1
|
Yang F, Wang Y, Cui Y, Yang X, Zhu Y, Weiss CM, Li M, Chen G, Yan Y, Gu MD, Shao M. Sub-3 nm Pt@Ru toward Outstanding Hydrogen Oxidation Reaction Performance in Alkaline Media. J Am Chem Soc 2023; 145:27500-27511. [PMID: 38056604 DOI: 10.1021/jacs.3c08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Anion-exchange membrane fuel cells (AEMFCs) are promising alternative hydrogen conversion devices. However, the sluggish kinetics of the hydrogen oxidation reaction in alkaline media hinders further development of AEMFCs. As a synthesis method commonly used to prepare disordered PtRu alloys, the impregnation process is ingeniously designed herein to synthesize sub-3 nm Pt@Ru core-shell nanoparticles by sequentially reducing Pt and Ru at different annealing temperatures. This method avoids complex procedures and synthesis conditions for organic synthesis systems, and the atomic structure evolution of the synthesized core-shell nanoparticles can be tracked. The synthesized Pt@Ru electrocatalyst shows an ultrasmall average size of ∼2.5 nm and thereby a large electrochemical surface area (ECSA) of 166.66 m2 gPt+Ru-1. Exchange current densities (j0) normalized to the mass (Pt + Ru) and ECSA of this electrocatalyst are 8.0 and 5.8 times as high as those of commercial Pt/C, respectively. To the best of our knowledge, the achieved mass-normalized j0 measured by rotating disk electrodes is the highest reported so far. The membrane electrode assembly test of the Pt@Ru electrocatalyst shows a peak power density of 1.78 W cm-2 (0.152 mgPt+Ru cmanode-2), which is higher than that of commercial PtRu/C (1.62 W cm-2, 0.211 mgPt+Ru cmanode-2). The improvement of the intrinsic activity can be attributed to the electron transfer from the Ru shell to the Pt core, and the ultrafine particles further enhance the mass activity. This work reveals the feasibility of using simple impregnation to synthesize fine core-shell nanocatalysts and the importance of investigating the atomic structure of PtRu nanoparticles and other disordered alloys.
Collapse
Affiliation(s)
- Fei Yang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, Zhejiang, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yingdan Cui
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xuming Yang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanmin Zhu
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Catherine M Weiss
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Menghao Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangyu Chen
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, Zhejiang, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
2
|
Single-atom catalysts for proton exchange membrane fuel cell: anode anti-poisoning & characterization technology. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
3
|
Garzón Manjón A, Vega-Paredes M, Berova V, Gänsler T, Schwarz T, Rivas Rivas NA, Hengge K, Jurzinsky T, Scheu C. Insights into the performance and degradation of Ru@Pt core-shell catalysts for fuel cells by advanced (scanning) transmission electron microscopy. NANOSCALE 2022; 14:18060-18069. [PMID: 36448460 DOI: 10.1039/d2nr04869h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ru@Pt core-shell nanoparticles are currently being explored as carbon monoxide tolerant anode catalysts for proton exchange membrane fuel cells. However, little is known about their degradation under fuel cell conditions. In the present work, two types of Ru@Pt nanoparticles with nominal shell thicknesses of 1 (Ru@1Pt) and 2 (Ru@2Pt) Pt monolayers are studied as synthesized and after accelerated stress tests. These stress tests were designed to imitate the degradation occurring under fuel cell operating conditions. Our advanced (scanning) transmission electron microscopy characterization explains the superior initial electrochemical performance of Ru@1Pt. Moreover, the 3D reconstruction of the Pt shell by electron tomography reveals an incomplete shell for both samples, which results in a less stable Ru metal being exposed to an electrolyte. The degree of coverage of the Ru cores provides insights into the higher stability of Ru@2Pt during the accelerated stress tests. Our results explain how to maximize the initial performance of Ru@Pt-type catalysts, without compromising their stability under fuel cell conditions.
Collapse
Affiliation(s)
- Alba Garzón Manjón
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Miquel Vega-Paredes
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Viktoriya Berova
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Thomas Gänsler
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Torsten Schwarz
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Nicolas A Rivas Rivas
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| | - Katharina Hengge
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Tilman Jurzinsky
- Freudenberg Fuel Cell e-Power Systems GmbH, Bayerwaldstraße 3, 81737 München, Germany
| | - Christina Scheu
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
4
|
Forero Garzón AF, Joya Rodríguez S, Cachón Osorio KNS, Bernal Escobar AF, Gómez B, Sánchez-Velandia JE, Mejía Chica SM. Estudio teórico de la oxidación de CO con O2 usando catalizadores de Au-Pd y Au-Pt. REVISTA COLOMBIANA DE QUÍMICA 2022. [DOI: 10.15446/rev.colomb.quim.v51n1.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En el presente estudio se realizaron cálculos con base en la Teoría del Funcional de la Densidad Electrónica (DFT) con la aproximación B3PW91/LANL2DZ para optimizar los sistemas monometálicos y bimetálicos Au9, Au8Pd, Au8Pt, AuPd8, AuPt8, Pd9 y Pt9. Los materiales fueron teóricamente evaluados como catalizadores para la oxidación de monóxido de carbono (CO) y se determinó el sistema más favorable para la adsorción de esta molécula. La sustitución de átomos de Pt y Pd por átomos de Au en los nonámeros generó un cambio en la estructura tridimensional del sistema. El análisis de reactividad global mostró que el clúster más reactivo es 𝑃𝑡9, seguido por 𝐴𝑢𝑃𝑡8. Los índices de Fukui identificaron los sitios más susceptibles para un ataque nucleofílico de ambos clústeres. La adsorción de CO generó una cascada de oxidación que liberó ~4,5 eV, indicando que la reacción es altamente exotérmica y exergónica. Los clústeres 𝐴𝑢𝑃𝑡8 y 𝑃𝑡9 mostraron los valores más bajos de energía de activación de la etapa determinante del mecanismo. En general, la sustitución de un átomo de platino (o paladio) por un átomo de oro no afecta la reactividad de los nonámeros y, por tanto, se infiere que el clúster 𝐴𝑢𝑃𝑡8 podría ser un catalizador promisorio en la oxidación de CO.
Collapse
|
5
|
Palanisamy A, Soundarrajan N, Ramasamy G. Analysis on production of bioethanol for hydrogen generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63690-63705. [PMID: 34050510 DOI: 10.1007/s11356-021-14554-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Bioethanol is a renewable energy source carrier mainly produced from the biomass fermentation process. Reforming of bioethanol for hydrogen production is the most promising method from the renewable energy source. Production of hydrogen from ethanol reforming process is not only environmentally friendly, but also it produces greater opportunities for use of renewable energy source, which are available and affect the catalytic activity of the process. This paper reviewed the various reforming processes and associated noble and non-noble catalysts and supporting layers for the reforming process. Among that, electrochemical reforming of bioethanol is found to be cost-effective, and hydrogen production is also found to be of high purity. Hydrogen production from ethanol through various reforming processes is still in the research for better hydrogen production. Hydrogen production through the process of reforming can be widely used for fuel cell operations.
Collapse
Affiliation(s)
- Abirami Palanisamy
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Tamil Nadu, 602 117, India
| | - Nivedha Soundarrajan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Tamil Nadu, 602 117, India
| | - Govindarasu Ramasamy
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Tamil Nadu, 602 117, India.
| |
Collapse
|
6
|
Carbon Monoxide Tolerant Pt-Based Electrocatalysts for H2-PEMFC Applications: Current Progress and Challenges. Catalysts 2021. [DOI: 10.3390/catal11091127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activity degradation of hydrogen-fed proton exchange membrane fuel cells (H2-PEMFCs) in the presence of even trace amounts of carbon monoxide (CO) in the H2 fuel is among the major drawbacks currently hindering their commercialization. Although significant progress has been made, the development of a practical anode electrocatalyst with both high CO tolerance and stability has still not occurred. Currently, efforts are being devoted to Pt-based electrocatalysts, including (i) alloys developed via novel synthesis methods, (ii) Pt combinations with metal oxides, (iii) core–shell structures, and (iv) surface-modified Pt/C catalysts. Additionally, the prospect of substituting the conventional carbon black support with advanced carbonaceous materials or metal oxides and carbides has been widely explored. In the present review, we provide a brief introduction to the fundamental aspects of CO tolerance, followed by a comprehensive presentation and thorough discussion of the recent strategies applied to enhance the CO tolerance and stability of anode electrocatalysts. The aim is to determine the progress made so far, highlight the most promising state-of-the-art CO-tolerant electrocatalysts, and identify the contributions of the novel strategies and the future challenges.
Collapse
|
7
|
Min J, Jeffery AA, Kim Y, Jung N. Electrochemical Analysis for Demonstrating CO Tolerance of Catalysts in Polymer Electrolyte Membrane Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1425. [PMID: 31597387 PMCID: PMC6835550 DOI: 10.3390/nano9101425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/01/2022]
Abstract
Since trace amounts of CO in H2 gas produced by steam reforming of methane causes severe poisoning of Pt-based catalysts in polymer electrolyte membrane fuel cells (PEMFCs), research has been mainly devoted to exploring CO-tolerant catalysts. To test the electrochemical property of CO-tolerant catalysts, chronoamperometry is widely used under a CO/H2 mixture gas atmosphere as an essential method. However, in most cases of catalysts with high CO tolerance, the conventional chronoamperometry has difficulty in showing the apparent performance difference. In this study, we propose a facile and precise test protocol to evaluate the CO tolerance via a combination of short-term chronoamperometry and a hydrogen oxidation reaction (HOR) test. The degree of CO poisoning is systematically controlled by changing the CO adsorption time. The HOR polarization curve is then measured and compared with that measured without CO adsorption. When the electrochemical properties of PtRu alloy catalysts with different atomic ratios of Pt to Ru are investigated, contrary to conventional chronoamperometry, these catalysts exhibit significant differences in their CO tolerance at certain CO adsorption times. The present work will facilitate the development of catalysts with extremely high CO tolerance and provide insights into the improvement of electrochemical methods.
Collapse
Affiliation(s)
- Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| | - A Anto Jeffery
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| | - Youngjin Kim
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| |
Collapse
|
8
|
Nogueira JA, Varela H. Voltage Oscillations in a Polymer Electrolyte Membrane Fuel Cell with Pd-Pt/C and Pd/C Anodes. ChemistryOpen 2017; 6:629-636. [PMID: 29046857 PMCID: PMC5641910 DOI: 10.1002/open.201700098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 11/10/2022] Open
Abstract
Polymer electrolyte membrane fuel cells (PEMFC) fed with H2 contaminated with CO may exhibit oscillatory behavior when operated galvanostatically. The self-organization of the anodic overpotential is interesting because it can be accompanied by an increase in the average performance. Herein we report experimental studies of voltage oscillations that emerge in a PEMFC equipped with a Pd/C or PdPt/C anode and fed with H2 contaminated with CO (100 ppm). We used on-line mass spectrometry to investigate how the mass fragments associated with CO2 and CO (m/z 44 and 28, respectively) varied with the voltage oscillations. Overall, we observed that oscillations in the anodic overpotential are in phase with that of the CO and CO2 signals. This fact is consistent with an autonomous adsorption-oxidation cyclic process. For both anodes, it has been observed that, in general, an increase in current density implies an increase in oscillatory frequency. By using CO stripping, we also discuss how the onset of CO oxidation is related to the maximum overpotential reached during a cycle, whereas the minimum overpotential can be associated with the catalytic activity of the electrode for H2 oxidation.
Collapse
Affiliation(s)
- Jéssica Alves Nogueira
- Institute of Chemistry of São Carlos University of São Paulo, PO Box 780 13560-970 São Carlos, SP Brazil
| | - Hamilton Varela
- Institute of Chemistry of São Carlos University of São Paulo, PO Box 780 13560-970 São Carlos, SP Brazil
| |
Collapse
|
9
|
|
10
|
Strmcnik D, Li D, Lopes PP, Tripkovic D, Kodama K, Stamenkovic VR, Markovic NM. When Small is Big: The Role of Impurities in Electrocatalysis. Top Catal 2015. [DOI: 10.1007/s11244-015-0492-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Li K, Li Y, Tang H, Jiao M, Wang Y, Wu Z. A density functional theory study on 3d metal/graphene for the removal of CO from H2feed gas in hydrogen fuel cells. RSC Adv 2015. [DOI: 10.1039/c4ra15937c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In M/graphene (M = Sc–Cu) systems, Fe, Co and Ni show higher efficiency for the removal of CO from H2feed gas.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yang Li
- Energy Conversion R&D Center
- Central Academy of Dongfang Electric Corporation
- Chengdu 611731
- P. R. China
| | - Hao Tang
- Energy Conversion R&D Center
- Central Academy of Dongfang Electric Corporation
- Chengdu 611731
- P. R. China
| | - Menggai Jiao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
12
|
Real-time determination of CO2 production and estimation of adsorbate coverage on a proton exchange membrane fuel cell under oscillatory operation. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2048-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Ehteshami SMM, Chan SH. A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.01.086] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Nepel TC, Lopes PP, Paganin VA, Ticianelli EA. CO tolerance of proton exchange membrane fuel cells with Pt/C and PtMo/C anodes operating at high temperatures: A mass spectrometry investigation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.10.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Sundmacher K, Hanke-Rauschenbach R, Heidebrecht P, Rihko-Struckmann L, Vidaković-Koch T. Some reaction engineering challenges in fuel cells: dynamics integration, renewable fuels, enzymes. Curr Opin Chem Eng 2012. [DOI: 10.1016/j.coche.2012.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Heidebrecht P, Hanke-Rauschenbach R, Jörke A, Sundmacher K. On the design of cascades of ECPrOx reactors for deep CO removal from reformate gas. Chem Eng Sci 2012. [DOI: 10.1016/j.ces.2011.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Autonomous potential oscillations at the Pt anode of a polymer electrolyte membrane fuel cell under CO poisoning. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Kadyk T, Hanke-Rauschenbach R, Sundmacher K. Nonlinear frequency response analysis for the diagnosis of carbon monoxide poisoning in PEM fuel cell anodes. J APPL ELECTROCHEM 2011. [DOI: 10.1007/s10800-011-0298-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Hanke-Rauschenbach R, Mangold M, Sundmacher K. Nonlinear dynamics of fuel cells: a review. REV CHEM ENG 2011. [DOI: 10.1515/revce.2011.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Freitas K, Lopes P, Ticianelli E. Electrocatalysis of the hydrogen oxidation in the presence of CO on RhO2/C-supported Pt nanoparticles. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.08.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
|