1
|
Fujita S, Baranton S, Coutanceau C, Jerkiewicz G. Electrochemical Behavior and Shape Evolution of Structured Pd Nanoparticles in Alkaline Media─Influence of Electrochemically Absorbed Hydrogen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15889-15900. [PMID: 37906432 DOI: 10.1021/acs.langmuir.3c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We report on the electrochemical behavior and shape evolution of Pd nanocubes (Pd NCs) and Pd nanooctahedrons (Pd NOs) with an average size of 9.8 and 6.9 nm, respectively, in aqueous alkaline medium in the potential range of the underpotential deposition of H (UPD H) and H absorption. While the Pd NCs and Pd NOs remain stable in the potential region of the UPD H, H absorption and desorption of absorbed H (Habs) induce structural changes to the Pd NPs, as indicated by the results of electrochemical measurements and identical location-transmission electron microscopy (IL-TEM) analyses. Because both Pd NCs and Pd NOs are known to be stable in the potential region of H absorption and Habs desorption in acidic medium and maintain their structure, the irreversible structural changes are attributed to their interfacial interaction with the aqueous alkaline medium. In the alkaline medium, the nanoparticle surface/electrolyte interfacial structure plays an essential role in the mechanism of Habs desorption that is observed at higher potentials than that in the acidic medium. Hydrogen desorption is substantially hindered due to the structure of the water network adjacent to the Pd nanoparticles or the interaction between hydrated cations and adsorbed OH on the nanoparticle surface, resulting in the trapping of a small amount of H (incomplete Habs desorption). It is proposed that H trapping and associated structural strain lead to the deformation of the Pd nanoparticles and the loss of their initial structure.
Collapse
Affiliation(s)
- Sho Fujita
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Stève Baranton
- IC2MP, UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Christophe Coutanceau
- IC2MP, UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Chen X, Ojha K, Koper MTM. Subsurface Hydride Formation Leads to Slow Surface Adsorption Processes on a Pd(111) Single-Crystal Electrode in Acidic Electrolytes. JACS AU 2023; 3:2780-2789. [PMID: 37885584 PMCID: PMC10598829 DOI: 10.1021/jacsau.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Palladium is one of the most important catalysts due to its widespread use in heterogeneous catalysis and electrochemistry. However, an understanding of the electrochemical processes and interfacial phenomena at Pd single-crystal electrodes/electrolytes is still scarce. In this work, the electrochemical behavior of the Pd(111) electrode was studied by the combination of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in different acidic electrolytes, namely, sulfuric acid, perchlorate acid, methane sulfonic acid, and hydrofluoric acid. An analysis of CV profiles shows the strong adsorption of all anions at low electrode potential, partially overlapping with underpotential deposited hydrogen (UPD-H), leading to the appearance of a pair of sharp peaks in what would be considered the "hydrogen region". All anions studied (HSO4-, ClO4-, CH3SO3-, and F-) adsorb specifically and interact with (or effectively block) the surface-adsorbed hydroxyl phase formed on the Pd(111) terrace at higher potentials. Strikingly, the scan rate-dependent results show that the process of anion adsorption and desorption is a kinetically rather slow step. EIS measurements show that the exact mechanism of this slow anion ad/desorption process actually stems from (sub)surface phenomena: the direct hydrogen insertion into Pd lattice (hydrogen subsurface absorption) commences from ca. 0.40 V and leads to the formation of (subsurface) Pd hydrides (PdHx). We argue that the subsurface hydrogen phase significantly alters the work function and thereby the kinetics of the anion adsorption and desorption processes, leading to irreversible peaks in the voltammetry. This precise understanding is important in guiding further fundamental work on Pd single crystals and will be crucial to advancing the eventual design of optimized Pd electrocatalysts.
Collapse
Affiliation(s)
- Xiaoting Chen
- School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, P.R. China
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Kasinath Ojha
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
3
|
Li H, Zeng R, Feng X, Wang H, Xu W, Lu X, Xie Z, Abruña HD. Oxidative Stability Matters: A Case Study of Pallidum Hydride Nanosheets for Alkaline Fuel Cells. J Am Chem Soc 2022; 144:8106-8114. [PMID: 35486896 DOI: 10.1021/jacs.2c00518] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pd-based electrocatalysts are considered to be a promising alternative to Pt in anion-exchange membrane fuel cells (AEMFCs), although major challenges remain. Most of the Pd-based electrocatalysts developed for the sluggish oxygen reduction reaction (ORR) have been exclusively evaluated by rotating disk electrode (RDE) voltammetry at room temperature, rather than in membrane electrode assemblies (MEAs), making it challenging to apply them in practical fuel cells. We have developed a series of carbon-supported novel PdHx nanosheets (PdHx NS), which displayed outstanding ORR performance in room-temperature RDE tests. Specifically, a sample synthesized at 190 °C displayed a mass activity of 0.67 A mg-1 and a specific activity of 1.07 mA cm-2 at 0.95 V vs RHE, representing the highest reported value among Pd-based ORR electrocatalysts in alkaline media and higher than Pt-based catalysts reported in the literature. Furthermore, we employed PdHx NS and commercial Pd/C as model catalysts to systematically study the effects of temperature on their ORR activity in RDE measurements and subsequently evaluated their performance in MEA testing. Our observations indicate/demonstrate how oxidative stability affected the ORR performance of Pd-based electrocatalysts, which provided some critical insights into future ORR catalyst development for alkaline fuel cell applications.
Collapse
Affiliation(s)
- Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinran Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Lüsi M, Erikson H, Tammeveski K, Treshchalov A, Kikas A, Piirsoo HM, Kisand V, Tamm A, Aruväli J, Solla-Gullón J, Feliu JM. Oxygen reduction reaction on Pd nanoparticles supported on novel mesoporous carbon materials. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Developments of the Electroactive Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A comprehensive review of the electroactive materials for non-enzymatic glucose sensing and sensing devices has been performed in this work. A general introduction for glucose sensing, a facile electrochemical technique for glucose detection, and explanations of fundamental mechanisms for the electro-oxidation of glucose via the electrochemical technique are conducted. The glucose sensing materials are classified into five major systems: (1) mono-metallic materials, (2) bi-metallic materials, (3) metallic-oxide compounds, (4) metallic-hydroxide materials, and (5) metal-metal derivatives. The performances of various systems within this decade have been compared and explained in terms of sensitivity, linear regime, the limit of detection (LOD), and detection potentials. Some promising materials and practicable methodologies for the further developments of glucose sensors have been proposed. Firstly, the atomic deposition of alloys is expected to enhance the selectivity, which is considered to be lacking in non-enzymatic glucose sensing. Secondly, by using the modification of the hydrophilicity of the metallic-oxides, a promoted current response from the electro-oxidation of glucose is expected. Lastly, by taking the advantage of the redistribution phenomenon of the oxide particles, the usage of the noble metals is foreseen to be reduced.
Collapse
|
7
|
KIGUCHI F, NAKAMURA M, HOSHI N. Cation Effects on ORR Activity on Low-index Planes of Pd in Alkaline Solution. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Fumiya KIGUCHI
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Masashi NAKAMURA
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| | - Nagahiro HOSHI
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University
| |
Collapse
|
8
|
Kiguchi F, Nakamura M, Hoshi N. Structural effects on voltammograms of the high index planes of Pd in alkaline solution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Yang Y, Zeng J, Shu Y, Gao Q. Revealing Facet Effects of Palladium Nanocrystals on Electrochemical Biosensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15622-15630. [PMID: 32167271 DOI: 10.1021/acsami.0c03177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Noble-metal nanocrystals (NCs) are functional segments of biosensing platforms, but their sensitivity and facet effects are still challenging. Conventional synthesis using surfactants to direct crystal growth unfortunately causes adsorbate-surface hindrance, which not only reduces sensing responses but also leads to misunderstanding on facet-dependence. Herein, we utilize electrochemical CO displacement to remove residual surfactants from facet-engineered Pd NCs, and further investigate the structure-activity relationship on specific facets, for example, {100} in cubes, {111} in octahedrons, and {110} in rhombic dodecahedrons. Along with the remarkably boosted response, facet dependence is obvious for H2O2 sensing after surface cleaning. The Pd{100} shows high sensitivity, low detection limit, and wide applicable concentration range, superior to the {110} and {111}. This can be theoretically interpreted by the befitting *OH binding on {100} and thereby the facilitated H2O2 reduction kinetics. The outstanding selectivity to H2O2 ensures the high efficiency of Pd NCs to measure intracellular H2O2 and recognize different types of cancer cells. Moreover, facet effects are also evidenced in glucose detection, highlighting that this work can provide guidelines to design efficient sensing platforms.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Jiachang Zeng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Yijin Shu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Qingsheng Gao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
10
|
López‒Coronel A, Ortiz‒Ortega E, Torres‒Pacheco LJ, Guerra‒Balcázar M, Arriaga LG, Álvarez‒Contreras L, Arjona N. High performance of Pd and PdAg with well‒defined facets in direct ethylene glycol microfluidic fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Zanata CR, Martins CA, Teixeira-Neto É, Giz MJ, Camara GA. Two-step synthesis of Ir-decorated Pd nanocubes and their impact on the glycerol electrooxidation. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Yang Y, Tian M, Li Q, Min Y, Xu Q, Chen S. Ethanol Electrooxidation Catalyzed by Tungsten Core@Palladium Shell Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30968-30976. [PMID: 31390184 DOI: 10.1021/acsami.9b10156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bimetallic nanostructures represent effective electrocatalysts toward a number of important reactions. In the present study, carbon-supported palladium-tungsten alloy nanoparticles with a quasi-tungsten core@palladium shell structure (W@Pd/C) were synthesized by a galvanic replacement reaction of amorphous tungsten nanoparticles with Pd(II) at different temperatures (0, 25, and 50 °C), and exhibited apparent electrocatalytic activity toward ethanol oxidation reaction (EOR). When the sample was prepared at 0 °C, large amorphous tungsten nanoparticles were etched off and much smaller W@Pd nanoparticles were formed and dispersed rather evenly on the carbon surface whereas at higher reaction temperatures (25 and 50 °C), the W@Pd nanoparticles became agglomerated. The structures of the obtained samples were characterized by a range of experimental tools, including (scanning) transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. Among the series, the W@Pd/C sample prepared at 0 °C was observed to exhibit the best EOR performance, with a mass activity (9535.5 mA mgPd-1) over three times better than that of commercial Pd/C and markedly enhanced stability.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering , Shanghai University of Electric Power , 2588 Changyang Road , Yangpu District, Shanghai 200090 , China
| | - Minghua Tian
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering , Shanghai University of Electric Power , 2588 Changyang Road , Yangpu District, Shanghai 200090 , China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering , Shanghai University of Electric Power , 2588 Changyang Road , Yangpu District, Shanghai 200090 , China
- Department of Chemistry and Biochemistry , University of California, Santa Cruz , 1156 High Street , Santa Cruz , California 95064 , United States
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200090 , China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering , Shanghai University of Electric Power , 2588 Changyang Road , Yangpu District, Shanghai 200090 , China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering , Shanghai University of Electric Power , 2588 Changyang Road , Yangpu District, Shanghai 200090 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200090 , China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry , University of California, Santa Cruz , 1156 High Street , Santa Cruz , California 95064 , United States
| |
Collapse
|
13
|
Ma XY, Chen Y, Wang H, Li QX, Lin WF, Cai WB. Electrocatalytic oxidation of ethanol and ethylene glycol on cubic, octahedral and rhombic dodecahedral palladium nanocrystals. Chem Commun (Camb) 2018; 54:2562-2565. [DOI: 10.1039/c7cc08793d] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol and ethylene glycol electrocatalytic oxidation on Pd cubic, octahedral and rhombic dodecahedral nanocrystals in alkaline media was systematically investigated.
Collapse
Affiliation(s)
- Xian-Yin Ma
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Yafeng Chen
- Department of Chemical Engineering
- Loughborough University
- Loughborough
- UK
| | - Han Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Fudan University
- Shanghai 200433
| | - Qiao-Xia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Wen-Feng Lin
- Department of Chemical Engineering
- Loughborough University
- Loughborough
- UK
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| |
Collapse
|
14
|
Insertion/Disinsertion of Hydrogen in Tailored Pd Layers Deposited on Pt(111) Surface in Alkaline and Acidic Medium. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0414-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Almeida TSD, Guima KE, Silveira RM, da Silva GC, Martines MAU, Martins CA. A Pd nanocatalyst supported on multifaceted mesoporous silica with enhanced activity and stability for glycerol electrooxidation. RSC Adv 2017. [DOI: 10.1039/c6ra28864b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current density of glycerol electrooxidation on Pd/SiO2reached twice the values found for Pd/C. Mesosporous silica support works as a trap that confines the reactant.
Collapse
Affiliation(s)
- Thiago S. D. Almeida
- Faculty of Exact Sciences and Technology
- Universidade Federal da Grande Dourados
- 79804-970 Dourados
- Brazil
| | - Katia-Emiko Guima
- Faculty of Exact Sciences and Technology
- Universidade Federal da Grande Dourados
- 79804-970 Dourados
- Brazil
| | - Roberto M. Silveira
- Institute of Chemistry
- Universidade Federal de Mato Grosso do Sul
- C.P. 549, 79070-900 Campo Grande
- Brazil
- Instituto Federal de Educação
| | - Gabriel C. da Silva
- Instituto de Química de São Carlos
- Universidade de São Paulo
- IQSC-USP
- São Carlos
- Brazil
| | - Marco A. U. Martines
- Institute of Chemistry
- Universidade Federal de Mato Grosso do Sul
- C.P. 549, 79070-900 Campo Grande
- Brazil
| | - Cauê A. Martins
- Faculty of Exact Sciences and Technology
- Universidade Federal da Grande Dourados
- 79804-970 Dourados
- Brazil
| |
Collapse
|
16
|
Investigation of the electrochemical oxidation reaction of the borohydride anion in palladium layers on Pt(111). Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Tang Y, Chi X, Zou S, Zeng X. Facet effects of palladium nanocrystals for oxygen reduction in ionic liquids and for sensing applications. NANOSCALE 2016; 8:5771-9. [PMID: 26910528 PMCID: PMC5640266 DOI: 10.1039/c5nr07502e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Palladium nanocrystals enclosed by {100} and {110} crystal facets, were successfully synthesized through an aqueous one-pot synthesis method. A new thermal annealing approach was developed for fabricating these palladium nanocrystals as a working electrode on a gas permeable membrane to study the facet effects of the oxygen reduction process in an ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpy][NTf2]). Results were compared with the same processes at a conventional platinum electrode. Our study shows that the structural difference between the two facets of Pd nanocrystals has little effect on the oxygen reduction process but significantly affects the oxidation process of the superoxide. It is found that the Pd{110}/IL interface can better stabilize superoxide radicals revealed by a more positive oxidation potential compared to that of Pd{100}. In addition, the analytical characteristic of utilizing both palladium nanocrystals as electrodes for oxygen sensing is comparable with a polycrystal platinum oxygen sensor, in which Pd{110} presents the best sensitivity and lowest detection limit. Our results demonstrate the facet-dependence of oxygen reduction in an ionic liquid medium and provide the fundamental information needed to guide the applications of palladium nanocrystals in electrochemical gas sensor and fuel cell research.
Collapse
Affiliation(s)
- Yongan Tang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA.
| | - Xiaowei Chi
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA.
| | - Shouzhong Zou
- Department of Chemistry, American University, Washington DC 20016, USA
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA.
| |
Collapse
|
18
|
Zadick A, Dubau L, Zalineeva A, Coutanceau C, Chatenet M. When cubic nanoparticles get spherical: An Identical Location Transmission Electron Microscopy case study with Pd in alkaline media. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Yang YY, Ren J, Zhang HX, Zhou ZY, Sun SG, Cai WB. Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1709-1716. [PMID: 23311730 DOI: 10.1021/la305141q] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The dissociative adsorption and electrooxidation of CH(3)OH at a Pd electrode in alkaline solution are investigated by using in situ infrared spectroscopy with both internal and external reflection modes. The former (ATR-SEIRAS) has a higher sensitivity of detecting surface species, and the latter (IRAS) can easily detect dissolved species trapped in a thin-layer-structured electrolyte. Real-time ATR-SEIRAS measurement indicates that CH(3)OH dissociates to CO(ad) species at a Pd electrode accompanied by a "dip" at open circuit potential, whereas deuterium-replaced CH(3)OH doesn't, suggesting that the breaking of the C-H bond is the rate-limiting step for the dissociative adsorption of CH(3)OH. Potential-dependent ATR-SEIRAS and IRAS measurements indicate that CH(3)OH is electrooxidized to formate and/or (bi)carbonate, the relative concentrations of which depend on the potential applied. Specifically, at potentials negative of ca. -0.15 V (vs Ag/AgCl), formate is the predominant product and (bi)carbonate (or CO(2) in the thin-layer structure of IRAS) is more favorable at potentials from -0.15 to 0.10 V. Further oxidation of the CO(ad) intermediate species arising from CH(3)OH dissociation is involved in forming (bi)carbonate at potentials above -0.15 V. Although the partial transformation from interfacial formate to (bi)carbonate may be justified, no bridge-bonded formate species can be detected over the potential range under investigation.
Collapse
Affiliation(s)
- Yao-Yue Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
20
|
Zhang HX, Wang H, Re YS, Cai WB. Palladium nanocrystals bound by {110} or {100} facets: from one pot synthesis to electrochemistry. Chem Commun (Camb) 2012; 48:8362-4. [DOI: 10.1039/c2cc33941b] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu J. Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.10.074] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Cai Y, Ma C, Zhu Y, Wang JX, Adzic RR. Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8540-8547. [PMID: 21627139 DOI: 10.1021/la200753z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Low-coordination sites, including edges, kinks, and defects, play an important role in oxygen-reduction electrocatalysis. Their role was studied experimentally and theoretically for various Pt surfaces. However, the roughness effect on similar-sized nanoparticles that could elucidate the role of low-coordination sites has attracted much less attention, with no studies on Pd nanoparticles. Here, using Br- adsorption/desorption, we introduce an effective approach to reduce surface roughness, yielding Pd nanoparticles with smoother surfaces and an increased number of (111)-oriented facets. The resulting nanoparticles have a slightly contracted structure and narrow size distribution. Pt monolayer catalysts that contain such nanoparticles as the cores showed a 1.5-fold enhancement in specific and Pt mass activities for the oxygen reduction reaction compared with untreated ones. Furthermore, a dramatic increase in durability was observed with bromide-treated Pd(3)Co cores. These results demonstrate a simple approach to preparing nanoparticles with smooth surfaces and confirm the adverse effect of low-coordination sites on the kinetics of the oxygen-reduction reaction.
Collapse
Affiliation(s)
- Yun Cai
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | |
Collapse
|
23
|
Erikson H, Kasikov A, Johans C, Kontturi K, Tammeveski K, Sarapuu A. Oxygen reduction on Nafion-coated thin-film palladium electrodes. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.12.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Simões M, Baranton S, Coutanceau C. Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.09.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
|