrate-stabilized metallic colloids are key materials towards chemosensing and catalysis applications. Here the authors introduce a new theoretical model to estimate how the stoichiometry of citrate molecules absorbed onto spherical metallic nanoparticles influences their aggregation phenomena.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Giuseppina Tatulli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, 0315, Oslo, Norway
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, 0315, Oslo, Norway.
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| |
Collapse
|
5
|
Franco-Ulloa S, Tatulli G, Bore SL, Moglianetti M, Pompa PP, Cascella M, De Vivo M. Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nat Commun 2020. [DOI: 10.2149/tmh1973.23.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AbstractThe fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability.
Collapse
|
6
|
Gisbert-González JM, Cheuquepán W, Ferre-Vilaplana A, Herrero E, Feliu JM. Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Hubin A, Doneux T. Preface to the Special Issue in the honour of Claudine Buess-Herman on the occasion of her 65th anniversary. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Bajaj M, Wangoo N, Jain DVS, Sharma RK. Quantification of adsorbed and dangling citrate ions on gold nanoparticle surface using thermogravimetric analysis. Sci Rep 2020; 10:8213. [PMID: 32427968 PMCID: PMC7237423 DOI: 10.1038/s41598-020-65013-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
A novel approach involving thermo-gravimetricanalysis (TGA) for the quantification of citrate ions present on the surface of gold nanoparticles has been reported. TGA study was carried out on AuNPs in response to parameters such as concentration of tri-sodium citrate and pH of gold nanoparticles depicting that the number of citrate ion present on gold nanoparticles is highly pH dependent. In general, the citrate ions were observed to be higher in alkaline conditions contradicting earlier beliefs. These results also underline the significance of TGA as a novel tool for quantification of citrate molecules present on gold nanoparticle surface. Thus, the present approach not only provides with an insight into mechanistic details of gold nanoparticle synthesis but also opens the usage of TGA for understanding the nano range association of molecules.
Collapse
Affiliation(s)
- Manish Bajaj
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering and Technology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - D V S Jain
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Rohit K Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Brancolini G, Maschio MC, Cantarutti C, Corazza A, Fogolari F, Bellotti V, Corni S, Esposito G. Citrate stabilized gold nanoparticles interfere with amyloid fibril formation: D76N and ΔN6 β2-microglobulin variants. NANOSCALE 2018; 10:4793-4806. [PMID: 29469914 DOI: 10.1039/c7nr06808e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein aggregation including the formation of dimers and multimers in solution, underlies an array of human diseases such as systemic amyloidosis which is a fatal disease caused by misfolding of native globular proteins damaging the structure and function of affected organs. Different kind of interactors can interfere with the formation of protein dimers and multimers in solution. A very special class of interactors are nanoparticles thanks to the extremely efficient extension of their interaction surface. In particular citrate-coated gold nanoparticles (cit-AuNPs) were recently investigated with amyloidogenic protein β2-microglobulin (β2m). Here we present the computational studies on two challenging models known for their enhanced amyloidogenic propensity, namely ΔN6 and D76N β2m naturally occurring variants, and disclose the role of cit-AuNPs on their fibrillogenesis. The proposed interaction mechanism lies in the interference of the cit-AuNPs with the protein dimers at the early stages of aggregation, that induces dimer disassembling. As a consequence, natural fibril formation can be inhibited. Relying on the comparison between atomistic simulations at multiple levels (enhanced sampling molecular dynamics and Brownian dynamics) and protein structural characterisation by NMR, we demonstrate that the cit-AuNPs interactors are able to inhibit protein dimer assembling. As a consequence, the natural fibril formation is also inhibited, as found in experiment.
Collapse
Affiliation(s)
- Giorgia Brancolini
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy.
| | | | - Cristina Cantarutti
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy
| | - Alessandra Corazza
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy
| | - Federico Fogolari
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare, Universita' di Pavia, Via Taramelli 3, 27100 Pavia, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy and Division of Medicine, University College of London, London NW3 2PF, UK
| | - Stefano Corni
- Department of Chemical Science, University of Padova, via VIII Febbraio 2, 35122 Padova and Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Gennaro Esposito
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy. and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy and Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Kuwana R, Handa S, Futamata M. Elucidation of hydrated metal ions using flocculation-surface enhanced Raman scattering. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Del Caño R, Mateus L, Sánchez-Obrero G, Sevilla JM, Madueño R, Blázquez M, Pineda T. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties. J Colloid Interface Sci 2017; 505:1165-1171. [PMID: 28715860 DOI: 10.1016/j.jcis.2017.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/26/2022]
Abstract
The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates.
Collapse
Affiliation(s)
- Rafael Del Caño
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Lucia Mateus
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Guadalupe Sánchez-Obrero
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - José Manuel Sevilla
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Rafael Madueño
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Manuel Blázquez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Teresa Pineda
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain.
| |
Collapse
|
12
|
Jayalakshmi A, Kim IC, Kwon YN. Suppression of gold nanoparticle agglomeration and its separation via nylon membranes. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Electrodeposition of Rhodium Nanowires Arrays and Their Morphology-Dependent Hydrogen Evolution Activity. NANOMATERIALS 2017; 7:nano7050103. [PMID: 28467375 PMCID: PMC5449984 DOI: 10.3390/nano7050103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 12/15/2022]
Abstract
This work reports on the electrodeposition of rhodium (Rh) nanowires with a controlled surface morphology synthesized using an anodic aluminum oxide (AAO) template. Vertically aligned Rh nanowires with a smooth and coarse morphology were successfully deposited by adjusting the electrode potential and the concentration of precursor ions and by involving a complexing reagent in the electrolyte solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used to follow the morphological evolution of Rh nanowires. As a heterogeneous electrocatalyst for hydrogen evolution reactions (HER), the coarse Rh nanowire array exhibited an enhanced catalytic performance respect to smooth ones due to the larger surface area to mass ratio and the higher density of catalytically active defects, as evidenced by voltammetric measurements and TEM. Results suggest that the morphology of metallic nanomaterials could be readily engineered by electrodeposition. The controlled electrodeposition offers great potential for the development of an effective synthesis tool for heterogeneous catalysts with a superior performance for wide applications.
Collapse
|
14
|
The structure and binding mode of citrate in the stabilization of gold nanoparticles. Nat Chem 2017; 9:890-895. [DOI: 10.1038/nchem.2752] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
|
15
|
Investigations of Capping Agent Adsorption for Metal Nanoparticle Stabilization and the Formation of Anisotropic Gold Nanocrystals. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/9783527340934.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Stobiecka M, Chalupa A. Modulation of Plasmon-Enhanced Resonance Energy Transfer to Gold Nanoparticles by Protein Survivin Channeled-Shell Gating. J Phys Chem B 2015; 119:13227-35. [DOI: 10.1021/acs.jpcb.5b07778] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magdalena Stobiecka
- Department
of Biophysics, Warsaw University of Life Sciences (SGGW), 02776 Warsaw, Poland
| | - Agata Chalupa
- Institute of Nanoparticle Nanocarriers, 11010 Barczewo, Poland
| |
Collapse
|
17
|
Smith SR, Seenath R, Kulak MR, Lipkowski J. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10076-10086. [PMID: 26313341 DOI: 10.1021/acs.langmuir.5b02767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Preparation of a nanoparticle modified gold substrate designed for characterization of hydrophilic self-assembled monolayers (SAMs) of 1-thio-β-D-glucose (TG) with electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is presented. Citrate stabilized gold nanoparticles were deposited on a polycrystalline gold electrode and subjected to an electrochemical desorption procedure to completely remove all traces of adsorbed citrate. Complete desorption of citrate was confirmed by recording cyclic voltammetry curves and SERS spectra. The citrate-free nanoparticle modified gold electrode was then incubated in a 1 mg mL(-1) aqueous solution of TG for 16 h prior to being characterized by EC-SERS. The SERS spectra confirmed that at potentials more negative than -0.10 V vs SCE thioglucose forms a monolayer in which the majority of the molecules preserve their lactol ring structure and only a small fraction of molecules appear to be oxidized. At potentials more positive than -0.10 V, the oxidation of TG molecules becomes prominent, and at potentials more positive than 0.20 V vs SCE, the monolayer of TG consists chiefly of oxidized product. The SERS spectra collected in the double layer region suggest the SAM of TG is well hydrated and hence can be used for hydrophilic modifications of a gold surface.
Collapse
Affiliation(s)
- Scott R Smith
- Department of Chemistry, University of Guelph , Guelph ON, Canada N1G 2W1
| | - Ryan Seenath
- Department of Chemistry, University of Guelph , Guelph ON, Canada N1G 2W1
| | - Monika R Kulak
- Department of Chemistry, University of Guelph , Guelph ON, Canada N1G 2W1
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph , Guelph ON, Canada N1G 2W1
| |
Collapse
|
18
|
Brancolini G, Corazza A, Vuano M, Fogolari F, Mimmi MC, Bellotti V, Stoppini M, Corni S, Esposito G. Probing the influence of citrate-capped gold nanoparticles on an amyloidogenic protein. ACS NANO 2015; 9:2600-13. [PMID: 25695203 DOI: 10.1021/nn506161j] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanoparticles (NPs) are known to exhibit distinct physical and chemical properties compared with the same materials in bulk form. NPs have been repeatedly reported to interact with proteins, and this interaction can be exploited to affect processes undergone by proteins, such as fibrillogenesis. Fibrillation is common to many proteins, and in living organisms, it causes tissue-specific or systemic amyloid diseases. The nature of NPs and their surface chemistry is crucial in assessing their affinity for proteins and their effects on them. Here we present the first detailed structural characterization and molecular mechanics model of the interaction between a fibrillogenic protein, β2-microglobulin, and a NP, 5 nm hydrophilic citrate-capped gold nanoparticles. NMR measurements and simulations at multiple levels (enhanced sampling molecular dynamics, Brownian dynamics, and Poisson-Boltzmann electrostatics) explain the origin of the observed protein perturbations mostly localized at the amino-terminal region. Experiments show that the protein-NP interaction is weak in the physiological-like, conditions and do not induce protein fibrillation. Simulations reproduce these findings and reveal instead the role of the citrate in destabilizing the lower pH protonated form of β2-microglobulin. The results offer possible strategies for controlling the desired effect of NPs on the conformational changes of the proteins, which have significant roles in the fibrillation process.
Collapse
Affiliation(s)
- Giorgia Brancolini
- †Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Alessandra Corazza
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
| | - Marco Vuano
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Federico Fogolari
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
| | - Maria Chiara Mimmi
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Vittorio Bellotti
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
- ⊥Dipartimento di Medicina Molecolare, Universita' di Pavia, Via Taramelli 3, 27100 Pavia, Italy
- ∥Division of Medicine, University College of London, London NW3 2PF, U.K
| | - Monica Stoppini
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
- ⊥Dipartimento di Medicina Molecolare, Universita' di Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Stefano Corni
- †Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Gennaro Esposito
- ‡Dipartimento di Scienze Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
- §Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro 305, 00136 Roma, Italy
- ¶Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
19
|
Wright LB, Rodger PM, Walsh TR. Structure and properties of citrate overlayers adsorbed at the aqueous Au(111) interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15171-15180. [PMID: 25454252 DOI: 10.1021/la503690t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One of the most common means of gold nanoparticle (AuNP) biofunctionalization involves the manipulation of precursor citrate-capped AuNPs via ligand displacement. However, the molecular-level structural characteristics of the citrate overlayer adsorbed at the aqueous Au interface at neutral pH remain largely unknown. Access to atomistic-scale details of these interfaces will contribute much needed insight into how AuNPs can be manipulated and exploited in aqueous solution. Here, the structures of such citrate overlayers adsorbed at the aqueous Au(111) interface at pH 7 are predicted and characterized using atomistic molecular dynamics simulations, for a range of citrate surface densities. We find that the overlayers are disordered in the surface density range considered, and that many of their key characteristics are invariant with surface density. In particular, we predict the overlayers to have 3-D, rather than 2-D, morphologies, with the anions closest to the gold surface being oriented with their carboxylate groups pointing away from the surface. We predict both striped and island morphologies for our overlayers, depending on the citrate surface density, and in all cases we find bare patches of the gold surface are present. Our simulations suggest that both citrate-gold adsorption and citrate-counterion pairing contribute to the stability of these citrate overlayer morphologies. We also calculate the free energy of adsorption at the aqueous Au(111) interface of a single citrate molecule, and compare this with the corresponding value for a single arginine molecule. These findings enable us to predict the conditions under which ligand displacement of surface-adsorbed citrate by arginine may take place. Our findings represent the first steps toward elucidating a more elaborate, detailed atomistic-scale model relating to the biofunctionalization of citrate-capped AuNPs.
Collapse
Affiliation(s)
- Louise B Wright
- University of Warwick , Department of Chemistry and Centre for Scientific Computing, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
20
|
Kleijn SEF, Lai SCS, Koper MTM, Unwin PR. Electrochemistry of Nanoparticles. Angew Chem Int Ed Engl 2014; 53:3558-86. [DOI: 10.1002/anie.201306828] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Indexed: 01/01/2023]
|
21
|
|
22
|
Park JW, Shumaker-Parry JS. Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. J Am Chem Soc 2014; 136:1907-21. [DOI: 10.1021/ja4097384] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jong-Won Park
- Department of Chemistry, University of Utah, 1400 East 315 South
RM 2020, Salt Lake City, Utah 84112, United States
| | - Jennifer S. Shumaker-Parry
- Department of Chemistry, University of Utah, 1400 East 315 South
RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
23
|
Gründer Y, Fabian MD, Booth SG, Plana D, Fermín DJ, Hill PI, Dryfe RA. Solids at the liquid–liquid interface: Electrocatalysis with pre-formed nanoparticles. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.185] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Suneesh AS, Kumaresan R, Rajeswari S, Nayak PK, Syamala KV, Venkatesan KA, Antony MP, Rao PRV. Development and Demonstration of Americium (III)-Europium (III) Separation Using Diglycolamic Acid. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.781181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Passos H, Trindade MP, Vaz TS, da Costa LP, Freire MG, Coutinho JA. The impact of self-aggregation on the extraction of biomolecules in ionic-liquid-based aqueous two-phase systems. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.02.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Kleijn SEF, Serrano-Bou B, Yanson AI, Koper MTM. Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2054-2064. [PMID: 23320415 DOI: 10.1021/la3040566] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To study the catalytic activity of single nanoparticles (NPs) electrochemically, we investigated the applicability of a novel method for nanoparticle detection as a means to immobilize individual NPs. This method consists of analyzing the current steps that can be measured at an ultramicroelectrode (UME) when a colloid of NPs is injected into an electrolyte containing an electroactive species, that is turned over at the NP but not the UME surface. We have measured these current steps for the hydrazine oxidation at Pt NPs landing on a lithographically fabricated Au UME, showing a mean step size comparable to theory and prior measurements. We found a reduced landing frequency with respect to values reported in the literature and those predicted from theory, while the current step distribution showed a long tail of large current steps. This could be explained by the particle aggregation, which would lower the effective NP concentration and therefore lower the landing frequency and would result in higher current steps when aggregates reach the electrode. Cyclic voltammetry (CV) measurements of the Pt-modified Au UME showed a signal characteristic of the presence of Pt, while electron microscopy revealed aggregated NPs, after landings were performed in the presence of hydrazine or hydrogen gas. Conversely, no aggregates were found after particles were injected in absence of such reducing agents, while CV still suggested the presence of Pt, indicating individual particles. The finding, that landing nanoparticles in the presence of hydrazine yields NP aggregates on the surface, means that this particular method is currently not suited for the preparation of individually immobilized particles to facilitate catalysis studies at individual nanoparticles.
Collapse
Affiliation(s)
- Steven E F Kleijn
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
27
|
Ravi Kumar DV, Kumavat SR, Chamundeswari VN, Patra PP, Kulkarni AA, Prasad BLV. Surfactant-free synthesis of anisotropic gold nanostructures: can dicarboxylic acids alone act as shape directing agents? RSC Adv 2013. [DOI: 10.1039/c3ra43974g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Brancolini G, Kokh DB, Calzolai L, Wade RC, Corni S. Docking of ubiquitin to gold nanoparticles. ACS NANO 2012; 6:9863-78. [PMID: 23033917 DOI: 10.1021/nn303444b] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein-nanoparticle associations have important applications in nanoscience and nanotechnology such as targeted drug delivery and theranostics. However, the mechanisms by which proteins recognize nanoparticles and the determinants of specificity are still poorly understood at the microscopic level. Gold is a promising material in nanoparticles for nanobiotechnology applications because of the ease of its functionalization and its tunable optical properties. Ubiquitin is a small, cysteine-free protein (ubiquitous in eukaryotes) whose binding to gold nanoparticles has been characterized recently by nuclear magnetic resonance (NMR). To reveal the molecular basis of these protein-nanoparticle interactions, we performed simulations at multiple levels (ab initio quantum mechanics, classical molecular dynamics and Brownian dynamics) and compared the results with experimental data (circular dichroism and NMR). The results provide a model of the ensemble of structures constituting the ubiquitin-gold surface complex, and insights into the driving forces for the binding of ubiquitin to gold nanoparticles, the role of nanoparticle surfactants (citrate) in the association process, and the origin of the perturbations in the NMR chemical shifts.
Collapse
Affiliation(s)
- Giorgia Brancolini
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy.
| | | | | | | | | |
Collapse
|
29
|
Li Y, Diao P, Jin T, Sun J, Xu D. Shape-controlled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.07.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Valle H, Rivas BL, Aguilar MR, Román JS. Preparation and characterization of hydrogel-nanosilver composites based on copolymers from sodium 2-acrylamido-2-methylpropanesulfonate. J Appl Polym Sci 2012. [DOI: 10.1002/app.38655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Chen D, Ye J, Xu C, Li X, Li J, Zhen C, Tian N, Zhou Z, Sun S. Interaction of citrate with Pt(100) surface investigated by cyclic voltammetry towards understanding the structure-tuning effect in nanomaterials synthesis. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4740-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
KUMAR DHIRAJ, MEENAN BRIANJ, MUTREJA ISHA, D'SA RAECHELLE, DIXON DORIAN. CONTROLLING THE SIZE AND SIZE DISTRIBUTION OF GOLD NANOPARTICLES: A DESIGN OF EXPERIMENT STUDY. INTERNATIONAL JOURNAL OF NANOSCIENCE 2012. [DOI: 10.1142/s0219581x12500238] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Turkevich method is the oldest and most widely employed protocol for the production of colloidal gold. Gold nanoparticles are nontoxic in nature and have potential applications in various biomedical fields including drug delivery and bioimaging. These metallic nanoparticles can be functionalized with drugs, targeting ligands such as tumor necrosis factor and groups (e.g., Poly ethylene glycol) to provide shielding from undesired immune responses. In this study we investigate the influence of process variables on the synthesis of nanoparticles by the reduction of chloroauric acid ( HAuCl4 ) solution with sodium citrate. A design of experiment (DoE) approach was used to investigate the influence of production volume, temperature, stirring rate and sodium citrate concentration on the physical properties of the nanoparticles namely size, size distribution, zeta potential and UV-Vis characteristics. The study showed that the relative amount of sodium citrate added ( Au /citrate mole ratio) had a significant effect on the size, poly dispersity index (PDI), the number of peaks in the size distribution and the position of Lambda max in the UV-Vis spectra. By varying the Au /Citrate ratio it is possible to synthesize particles with average diameters from 20 to 80 nm. However, the use of low amounts of sodium citrate in order to produce particles larger than ~35 nm tends to result in a wide bimodal size distribution.
Collapse
Affiliation(s)
- DHIRAJ KUMAR
- NIBEC, University of Ulster, Shore Road, Belfast, BT37 0QB, U.K
| | - BRIAN J MEENAN
- NIBEC, University of Ulster, Shore Road, Belfast, BT37 0QB, U.K
| | - ISHA MUTREJA
- NIBEC, University of Ulster, Shore Road, Belfast, BT37 0QB, U.K
| | - RAECHELLE D'SA
- NIBEC, University of Ulster, Shore Road, Belfast, BT37 0QB, U.K
| | - DORIAN DIXON
- NIBEC, University of Ulster, Shore Road, Belfast, BT37 0QB, U.K
| |
Collapse
|
33
|
Vivek JP, Burgess IJ. Quaternary ammonium bromide surfactant adsorption on low-index surfaces of gold. 1. Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5031-5039. [PMID: 22375812 DOI: 10.1021/la300035n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The coadsorption of the anionic and cationic components of a model quaternary ammonium bromide surfactant on Au(111) has been measured using the thermodynamics of an ideally polarized electrode. The results indicate that both bromide and trimethyloctylammonium (OTA(+)) ions are coadsorbed over a broad range of the electrical state of the gold surface. At negative polarizations, the Gibbs surface excess of the cationic surfactant is largely unperturbed by the presence of bromide ions in solution. However, when the Au(111) surface is weakly charged the existence of a low-coverage, gaslike phase of adsorbed halide induces an appreciable (~25%) enhancement of the interfacial concentration of the cationic surfactant ion. At more positive polarizations, the coadsorbed OTA(+)/Br(-) layer undergoes at least one phase transition which appears to be concomitant with the lifting of the Au(111) reconstruction and the formation of a densely packed bromide adlayer. In the absence of coadsorbed halide, the OTA(+) ions are completely desorbed from the Au(111) surface at the most positive electrode polarizations studied. However, with NaBr present in the electrolyte, a high surface excess of bromide species leads to the stabilization of adsorbed OTA(+) at such positive potentials (or equivalent charge densities).
Collapse
Affiliation(s)
- J P Vivek
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
34
|
Vivek JP, Burgess IJ. Quaternary ammonium bromide surfactant adsorption on low-index surfaces of gold. 2. Au(100) and the role of crystallographic-dependent adsorption in the formation of anisotropic nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5040-5047. [PMID: 22375834 DOI: 10.1021/la300036y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A qualitative and quantitative description of the coadsorption of a quaternary ammonium bromide surfactant on Au(100) has been determined using electrochemical techniques. Cyclic voltammetry reveals that both the cationic surfactant ion and its halide counterion are adsorbed on the surface of unreconstructed Au(100) over a wide range of electrode potentials or charge densities. The relative Gibbs excesses of the cationic and anionic components of octyltrimethylammonium (OTA(+)) bromide have been determined using the thermodynamics of ideally polarized electrodes. Coadsorbed OTA(+) does not strongly affect the behavior of bromide layers on Au(100) with low-coverage films being replaced by commensurate overlayers at positive electrode charge densities. The presence of surface bromide allows for the stabilization of adsorbed OTA(+) at positive polarizations. Furthermore, charge-induced phase changes in the bromide layer lead to subtle but appreciable changes in the surface excesses of OTA(+) ions which is consistent with a hierarchical model of surfactant adsorbed upon a halide-modified Au(100) surface. A comparison of the OTA(+) adsorption isotherms on Au(100) and Au(111) reveals that the presence of coadsorbed bromide does not lead to preferential accumulation of cationic surfactant ions on a particular crystal facet. These results are inconsistent with explanations of anisotropic nanoparticle formation that invoke a thermodynamic argument of preferred surfactant adsorption on different crystal facets of an embryonic nanoparticle seed crystal.
Collapse
Affiliation(s)
- J P Vivek
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
35
|
Nason JA, McDowell SA, Callahan TW. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles. ACTA ACUST UNITED AC 2012; 14:1885-92. [DOI: 10.1039/c2em00005a] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Liu G, Luais E, Gooding JJ. The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4176-83. [PMID: 21348487 DOI: 10.1021/la104373v] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Forming stable gold nanoparticle (AuNP)-modified surface is important for a number of applications including sensing and electrocatalysis. Herein, tethering AuNPs to glassy carbon (GC) surfaces using surface bound diazonium salts is investigated as a strategy to produce stable AuNP surfaces. GC electrodes are first modified with 4-aminophenyl (GC-Ph-NH(2)), and then the terminal amine groups are converted to diazonium groups by incubating the GC-Ph-NH(2) interface in NaNO(2) and HCl solution to form a 4-phenyl diazonium chloride-modified interface (GC-Ph-N(2)(+)Cl(-)). Subsequently AuNPs are immobilized on the interface by electrochemical reduction to give a 4-phenyl AuNP-modified interface (GC-Ph-AuNP). For comparison, 4-aminophenyl AuNP- and 4-thiophenol AuNP-modified GC interfaces (GC-Ph-S-AuNP and GC-Ph-NH-AuNP), in which AuNPs are tethered to the surfaces by forming S-Au and NH-Au bond, respectively, were also prepared. Cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy are used to characterize these fabricated interfaces. The AuNP on GC-Ph-AuNP surfaces demonstrate good stability under sonication in Milli-Q water, during electrochemical treatment in 0.05 M H(2)SO(4) solution, and over several weeks. By contrast, the GC-Ph-NH-AuNP and GC-Ph-S-AuNP surfaces showed significant particle losses under equivalent conditions.
Collapse
Affiliation(s)
- Guozhen Liu
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | | | | |
Collapse
|
37
|
Montes de Oca MG, Fermín DJ. Electrochemical deposition of Te adlayers onto 3D networks of gold nanoparticles. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Su Z, Climent V, Leitch J, Zamlynny V, Feliu JM, Lipkowski J. Quantitative SNIFTIRS studies of (bi)sulfate adsorption at the Pt(111) electrode surface. Phys Chem Chem Phys 2010; 12:15231-9. [PMID: 21046024 DOI: 10.1039/c0cp00860e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was applied to study (bi)sulfate adsorption on a Pt(111) surface in solutions of variable pH while maintaining a constant total bisulfate/sulfate ((bi)sulfate) concentration without the addition of an inert supporting electrolyte. The spectra were recorded for both the p- and s-polarizations of the IR radiation in order to differentiate between the IR bands of the (bi)sulfate species adsorbed on the electrode surface from those species located in the thin layer of electrolyte. The spectra recorded with p-polarized light consist of the IR bands from both the species adsorbed at the electrode surface and those present in the thin layer of electrolyte between the electrode surface and ZnSe window whereas the s-polarized spectra contain only the IR bands from the species located in the thin layer of electrolyte. A new procedure was developed to calculate the angle of incidence and thickness of the electrolyte between the Pt(111) electrode surface and the ZnSe IR transparent window. By combining these values with the knowledge of the optical constants for Pt, H(2)O and ZnSe, the mean square electric field strength (MSEFS) at the Pt(111) electrode surface and for thin layer of solution were accurately calculated. The spectra recorded using s-polarization were multiplied by the ratio of the average MSEFS for p- and s-polarizations and subtracted from the spectra recorded using p-polarization in order to remove the IR bands that arise from the species present within the thin layer cavity. In this manner, the resulting IR spectra contain only the IR bands for the anions adsorbed on the Pt(111) electrode surface. The spectra of adsorbed anions show little change with respect to the pH ranging from 1 to 5.6. This behavior indicates that the same species is predominantly adsorbed on the metal surface for this broad range of pH values and the results suggest that sulfate is the most likely candidate for this adsorbate.
Collapse
Affiliation(s)
- Zhangfei Su
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Doneux T, Nichols R. Adsorption of adipic acid conjugates at the Au(111) electrode|aqueous solution interface. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Mostany J, Climent V, Herrero E, Feliu JM. Surface excesses at very low concentrations from extrapolation of thermodynamic data: A way to explore beyond practical limits from reliable experimental data. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Laaksonen P, Kivioja J, Paananen A, Kainlauri M, Kontturi K, Ahopelto J, Linder MB. Selective nanopatterning using citrate-stabilized Au nanoparticles and cystein-modified amphiphilic protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5185-5192. [PMID: 19253945 DOI: 10.1021/la804001e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present an approach where biomolecular self-assembly is used in combination with lithography to produce patterns of metallic nanoparticles on a silicon substrate. This is achieved through a two-step method, resulting in attachment of nanoparticles on desired sites on the sample surfaces, which allowed a detailed characterization. First, a genetically modified hydrophobin protein, NCysHFBI, was attached by self-assembly on a hydrophobic surface or a surface patterned with hydrophobic and hydrophilic domains. The next step was to label the protein layers with 17.8 nm gold nanoparticles, to allow microscopic characterization of the films. Kinetics and extent of attachment of nanoparticles were characterized by UV-vis spectroscopy and transmission electron microscopy. It was shown that the attachment of citrate-stabilized gold nanoparticles was strongly dependent on the electrostatic properties of the capping ligand layer and the density of nanoparticles in the monolayer could be controlled via pH. The resulting nanoparticle assemblies followed the original pattern created by optical lithography in high accuracy. We demonstrate that combining bottom-up and top-down nanotechnological approaches in a good balance can provide very effective ways to produce nanoscale components providing a functional interface between electronics and the biological world.
Collapse
Affiliation(s)
- Päivi Laaksonen
- VTT Biotechnology, VTT Technical Research Centre of Finland, FI-02044 VTT Espoo, Finland.
| | | | | | | | | | | | | |
Collapse
|
42
|
López-Viota J, Mandal S, Delgado AV, Toca-Herrera JL, Möller M, Zanuttin F, Balestrino M, Krol S. Electrophoretic characterization of gold nanoparticles functionalized with human serum albumin (HSA) and creatine. J Colloid Interface Sci 2009; 332:215-23. [DOI: 10.1016/j.jcis.2008.11.077] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/25/2008] [Accepted: 11/27/2008] [Indexed: 11/25/2022]
|
43
|
Electrodeposition of polycrystalline ZnTe from simple and citrate-complexed acidic aqueous solutions. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.07.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Tsai DH, Pease LF, Zangmeister RA, Tarlov MJ, Zachariah MR. Aggregation kinetics of colloidal particles measured by gas-phase differential mobility analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:140-146. [PMID: 19063636 DOI: 10.1021/la703164j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate the utility of electrospray gas-phase ion-mobility analysis as a new method to investigate nanoparticle flocculation, or aggregation. Au nanoparticle (Au-NP) solutions were sampled via electrospray (ES), followed by differential ion-mobility analysis (DMA) to determine the particle mobility distribution. Multimodal size distributions obtained with ES-DMA indicated the presence of single Au-NPs (monomer) as well as larger Au-NP clusters such as dimers, trimers, and tetramers under specific solution conditions. The fraction of each aggregate species as a function of time was quantitatively characterized, from which the degree of aggregation, aggregation rate, and stability ratio at different ionic strengths were determined. The latter enabled the extraction of a surface potential (or surface charge density) of 64 +/- 2 mV for 10 nm Au-NPs, which is in good agreement with values obtained from other methods, thus validating our approach. Our results show that ES-DMA is a valuable tool for quantitatively probing the early stages of colloidal aggregation or as a preparatory tool for the size election of aggregates.
Collapse
Affiliation(s)
- D-H Tsai
- Department of Chemistry and Biochemistry and Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
45
|
Doneux T, Nichols R. First- and second-order phase transitions in the adlayer of biadipate on Au(111). Phys Chem Chem Phys 2009; 11:688-93. [DOI: 10.1039/b813883d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Lundgren AO, Björefors F, Olofsson LGM, Elwing H. Self-arrangement among charge-stabilized gold nanoparticles on a dithiothreitol reactivated octanedithiol monolayer. NANO LETTERS 2008; 8:3989-3992. [PMID: 18928323 DOI: 10.1021/nl802543g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gold surfaces and structures modified with octanedithiol were reacted with dithiothreitol prior to immersion in buffered solutions of charge stabilized gold nanoparticles. The procedure gives a dithiol layer with adequate properties for a homogeneous octanedithiol monolayer and uniform and reproducible gold nanoparticle binding. The distance between the adsorbing particles is controlled by the particle electrostatic interactions and can be carefully tuned by variation of ionic strength. To some extent, long-range ordering occurs among the adsorbed particles. This behavior is facilitated by the particles' small size compared to the Debye screening but also by the homogeneity of the surface modification. The simple character of the system makes it attractive for fabrication of controlled nanoparticle arrays where further chemical and biological modifications are required.
Collapse
Affiliation(s)
- Anders O Lundgren
- Department of Cell and Molecular Biology, Interface Biophysics, Göteborg University, SE-405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
47
|
González-Peña OI, Chapman TW, Vong YM, Antaño-López R. Study of adsorption of citrate on Pt by CV and EQCM. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.02.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Electroreduction of oxygen on gold nanoparticle/PDDA-MWCNT nanocomposites in acid solution. Anal Chim Acta 2008; 618:140-6. [DOI: 10.1016/j.aca.2008.04.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/16/2008] [Accepted: 04/24/2008] [Indexed: 11/18/2022]
|
49
|
Berná A, Delgado JM, Orts JM, Rodes A, Feliu JM. Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2007.09.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|