1
|
Bo T, Ghoshal D, Wilder LM, Miller EM, Mirkin MV. High-Resolution Mapping of Photocatalytic Activity by Diffusion-Based and Tunneling Modes of Photo-Scanning Electrochemical Microscopy. ACS NANO 2025; 19:3490-3499. [PMID: 39792635 PMCID: PMC11781031 DOI: 10.1021/acsnano.4c13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained. In this article, we report photoreactivity imaging of two-dimensional MoS2 photocatalysts by two modes of photoscanning electrochemical microscopy (photo-SECM): diffusion and tunneling-based modes. Diffusion-based (feedback mode) photo-SECM is used to map the electron transfer and hydrogen evolution rates on mixed-phase MoS2 nanosheets and MoS2 chemical vapor deposition (CVD)-grown triangles. An extremely high resolution of photoelectrochemical imaging (about 1-2 nm) by the tunneling mode of the photo-SECM is demonstrated.
Collapse
Affiliation(s)
- Tianyu Bo
- Department
of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The
Graduate Center of CUNY, New York, New York 10016, United States
| | - Debjit Ghoshal
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Logan M. Wilder
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Elisa M. Miller
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced
Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
2
|
Henrotte O, Kment Š, Naldoni A. Mass Transport Limitations in Plasmonic Photocatalysis. NANO LETTERS 2024; 24:8851-8858. [PMID: 38991547 PMCID: PMC11273613 DOI: 10.1021/acs.nanolett.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
The interpretation of mechanisms governing hot carrier reactivity on metallic nanostructures is critical, yet elusive, for advancing plasmonic photocatalysis. In this work, we explored the influence of the diffusion of molecules on the hot carrier extraction rate at the solid-liquid interface, which is of fundamental interest for increasing the efficiency of photodevices. Through a spatially defined scanning photoelectrochemical microscopy investigation, we identified a diffusion-controlled regime hindering the plasmon-driven photochemical activity of metallic nanostructures. Using low-power monochromatic illumination (<2 W cm-2), we unveiled the hidden influence of mass transport on the quantum efficiency of plasmonic photocatalysts. The availability of molecules at the solid-liquid interface directly limits the extraction of hot holes, according to their nature and energy, at the reactive spots in Au nanoislands on an ultrathin TiO2 substrate. An intriguing question arises: does the mass transport enhancement caused by thermal effects unlock the reactivity of nonthermal carriers under steady state?
Collapse
Affiliation(s)
- Olivier Henrotte
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials Department, Palacký
University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Štěpán Kment
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials Department, Palacký
University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- CEET,
Nanotechnology Centre, VŠB-Technical
University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Alberto Naldoni
- Czech
Advanced Technology and Research Institute, Regional Centre of Advanced
Technologies and Materials Department, Palacký
University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| |
Collapse
|
3
|
Gossage ZT, Tatara R, Hosaka T, Komaba S. Quantifying Interfacial Ion Transfer at Operating Potassium-Insertion Battery Electrodes within Highly Concentrated Aqueous Solutions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33379-33387. [PMID: 38885040 PMCID: PMC11231980 DOI: 10.1021/acsami.4c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Electrode/electrolyte interfacial ion transfer is a fundamental process occurring during insertion-type redox reactions at battery electrodes. The rate at which ions move into and out of the electrode, as well as at interphase structures, directly impacts the power performance of the battery. However, measuring and quantifying these ion transfer phenomena can be difficult, especially at high electrolyte concentrations as found in batteries. Herein, we report a scanning electrochemical microscope method using a common ferri/ferrocyanide (FeCN) redox mediator dissolved in an aqueous electrolyte to track changes in alkali ions at high electrolyte concentrations (up to 3 mol dm-3). Using voltammetry at a platinum microelectrode, we observed a reversible E1/2 shift of ∼60 mV per decade change in K+ concentrations. The response showed high stability in sequential measurements and similar behavior in other aqueous electrolytes. From there, we used the same FeCN mediator to position the microelectrode at the surface of a potassium-insertion electrode. We demonstrate tracking of local changes in the K+ concentration during insertion and deinsertion processes. Using a 2D axisymmetric, finite element model, we further estimate the effective insertion rates. These developments enable characterization of a key parameter for improving batteries, the interfacial ion transfer kinetics, and future work may show mediators appropriate for molar concentrations in nonaqueous electrolytes and beyond.
Collapse
Affiliation(s)
- Zachary T Gossage
- Department of Applied Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Ryoichi Tatara
- Department of Applied Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Tomooki Hosaka
- Department of Applied Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Shinichi Komaba
- Department of Applied Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Chen R, Pathirathna P, Balla RJ, Kim J, Amemiya S. Nanoscale Quantitative Imaging of Single Nuclear Pore Complexes by Scanning Electrochemical Microscopy. Anal Chem 2024; 96:10765-10771. [PMID: 38904303 PMCID: PMC11223102 DOI: 10.1021/acs.analchem.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
The nuclear pore complex (NPC) is a proteinaceous nanopore that solely and selectively regulates the molecular transport between the cytoplasm and nucleus of a eukaryotic cell. The ∼50 nm-diameter pore of the NPC perforates the double-membrane nuclear envelope to mediate both passive and facilitated molecular transport, thereby playing paramount biological and biomedical roles. Herein, we visualize single NPCs by scanning electrochemical microscopy (SECM). The high spatial resolution is accomplished by employing ∼25 nm-diameter ion-selective nanopipets to monitor the passive transport of tetrabutylammonium at individual NPCs. SECM images are quantitatively analyzed by employing the finite element method to confirm that this work represents the highest-resolution nanoscale SECM imaging of biological samples. Significantly, we apply the powerful imaging technique to address the long-debated origin of the central plug of the NPC. Nanoscale SECM imaging demonstrates that unplugged NPCs are more permeable to the small probe ion than are plugged NPCs. This result supports the hypothesis that the central plug is not an intrinsic transporter, but is an impermeable macromolecule, e.g., a ribonucleoprotein, trapped in the nanopore. Moreover, this result also supports the transport mechanism where the NPC is divided into the central pathway for RNA export and the peripheral pathway for protein import to efficiently mediate the bidirectional traffic.
Collapse
Affiliation(s)
- Ran Chen
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Pavithra Pathirathna
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry and Chemical Engineering, Florida
Institute of Technology, Melbourne, Florida 32901, United States
| | - Ryan J. Balla
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiyeon Kim
- Department
of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Shigeru Amemiya
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Askarova G, Barman K, Mirkin MV. Quantitative Measurements of Electrocatalytic Reaction Rates with NanoSECM. Anal Chem 2024; 96:6089-6095. [PMID: 38574269 DOI: 10.1021/acs.analchem.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Scanning electrochemical microscopy (SECM) has been extensively used for mapping electrocatalytic surface reactivity; however, most of the studies were carried out using micrometer-sized tips, and no quantitative kinetic experiments on the nanoscale have yet been reported to date. As the diffusion-limited current density at a nanometer-sized electrode is very high, an inner-sphere electron-transfer process occurring at a nanotip typically produces a kinetic current at any attainable overpotential. Here, we develop a theory for substrate generation/tip collection (SG/TC) and feedback modes of SECM with a kinetic tip current and use it to evaluate the rates of hydrogen and oxygen evolution reactions in a neutral aqueous solution from the current-distance curves. The possibility of using chemically modified nanotips for kinetic measurements is also demonstrated. The effect of the substrate size on the shape of the current-distance curves in SG/TC mode SECM experiments is discussed.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
6
|
Gossage ZT, Ito N, Hosaka T, Tatara R, Komaba S. In situ Observation of Evolving H 2 and Solid Electrolyte Interphase Development at Potassium Insertion Materials within Highly Concentrated Aqueous Electrolytes. Angew Chem Int Ed Engl 2023; 62:e202307446. [PMID: 37593892 DOI: 10.1002/anie.202307446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The solid-electrolyte interphase (SEI) is key to stable, high voltage lithium-ion batteries (LIBs) as a protective barrier that prevents electrolyte decomposition. The SEI is thought to play a similar role in highly concentrated water-in-salt electrolytes (WISEs) for emerging aqueous batteries, but its properties remain unknown. In this work, we utilized advanced scanning electrochemical microscopy (SECM) and operando electrochemical mass spectrometry (OEMS) techniques to gain deeper insight into the SEI that occurs within highly concentrated WISEs. As a model, we focus on a 55 mol/kg K(FSA)0.6 (OTf)0.4 electrolyte and a 3,4,9,10-perylenetetracarboxylic diimide negative electrode. For the first time, our work showed distinctly passivating structures with slow apparent electron transfer rates alike to the SEI found in LIBs. In situ analyses indicated stable passivating structures when PTCDI was stepped to low potentials (≈-1.3 V vs. Ag/AgCl). However, the observed SEI was discontinuous at the surface and H2 evolution occurred as the electrode reached more extreme potentials. OEMS measurements further confirmed a shift in the evolution of detectable H2 from -0.9 V to <-1.4 V vs. Ag/AgCl when changing from dilute to concentrated electrolytes. In all, our work shows a combined approach of traditional battery measurements with in situ analyses for improving characterization of other unknown SEI structures.
Collapse
Affiliation(s)
- Zachary T Gossage
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Nanako Ito
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Tomooki Hosaka
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Ryoichi Tatara
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Shinichi Komaba
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| |
Collapse
|
7
|
Ahn S, Zor C, Yang S, Lagnoni M, Dewar D, Nimmo T, Chau C, Jenkins M, Kibler AJ, Pateman A, Rees GJ, Gao X, Adamson P, Grobert N, Bertei A, Johnson LR, Bruce PG. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation. Nat Chem 2023; 15:1022-1029. [PMID: 37264102 DOI: 10.1038/s41557-023-01203-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Although Li-air rechargeable batteries offer higher energy densities than lithium-ion batteries, the insulating Li2O2 formed during discharge hinders rapid, efficient re-charging. Redox mediators are used to facilitate Li2O2 oxidation; however, fast kinetics at a low charging voltage are necessary for practical applications and are yet to be achieved. We investigate the mechanism of Li2O2 oxidation by redox mediators. The rate-limiting step is the outer-sphere one-electron oxidation of Li2O2 to LiO2, which follows Marcus theory. The second step is dominated by LiO2 disproportionation, forming mostly triplet-state O2. The yield of singlet-state O2 depends on the redox potential of the mediator in a way that does not correlate with electrolyte degradation, in contrast to earlier views. Our mechanistic understanding explains why current low-voltage mediators (<+3.3 V) fail to deliver high rates (the maximum rate is at +3.74 V) and suggests important mediator design strategies to deliver sufficiently high rates for fast charging at potentials closer to the thermodynamic potential of Li2O2 oxidation (+2.96 V).
Collapse
Affiliation(s)
- Sunyhik Ahn
- Department of Materials, University of Oxford, Oxford, UK
| | - Ceren Zor
- Department of Materials, University of Oxford, Oxford, UK
| | - Sixie Yang
- Department of Materials, University of Oxford, Oxford, UK
| | - Marco Lagnoni
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Daniel Dewar
- Department of Materials, University of Oxford, Oxford, UK
| | - Tammy Nimmo
- Department of Materials, University of Oxford, Oxford, UK
| | - Chloe Chau
- Department of Materials, University of Oxford, Oxford, UK
| | - Max Jenkins
- Department of Materials, University of Oxford, Oxford, UK
| | - Alexander J Kibler
- Nottingham Applied Materials and Interfaces Group, School of Chemistry, University of Nottingham, Nottingham, UK
| | | | - Gregory J Rees
- Department of Materials, University of Oxford, Oxford, UK
| | - Xiangwen Gao
- Department of Materials, University of Oxford, Oxford, UK
| | - Paul Adamson
- Department of Materials, University of Oxford, Oxford, UK
| | - Nicole Grobert
- Department of Materials, University of Oxford, Oxford, UK
| | - Antonio Bertei
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Lee R Johnson
- Nottingham Applied Materials and Interfaces Group, School of Chemistry, University of Nottingham, Nottingham, UK
| | - Peter G Bruce
- Department of Materials, University of Oxford, Oxford, UK.
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
S. G. Selva J, Sukeri A, Bacil RP, H. P. Serrano S, Bertotti M. Electrocatalysis of the Hydrogen Oxidation Reaction on a Platinum-Decorated Nanoporous Gold Surface Studied by Scanning Electrochemical Microscopy. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Skaanvik SA, Stephens LI, Gateman SM, Geissler M, Mauzeroll J. Quantitative Feedback Referencing for Improved Kinetic Fitting of Scanning Electrochemical Microscopy Measurements. Anal Chem 2022; 94:13852-13859. [PMID: 36166706 DOI: 10.1021/acs.analchem.2c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scanning electrochemical microscopy (SECM) has matured as a technique for studying local electrochemical processes. The feedback mode is most commonly used for extracting quantitative kinetic information. However, approaching individual regions of interest, as is commonly done, does not take full advantage of the spatial resolution that SECM has to offer. Moreover, fitting of experimental approach curves remains highly subjective due to the manner of estimating the tip-to-substrate distance. We address these issues using negative or positive feedback currents as a reference to calculate the tip-to-substrate distance directly for quantitative kinetic fitting of approach curves and line profiles. The method was first evaluated by fitting simulated data and then tested experimentally by resolving negative feedback and intermediate kinetics behavior in a spatially controlled fashion using (i) a flat, binary substrate composed of Au and SiO2 segments and (ii) a dual-mediator system for live-cell measurements. The methodology developed herein, named quantitative feedback referencing (QFR), improves fitting accuracy, removes fitting subjectivity, and avoids substrate-microelectrode contact.
Collapse
Affiliation(s)
| | - Lisa Irene Stephens
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, Quebec J4B 6Y4, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
10
|
Li Y, Ye Z, Zhang J, Zhao Y, Zhu T, Song J, Xu F, Li F. In Situ and Quantitative Monitoring of Cardiac Tissues Using Programmable Scanning Electrochemical Microscopy. Anal Chem 2022; 94:10515-10523. [PMID: 35822575 DOI: 10.1021/acs.analchem.2c01919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro cardiac tissue model holds great potential as a powerful platform for drug screening. Respiratory activity, contraction frequency, and extracellular H2O2 levels are the three key parameters for determining the physiological functions of cardiac tissues, which are technically challenging to be monitored in an in situ and quantitative manner. Herein, we constructed an in vitro cardiac tissue model on polyacrylamide gels and applied a pulsatile electrical field to promote the maturation of the cardiac tissue. Then, we built a scanning electrochemical microscopy (SECM) platform with programmable pulse potentials to in situ characterize the dynamic changes in the respiratory activity, contraction frequency, and extracellular H2O2 level of cardiac tissues under both normal physiological and drug (isoproterenol and propranolol) treatment conditions using oxygen, ferrocenecarboxylic acid (FcCOOH), and H2O2 as the corresponding redox mediators. The SECM results showed that isoproterenol treatment induced enhanced oxygen consumption, accelerated contractile frequency, and increased released H2O2 level, while propranolol treatment induced dynamically decreased oxygen consumption and contractile frequency and no obvious change in H2O2 levels, suggesting the effects of activation and inhibition of β-adrenoceptor on the metabolic and electrophysiological activities of cardiac tissues. Our work realizes the in situ and quantitative monitoring of respiratory activity, contraction frequency, and secreted H2O2 level of living cardiac tissues using SECM for the first time. The programmable SECM methodology can also be used to real-time and quantitatively monitor electrochemical and electrophysiological parameters of cardiac tissues for future drug screening studies.
Collapse
Affiliation(s)
- Yabei Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaoyang Ye
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiang Zhao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tong Zhu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Department of Cardiovasology, Xidian Group Hospital, Xi'an, Shaanxi Province 710077, P. R. China
| | - Jingjing Song
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
11
|
Askarova G, Hesari M, Wang C, Mirkin MV. Decoupling Through-Tip Illumination from Scanning in Nanoscale Photo-SECM. Anal Chem 2022; 94:7169-7173. [PMID: 35532734 DOI: 10.1021/acs.analchem.2c00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of scanning electrochemical microscopy (SECM) for nanoscale imaging of photoelectrochemical processes at semiconductor surfaces has recently been demonstrated. To illuminate a microscopic portion of the substrate surface facing the SECM probe, a glass-sealed, polished tip simultaneously served as a nanoelectrode and a light guide. One issue affecting nanoscale photo-SECM experiments is mechanical interactions of the rigid optical fiber with the tip motion controlled by the piezo-positioner. Here we report an improved experimental setup in which the tip is mechanically decoupled from the fiber and light is delivered to the back of the tip capillary using a complex lens system. The advantages of this approach are evident from the improved quality of the approach curves and photo-SECM images. The light intensity delivered from the optical fiber to the tip is not changed significantly by their decoupling.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Mahdi Hesari
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Chen Wang
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
12
|
Zeng Y, Gossage ZT, Sarbapalli D, Hui J, Rodríguez‐López J. Tracking Passivation and Cation Flux at Incipient Solid‐Electrolyte Interphases on Multi‐Layer Graphene using High Resolution Scanning Electrochemical Microscopy. ChemElectroChem 2022. [DOI: 10.1002/celc.202101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yunxiong Zeng
- Department of Chemistry University of Illinois Urbana-Champaign 600 S Mathews Avenue Urbana Illinois 61801 USA
- College of Materials and Chemistry Zhejiang Province Key Laboratory of Magnetic Materials China Jiliang University No 258 Xueyuan St. Hangzhou 310018 P. R. China
| | - Zachary T. Gossage
- Department of Chemistry University of Illinois Urbana-Champaign 600 S Mathews Avenue Urbana Illinois 61801 USA
- Department of Applied Chemistry Tokyo University of Science Shinjuku, Tokyo 162-8601 Japan
| | - Dipobrato Sarbapalli
- Department of Chemistry University of Illinois Urbana-Champaign 600 S Mathews Avenue Urbana Illinois 61801 USA
| | - Jingshu Hui
- Department of Chemistry University of Illinois Urbana-Champaign 600 S Mathews Avenue Urbana Illinois 61801 USA
- College of Energy Soochow Institute for Energy and Materials InnovationS (SIEMIS) Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 P. R. China
| | - Joaquín Rodríguez‐López
- Department of Chemistry University of Illinois Urbana-Champaign 600 S Mathews Avenue Urbana Illinois 61801 USA
| |
Collapse
|
13
|
Modern applications of scanning electrochemical microscopy in the analysis of electrocatalytic surface reactions. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63948-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Xiong Q, Wu T, Song R, Zhang F, He P. Theoretical and experimental verification of imaging resolution factors in scanning electrochemical microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1238-1246. [PMID: 33620355 DOI: 10.1039/d1ay00025j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The imaging resolution of scanning electrochemical microscopy (SECM) depends strongly on the tip electrode size and the tip-substrate distance. Herein, etched glass encapsulation was applied to fabricate a gold disk electrode, and the size of the tip electrode was accurately determined from the steady-state limiting current. Referring to the theoretical research carried out by our predecessors, the formula for the imaging resolution was derived, followed by the imaging of gold spots and cells with the prepared microelectrodes of different sizes and with different tip-substrate distances. A depth scan was performed to generate 2D current maps of the gold spot relative to the position of the microelectrode in the x-z plane. Probe approach curves and horizontal sweeps were obtained from one depth scan image by simply extracting vertical and horizontal cross-sectional lines, and further characterized by comparison with simulated curves through modeling of the experimental system. The experimental results were basically consistent with the theory, revealing that the highest imaging resolution can be obtained with the smallest tip electrode when d/a = 1, and when the size of the tip electrode is fixed the smallest tip-substrate distance can give the highest imaging resolution.
Collapse
Affiliation(s)
- Qiang Xiong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Tao Wu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Ranran Song
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| |
Collapse
|
15
|
Henrotte O, Boudet A, Limani N, Bergonzo P, Zribi B, Scorsone E, Jousselme B, Cornut R. Steady‐State Electrocatalytic Activity Evaluation with the Redox Competition Mode of Scanning Electrochemical Microscopy: A Gold Probe and a Boron‐Doped Diamond Substrate. ChemElectroChem 2020. [DOI: 10.1002/celc.202001088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olivier Henrotte
- Université Paris-Saclay CEA CNRS NIMBE LICSEN CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Alice Boudet
- Université Paris-Saclay CEA CNRS NIMBE LICSEN CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Ndrina Limani
- Université Paris-Saclay CEA CNRS NIMBE LICSEN CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Philippe Bergonzo
- Diamond Sensors Laboratory LIST CEA CEA Saclay 91191 Gif-sur-Yvette Cedex France
- Current address: Department of Electronic and Electrical Engineering University College London 17-19 Gordon Street London WC1H 0AH United Kingdom
| | - Bacem Zribi
- Diamond Sensors Laboratory LIST CEA CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Emmanuel Scorsone
- Diamond Sensors Laboratory LIST CEA CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Bruno Jousselme
- Université Paris-Saclay CEA CNRS NIMBE LICSEN CEA Saclay 91191 Gif-sur-Yvette Cedex France
| | - Renaud Cornut
- Université Paris-Saclay CEA CNRS NIMBE LICSEN CEA Saclay 91191 Gif-sur-Yvette Cedex France
| |
Collapse
|
16
|
Borghese R, Malferrari M, Brucale M, Ortolani L, Franchini M, Rapino S, Borsetti F, Zannoni D. Structural and electrochemical characterization of lawsone-dependent production of tellurium-metal nanoprecipitates by photosynthetic cells of Rhodobacter capsulatus. Bioelectrochemistry 2020; 133:107456. [DOI: 10.1016/j.bioelechem.2020.107456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 01/07/2023]
|
17
|
Gossage ZT, Hui J, Sarbapalli D, Rodríguez-López J. Coordinated mapping of Li + flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode. Analyst 2020; 145:2631-2638. [PMID: 32101184 DOI: 10.1039/c9an02637a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Interphases formed at battery electrodes are key to enabling energy dense charge storage by acting as protection layers and gatekeeping ion flux into and out of the electrodes. However, our current understanding of these structures and how to control their properties is still limited due to their heterogenous structure, dynamic nature, and lack of analytical techniques to probe their electronic and ionic properties in situ. In this study, we used a multi-functional scanning electrochemical microscopy (SECM) technique based on an amperometric ion-selective mercury disc-well (HgDW) probe for spatially-resolving changes in interfacial Li+ during solid electrolyte interphase (SEI) formation and for tracking its relationship to the electronic passivation of the interphase. We focused on multi-layer graphene (MLG) as a model graphitic system and developed a method for ion-flux mapping based on pulsing the substrate at multiple potentials with distinct behavior (e.g. insertion-deinsertion). By using a pulsed protocol, we captured the localized uptake of Li+ at the forming SEI and during intercalation, creating activity maps along the edge of the MLG electrode. On the other hand, a redox probe showed passivation by the interphase at the same locations, thus enabling correlations between ion and electron transfer. Our analytical method provided direct insight into the interphase formation process and could be used for evaluating dynamic interfacial phenomena and improving future energy storage technologies.
Collapse
Affiliation(s)
- Zachary T Gossage
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave., Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
To achieve super-resolution scanning electrochemical microscopy (SECM), we must overcome the theoretical limitation associated with noncontact electrochemical imaging of surface-generated species. This is the requirement for mass transfer to the electrode, which gives rise to the diffusional broadening of surface features. In this work, a procedure is developed for overcoming this limitation and thus generating "super-resolved" images using point spread function (PSF)-based deconvolution, where the point conductor plays the same role as the point emitter in optical imaging. In contrast to previous efforts in SECM towards this goal, our method uses a finite element model to generate a pair of corresponding blurred and sharp images for PSF estimation, avoiding the need to perform parameter optimization for effective deconvolution. It can therefore be used for retroactive data treatment and an enhanced understanding of the structure-property relationships that SECM provides.
Collapse
Affiliation(s)
- Lisa I Stephens
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Nicholas A Payne
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
19
|
Wang X, Han L, Xin H, Mirkin MV. TEM-Assisted Fabrication of Sub-10 nm Scanning Electrochemical Microscopy Tips. Anal Chem 2019; 91:15355-15359. [DOI: 10.1021/acs.analchem.9b04316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiang Wang
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Lili Han
- Department of Physics & Astronomy, University of California, Irvine, California 92697, United States
| | - Huolin Xin
- Department of Physics & Astronomy, University of California, Irvine, California 92697, United States
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| |
Collapse
|
20
|
Balla RJ, Jantz DT, Kurapati N, Chen R, Leonard KC, Amemiya S. Nanoscale Intelligent Imaging Based on Real-Time Analysis of Approach Curve by Scanning Electrochemical Microscopy. Anal Chem 2019; 91:10227-10235. [PMID: 31310104 DOI: 10.1021/acs.analchem.9b02361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scanning electrochemical microscopy (SECM) enables high-resolution imaging by examining the amperometric response of an ultramicroelectrode tip near a substrate. Spatial resolution, however, is compromised for nonflat substrates, where distances from a tip far exceed the tip size to avoid artifacts caused by the tip-substrate contact. Herein, we propose a new imaging mode of SECM based on real-time analysis of the approach curve to actively control nanoscale tip-substrate distances without contact. The power of this software-based method is demonstrated by imaging an insulating substrate with step edges using standard instrumentation without combination of another method for distance measurement, e.g., atomic force microscopy. An ∼500 nm diameter Pt tip approaches down to ∼50 nm from upper and lower terraces of a 500 nm height step edge, which are located by real-time theoretical fitting of an experimental approach curve to ensure the lack of electrochemical reactivity. The tip approach to the step edge can be terminated at <20 nm prior to the tip-substrate contact as soon as the theory deviates from the tip current, which is analyzed numerically afterward to locate the inert edge. The advantageous local adjustment of tip height and tip current at the final point of tip approach distinguishes the proposed imaging mode from other modes based on standard instrumentation. In addition, the glass sheath of the Pt tip is thinned to ∼150 nm to rarely contact the step edge, which is unavoidable and instantaneously detected as an abrupt change in the slope of approach curve to prevent damage of the fragile nanotip.
Collapse
Affiliation(s)
- Ryan J Balla
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Dylan T Jantz
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering , University of Kansas , 1501 Wakarusa Drive , Lawrence , Kansas 66047 , United States
| | - Niraja Kurapati
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Ran Chen
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Kevin C Leonard
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering , University of Kansas , 1501 Wakarusa Drive , Lawrence , Kansas 66047 , United States
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
21
|
Mass Transport in Porous Electrodes Studied by Scanning Electrochemical Microscopy: Example of Nanoporous Gold. ChemElectroChem 2019. [DOI: 10.1002/celc.201900634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Scanning electrochemical microscopy in the development of enzymatic sensors and immunosensors. Biosens Bioelectron 2019; 141:111411. [PMID: 31228730 DOI: 10.1016/j.bios.2019.111411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023]
Abstract
Scanning electrochemical microscopy (SECM) is very useful, non-invasive tool for the analysis of surfaces pre-modified with biomolecules or by whole cells. This review focuses on the application of SECM technique for the analysis of surfaces pre-modified with enzymes (horseradish peroxidase, alkaline phosphatase and glucose oxidase) or labelled with antibody-enzyme conjugates. The working principles and operating modes of SECM are outlined. The applicability of feedback, generation-collection and redox competition modes of SECM on surfaces modified by enzymes or labelled with antibody-enzyme conjugates is discussed. SECM is important in the development of miniaturized bioanalytical systems with enzymes, since it can provide information about the local enzyme activity. Technical challenges and advantages of SECM, experimental parameters, used enzymes and redox mediators, immunoassay formats and analytical parameters of enzymatic SECM sensors and immunosensors are reviewed.
Collapse
|
23
|
Guerret-Legras L, Audibert J, Ojeda IG, Dubacheva G, Miomandre F. Combined SECM-fluorescence microscopy using a water-soluble electrofluorochromic dye as the redox mediator. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Munteanu R, Stănică L, Gheorghiu M, Gáspár S. Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH. ChemElectroChem 2019. [DOI: 10.1002/celc.201801558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raluca‐Elena Munteanu
- International Centre of Biodynamics 1B Intrarea Portocalelor 060101 Bucharest Romania
| | - Luciana Stănică
- International Centre of Biodynamics 1B Intrarea Portocalelor 060101 Bucharest Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics 1B Intrarea Portocalelor 060101 Bucharest Romania
| | - Szilveszter Gáspár
- International Centre of Biodynamics 1B Intrarea Portocalelor 060101 Bucharest Romania
| |
Collapse
|
25
|
Puri SR, Kim J. Kinetics of Antimicrobial Drug Ion Transfer at a Water/Oil Interface Studied by Nanopipet Voltammetry. Anal Chem 2019; 91:1873-1879. [DOI: 10.1021/acs.analchem.8b03593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Surendra Raj Puri
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jiyeon Kim
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
26
|
Atesyan A, Belhadj O, Combellas C, Kanoufi F, Rouchon V, Noël J. Scanning Electrochemical Microscopy for the Electroless Deposition of Gold on Natural Pyrite: Effect of Ferric Ions. ChemElectroChem 2019. [DOI: 10.1002/celc.201801271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aurore Atesyan
- Université Sorbonne Paris CitéUniversité Paris Diderot, ITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
- Centre de Recherches sur la ConservationCNRS USR 3224 36 rue Geoffroy-Saint-Hilaire F-75005 Paris France
| | - Oulfa Belhadj
- Centre de Recherches sur la ConservationCNRS USR 3224 36 rue Geoffroy-Saint-Hilaire F-75005 Paris France
| | - Catherine Combellas
- Université Sorbonne Paris CitéUniversité Paris Diderot, ITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| | - Frédéric Kanoufi
- Université Sorbonne Paris CitéUniversité Paris Diderot, ITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| | - Véronique Rouchon
- Centre de Recherches sur la ConservationCNRS USR 3224 36 rue Geoffroy-Saint-Hilaire F-75005 Paris France
| | - Jean‐Marc Noël
- Université Sorbonne Paris CitéUniversité Paris Diderot, ITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| |
Collapse
|
27
|
Huang L, Li Z, Lou Y, Cao F, Zhang D, Li X. Recent Advances in Scanning Electrochemical Microscopy for Biological Applications. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1389. [PMID: 30096895 PMCID: PMC6119995 DOI: 10.3390/ma11081389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022]
Abstract
Scanning electrochemical microscopy (SECM) is a chemical microscopy technique with high spatial resolution for imaging sample topography and mapping specific chemical species in liquid environments. With the development of smaller, more sensitive ultramicroelectrodes (UMEs) and more precise computer-controlled measurements, SECM has been widely used to study biological systems over the past three decades. Recent methodological breakthroughs have popularized SECM as a tool for investigating molecular-level chemical reactions. The most common applications include monitoring and analyzing the biological processes associated with enzymatic activity and DNA, and the physiological activity of living cells and other microorganisms. The present article first introduces the basic principles of SECM, followed by an updated review of the applications of SECM in biological studies on enzymes, DNA, proteins, and living cells. Particularly, the potential of SECM for investigating bacterial and biofilm activities is discussed.
Collapse
Affiliation(s)
- Luyao Huang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Ziyu Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yuntian Lou
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fahe Cao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Dawei Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaogang Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
28
|
Gossage ZT, Hernández‐Burgos K, Moore JS, Rodríguez‐López J. Impact of Charge Transport Dynamics and Conditioning on Cycling Efficiency within Single Redox Active Colloids. ChemElectroChem 2018. [DOI: 10.1002/celc.201800736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zachary T. Gossage
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue, Urbana Illinois 61801 United States
- Joint Center for Energy Storage Research (JCESR)
| | - Kenneth Hernández‐Burgos
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue, Urbana Illinois 61801 United States
- Joint Center for Energy Storage Research (JCESR)
- Beckman Institute for Advanced Science and Technology
| | - Jeffrey S. Moore
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue, Urbana Illinois 61801 United States
- Joint Center for Energy Storage Research (JCESR)
- Beckman Institute for Advanced Science and Technology
| | - Joaquín Rodríguez‐López
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue, Urbana Illinois 61801 United States
- Joint Center for Energy Storage Research (JCESR)
- Beckman Institute for Advanced Science and Technology
| |
Collapse
|
29
|
Munteanu RE, Stǎnicǎ L, Gheorghiu M, Gáspár S. Measurement of the Extracellular pH of Adherently Growing Mammalian Cells with High Spatial Resolution Using a Voltammetric pH Microsensor. Anal Chem 2018; 90:6899-6905. [PMID: 29732885 DOI: 10.1021/acs.analchem.8b01124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.
Collapse
Affiliation(s)
- Raluca-Elena Munteanu
- International Centre of Biodynamics , 1B Intrarea Portocalelor , 060101 Bucharest , Romania
| | - Luciana Stǎnicǎ
- International Centre of Biodynamics , 1B Intrarea Portocalelor , 060101 Bucharest , Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics , 1B Intrarea Portocalelor , 060101 Bucharest , Romania
| | - Szilveszter Gáspár
- International Centre of Biodynamics , 1B Intrarea Portocalelor , 060101 Bucharest , Romania
| |
Collapse
|
30
|
Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium-oxygen cell. Nat Commun 2018; 9:767. [PMID: 29472558 PMCID: PMC5823882 DOI: 10.1038/s41467-018-03204-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/29/2018] [Indexed: 11/08/2022] Open
Abstract
Lithium-oxygen cells, in which lithium peroxide forms in solution rather than on the electrode surface, can sustain relatively high cycling rates but require redox mediators to charge. The mediators are oxidised at the electrode surface and then oxidise lithium peroxide stored in the cathode. The kinetics of lithium peroxide oxidation has received almost no attention and yet is crucial for the operation of the lithium-oxygen cell. It is essential that the molecules oxidise lithium peroxide sufficiently rapidly to sustain fast charging. Here, we investigate the kinetics of lithium peroxide oxidation by several different classes of redox mediators. We show that the reaction is not a simple outer-sphere electron transfer and that the steric structure of the mediator molecule plays an important role. The fastest mediator studied could sustain a charging current of up to 1.9 A cm-2, based on a model for a porous electrode described here.
Collapse
|
31
|
Rheinlaender J, Schäffer TE. An Accurate Model for the Ion Current–Distance Behavior in Scanning Ion Conductance Microscopy Allows for Calibration of Pipet Tip Geometry and Tip–Sample Distance. Anal Chem 2017; 89:11875-11880. [DOI: 10.1021/acs.analchem.7b03871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilman E. Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Morkvenaite-Vilkonciene I, Ramanaviciene A, Genys P, Ramanavicius A. Evaluation of Enzymatic Kinetics of GOx-based Electrodes by Scanning Electrochemical Microscopy at Redox Competition Mode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Inga Morkvenaite-Vilkonciene
- Vilnius University; Faculty of Chemistry and Geosciences, Department of Physical Chemistry; Vilnius Lithuania
- Vilnius Gediminas Technical University; Department of Mechatronics and Robotics; Vilnius Lithuania
| | - Almira Ramanaviciene
- Vilnius University; Faculty of Chemistry and Geosciences, Department of Analytical and Environmental Chemistry; Vilnius Lithuania
| | - Povilas Genys
- Vilnius University; Faculty of Chemistry and Geosciences, Department of Physical Chemistry; Vilnius Lithuania
| | - Arunas Ramanavicius
- Vilnius University; Faculty of Chemistry and Geosciences, Department of Physical Chemistry; Vilnius Lithuania
- State Research Institute Center for Physical Sciences and Technology; Laboratory of BioNanoTechnology; Vilnius Lithuania
| |
Collapse
|
33
|
Lhenry S, Boichard B, Leroux YR, Even-Hernandez P, Marchi V, Hapiot P. Photo-electrochemical properties of quantum rods studied by scanning electrochemical microscopy. Phys Chem Chem Phys 2017; 19:4627-4635. [DOI: 10.1039/c6cp07143k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scanning electrochemical microscopy (SECM) is used for studying the intrinsic photo-electrochemical properties of CdSe/CdS quantum rods.
Collapse
Affiliation(s)
- Sébastien Lhenry
- Institut des Sciences Chimiques de Rennes
- CNRS
- Université de Rennes 1
- UMR 6226 (Equipe MaCSE)
- 35042 Rennes Cedex
| | - Benoît Boichard
- Institut des Sciences Chimiques de Rennes
- CNRS
- Université de Rennes 1
- UMR 6226 (Equipe MaCSE)
- 35042 Rennes Cedex
| | - Yann R. Leroux
- Institut des Sciences Chimiques de Rennes
- CNRS
- Université de Rennes 1
- UMR 6226 (Equipe MaCSE)
- 35042 Rennes Cedex
| | - Pascale Even-Hernandez
- Institut des Sciences Chimiques de Rennes
- CNRS
- Université de Rennes 1
- UMR 6226 (Equipe MaCSE)
- 35042 Rennes Cedex
| | - Valérie Marchi
- Institut des Sciences Chimiques de Rennes
- CNRS
- Université de Rennes 1
- UMR 6226 (Equipe MaCSE)
- 35042 Rennes Cedex
| | - Philippe Hapiot
- Institut des Sciences Chimiques de Rennes
- CNRS
- Université de Rennes 1
- UMR 6226 (Equipe MaCSE)
- 35042 Rennes Cedex
| |
Collapse
|
34
|
Bülter H, Denuault G, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Dosche C, Wittstock G. Electrochemical analysis of nanostructured iron oxides using cyclic voltammetry and scanning electrochemical microscopy. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.11.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Gossage ZT, Simpson BH, Schorr NB, Rodríguez-López J. Soft Surfaces for Fast Characterization and Positioning of Scanning Electrochemical Microscopy Nanoelectrode Tips. Anal Chem 2016; 88:9897-9901. [DOI: 10.1021/acs.analchem.6b02213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zachary T. Gossage
- Department of Chemistry, University of Illinois at Urbana−Champaign, 58 Roger Adams Laboratory, 600 South
Matthews Avenue, Urbana, Illinois 61801, United States
| | - Burton H. Simpson
- Department of Chemistry, University of Illinois at Urbana−Champaign, 58 Roger Adams Laboratory, 600 South
Matthews Avenue, Urbana, Illinois 61801, United States
| | - Noah B. Schorr
- Department of Chemistry, University of Illinois at Urbana−Champaign, 58 Roger Adams Laboratory, 600 South
Matthews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana−Champaign, 58 Roger Adams Laboratory, 600 South
Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Zheng Q, Yang Y, Yan Y, Yu Y, Liu Y, Gao W, Ding K, Shao H. The long-range effect induced by untying hydrogen bonds for single cell test using SECM. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Noyhouzer T, L'Homme C, Beaulieu I, Mazurkiewicz S, Kuss S, Kraatz HB, Canesi S, Mauzeroll J. Ferrocene-Modified Phospholipid: An Innovative Precursor for Redox-Triggered Drug Delivery Vesicles Selective to Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4169-4178. [PMID: 26987014 DOI: 10.1021/acs.langmuir.6b00511] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlled payload release is one of the key elements in the creation of a reliable drug delivery system. We report the discovery of a drug delivery vessel able to transport chemotherapeutic agents to target cancer cells and selectively trigger their release using the electrochemical activity of a ferrocene-modified phospholipid. Supported by in vitro assays, the competitive advantages of this discovery are (i) the simple one step scalability of the synthetic process, (ii) the stable encapsulation of toxic drugs (doxorubicin) during transport, and (iii) the selective redox triggering of the liposomes to harness their cytotoxic payload at the cancer site. Specifically, the redox-modified giant unilamellar vesicle and liposomes were characterized using advanced methods such as scanning electrochemical microscopy (SECM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and fluorescent imaging.
Collapse
Affiliation(s)
- Tomer Noyhouzer
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| | - Chloé L'Homme
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal , C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
| | - Isabelle Beaulieu
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| | - Stephanie Mazurkiewicz
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| | - Sabine Kuss
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, Ontario M1C 1A4, Canada
| | - Sylvain Canesi
- Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du Québec à Montréal , C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8, Québec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A OB8
| |
Collapse
|
38
|
Zhou M, Yu Y, Blanchard PY, Mirkin MV. Surface Patterning Using Diazonium Ink Filled Nanopipette. Anal Chem 2015; 87:10956-62. [DOI: 10.1021/acs.analchem.5b02784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Min Zhou
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Yun Yu
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Pierre-Yves Blanchard
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College, CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| |
Collapse
|
39
|
Simpson BH, Rodríguez-López J. Redox Titrations via Surface Interrogation Scanning Electrochemical Microscopy at an Extended Semiconducting Surface for the Quantification of Photogenerated Adsorbed Intermediates. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Zhou M, Yu Y, Hu K, Mirkin MV. Nanoelectrochemical Approach To Detecting Short-Lived Intermediates of Electrocatalytic Oxygen Reduction. J Am Chem Soc 2015; 137:6517-23. [DOI: 10.1021/ja512482n] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Min Zhou
- Department of Chemistry and
Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| | - Yun Yu
- Department of Chemistry and
Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| | - Keke Hu
- Department of Chemistry and
Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| | - Michael V. Mirkin
- Department of Chemistry and
Biochemistry, Queens College, City University of New York, Flushing, New York 11367, United States
| |
Collapse
|
41
|
Biological cell morphology studies by scanning electrochemical microscopy imagery at constant height: Contrast enhancement using biocompatible conductive substrates. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Wang Y, Cai H, Mirkin MV. Delivery of Single Nanoparticles from Nanopipettes under Resistive-Pulse Control. ChemElectroChem 2014. [DOI: 10.1002/celc.201402328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Abodi L, Gonzalez-Garcia Y, Dolgikh O, Dan C, Deconinck D, Mol J, Terryn H, Deconinck J. Simulated and measured response of oxygen SECM-measurements in presence of a corrosion process. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Development of Nano-Disc electrodes for Application as Shear Force Sensitive Electrochemical Probes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Localization of proteins in paint cross-sections by scanning electrochemical microscopy as an alternative immunochemical detection technique. Anal Chim Acta 2014; 831:31-7. [DOI: 10.1016/j.aca.2014.04.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/26/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022]
|
46
|
Localized Corrosion of Magnesium Alloys in NaCl Solutions Explored by Scanning Electrochemical Microscopy in Feedback Mode. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.04.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Actis P, Tokar S, Clausmeyer J, Babakinejad B, Mikhaleva S, Cornut R, Takahashi Y, López Córdoba A, Novak P, Shevchuck AI, Dougan JA, Kazarian SG, Gorelkin PV, Erofeev AS, Yaminsky IV, Unwin PR, Schuhmann W, Klenerman D, Rusakov DA, Sviderskaya EV, Korchev YE. Electrochemical nanoprobes for single-cell analysis. ACS NANO 2014; 8:875-84. [PMID: 24377306 DOI: 10.1021/nn405612q] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5-200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells.
Collapse
Affiliation(s)
- Paolo Actis
- Department of Medicine, Imperial College London , London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Serrapede M, Denuault G, Sosna M, Pesce GL, Ball RJ. Scanning Electrochemical Microscopy: Using the Potentiometric Mode of SECM To Study the Mixed Potential Arising from Two Independent Redox Processes. Anal Chem 2013; 85:8341-6. [DOI: 10.1021/ac4017055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mara Serrapede
- School of
Chemistry, University of Southampton, SO17
1BJ, Southampton, U.K
| | - Guy Denuault
- School of
Chemistry, University of Southampton, SO17
1BJ, Southampton, U.K
| | - Maciej Sosna
- Interdisciplinary Nanoscience
Center (iNANO), Aarhus University, Gustav
Wieds vej 14, DK-8000, Aarhus C, Denmark
| | - Giovanni Luca Pesce
- Department of Architecture & Civil Engineering, University of Bath, BA2 7AY, Bath, U.K
| | - Richard J. Ball
- Department of Architecture & Civil Engineering, University of Bath, BA2 7AY, Bath, U.K
| |
Collapse
|
49
|
Hu K, Gao Y, Wang Y, Yu Y, Zhao X, Rotenberg SA, Gökmeşe E, Mirkin MV, Friedman G, Gogotsi Y. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2173-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy. Proc Natl Acad Sci U S A 2013; 110:9249-54. [PMID: 23686580 DOI: 10.1073/pnas.1214809110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of resistance to multiple unrelated chemotherapeutic drugs impedes the treatment of several cancers. Although the involvement of ATP-binding cassette transporters has long been known, there is no in situ method capable of tracking this transporter-related resistance at the single-cell level without interfering with the cell's environment or metabolism. Here, we demonstrate that scanning electrochemical microscopy (SECM) can quantitatively and noninvasively track multidrug resistance-related protein 1-dependent multidrug resistance in patterned adenocarcinoma cervical cancer cells. Nonresistant human cancer cells and their multidrug resistant variants are arranged in a side-by-side format using a stencil-based patterning scheme, allowing for precise positioning of target cells underneath the SECM sensor. SECM measurements of the patterned cells, performed with ferrocenemethanol and [Ru(NH3)6](3+) serving as electrochemical indicators, are used to establish a kinetic "map" of constant-height SECM scans, free of topography contributions. The concept underlying the work described herein may help evaluate the effectiveness of treatment administration strategies targeting reduced drug efflux.
Collapse
|