1
|
Labbé E, Buriez O. Electrode‐supported and free‐standing bilayer lipid membranes: Formation and uses in molecular electrochemistry. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eric Labbé
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University Sorbonne Université CNRS Paris 75005 France
| | - Olivier Buriez
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University Sorbonne Université CNRS Paris 75005 France
| |
Collapse
|
2
|
Matyszewska D. The influence of charge and lipophilicity of daunorubicin and idarubicin on their penetration of model biological membranes – Langmuir monolayer and electrochemical studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183104. [DOI: 10.1016/j.bbamem.2019.183104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
|
3
|
Brand I, Sęk S. Preface. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Fitzgerald NJM, Wargenau A, Sorenson C, Pedersen J, Tufenkji N, Novak PJ, Simcik MF. Partitioning and Accumulation of Perfluoroalkyl Substances in Model Lipid Bilayers and Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10433-10440. [PMID: 30148610 DOI: 10.1021/acs.est.8b02912] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants, yet knowledge of their biological effects and mechanisms of action is limited. The highest aqueous PFAS concentrations are found in areas where bacteria are relied upon for functions such as nutrient cycling and contaminant degradation, including fire-training areas, wastewater treatment plants, and landfill leachates. This research sought to elucidate one of the mechanisms of action of PFAS by studying their uptake by bacteria and partitioning into model phospholipid bilayer membranes. PFAS partitioned into bacteria as well as model membranes (phospholipid liposomes and bilayers). The extent of incorporation into model membranes and bacteria was positively correlated to the number of fluorinated carbons. Furthermore, incorporation was greater for perfluorinated sulfonates than for perfluorinated carboxylates. Changes in zeta potential were observed in liposomes but not bacteria, consistent with PFAS being incorporated into the phospholipid bilayer membrane. Complementary to these results, PFAS were also found to alter the gel-to-fluid phase transition temperature of phospholipid bilayers, demonstrating that PFAS affected lateral phospholipid interactions. This investigation compliments other studies showing that sulfonated PFAS and PFAS with more than seven fluorinated carbons have a higher potential to accumulate within biota than carboxylated and shorter-chain PFAS.
Collapse
Affiliation(s)
- Nicole J M Fitzgerald
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive SE , Minneapolis , Minnesota 55455 , United States
| | - Andreas Wargenau
- Department of Chemical Engineering , McGill University , 3610 University Street , Montreal , Quebec H3A 0C5 , Canada
| | - Carlise Sorenson
- Department of Bioproducts and Biosystems Engineering , University of Minnesota , 1390 Eckles Avenue , Saint Paul , Minnesota 55108 , United States
| | - Joel Pedersen
- Departments of Soil Science, Civil and Environmental Engineering, and Chemistry , University of Wisconsin , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Nathalie Tufenkji
- Department of Chemical Engineering , McGill University , 3610 University Street , Montreal , Quebec H3A 0C5 , Canada
| | - Paige J Novak
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , 500 Pillsbury Drive SE , Minneapolis , Minnesota 55455 , United States
| | - Matt F Simcik
- School of Public Health , University of Minnesota , 420 Delaware Street S.E. , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
5
|
Matyszewska D, Wypijewska E, Bilewicz R. Influence of membrane organization on the interactions between persistent pollutants and model membranes. Bioelectrochemistry 2012; 87:192-8. [DOI: 10.1016/j.bioelechem.2011.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/17/2011] [Accepted: 11/28/2011] [Indexed: 11/25/2022]
|