1
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
2
|
Yao Z, Buck M, Bühl M. Density Functional Theory Study of Pd Aggregation on a Pyridine-Terminated Self-Assembled Monolayer. Chemistry 2020; 26:10555-10563. [PMID: 32428284 PMCID: PMC7497155 DOI: 10.1002/chem.202001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/13/2020] [Indexed: 11/08/2022]
Abstract
By using density functional theory calculations, the initial steps towards Pd metal cluster formation on a pyridine-terminated self-assembled monolayer (SAM) consisting of 3-(4-(pyridine-4-yl)phenyl)propane-1-thiol on an Au(1 1 1) surface are investigated. Theoretical modelling allows the investigation of structural details of the SAM surface and the metal/SAM interface at the atomic level, which is essential for elucidating the nature of Pd-SAM and Pd-Pd interactions at the liquid/solid interface and gaining insight into the mechanism of metal nucleation in the initial stage of electrodeposition. The structural flexibility of SAM molecules was studied first and the most stable conformation was identified, planar molecules in a herringbone packing, as the model for Pd adsorption. Two binding sites are found for Pd atoms on the pyridine end group of the SAM. The strong interaction between Pd atoms and pyridines illustrates the importance of SAM functionalisation in the metal nucleation process. Consistent with an energetic driving force of approximately -0.3 eV per Pd atom towards Pd aggregation suggested by static calculations, a spontaneous Pd dimerisation is observed in ab initio molecular dynamic studies of the system. Nudged elastic band calculations suggest a potential route with a low energy barrier of 0.10 eV for the Pd atom diffusion and then dimerisation on top of the SAM layer.
Collapse
Affiliation(s)
- Zhen Yao
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Manfred Buck
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Michael Bühl
- EaStCHEM School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
3
|
She Z, Yao Z, Ménard H, Tobish S, Lahaye D, Champness NR, Buck M. Coordination controlled electrodeposition and patterning of layers of palladium/copper nanoparticles on top of a self-assembled monolayer. NANOSCALE 2019; 11:13773-13782. [PMID: 31305824 DOI: 10.1039/c9nr03927a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A scheme for the generation of bimetallic nanoparticles is presented which combines electrodeposition of one type of metal, coordinated to a self-assembled monolayer (SAM), with another metal deposited from the bulk electrolyte. In this way PdCu nanoparticles are generated by initial complexation of Pd2+ to a SAM of 3-(4-(pyridine-4-yl)phenyl)propane-1-thiol (PyP3) on Au/mica and subsequent reduction in an acidic aqueous CuSO4 electrolyte. Cyclic voltammetry reveals that the onset of Cu deposition is triggered by Pd reduction. Scanning tunneling microscopy (STM) shows that layers of connected particles are formed with an average thickness of less than 3 nm and lateral dimensions of particles in the range of 2 to 5 nm. In X-ray photoelectron spectra a range of binding energies for the Pd 3d signal is observed whereas the Cu 2p signal appears at a single binding energy, even though chemically different Cu species are present: normal and more noble Cu. Up to three components are seen in the N 1s signal, one originating from protonated pyridine moieties, the others reflecting the SAM-metal interaction. It is suggested that the coordination controlled electrodeposition yields layers of particles composed of a Pd core and a Cu shell with a transition region of a PdCu alloy. Deposited on top of the PyP3 SAM, the PdCu particles exhibit weak adhesion which is exploited for patterning by selective removal of particles employing scanning probe techniques. The potential for patterning down to the sub-10 nm scale is demonstrated. Harnessing the deposition contrast between native and PdCu loaded PyP3 SAMs, structures thus created can be developed into patterned continuous layers.
Collapse
Affiliation(s)
- Zhe She
- EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| | - Zhen Yao
- EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| | - Hervé Ménard
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Sven Tobish
- Drochaid Research Services, North Haugh, St. Andrews, KY16 9ST, UK
| | - Dorothée Lahaye
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Neil R Champness
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Manfred Buck
- EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| |
Collapse
|
4
|
Linck N, Peek A, Hinds BJ. Monolayer Growth Front of Precious Metals through Insulating Mesoporous Membranes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30964-30968. [PMID: 28783302 DOI: 10.1021/acsami.7b03135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Monolayers of precious metals are deposited within the pores of insulating mesoporous anodized aluminum oxide (AAO) membranes via a new electrochemical underpotential Cu deposition growth front mechanism, followed by spontaneous galvanic replacement of copper by platinum or iridium as demonstrated by XPS, ICP-OES, conductivity, and current analysis. Applications include fuel cells, hydrogen storage, flow batteries, and electrocatalytic conversions.
Collapse
Affiliation(s)
- Nicholas Linck
- Department of Chemical and Materials Engeering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Alex Peek
- Department of Material Science and Engineering, University of Washington , Seattle, Washington 98105, United States
| | - Bruce J Hinds
- Department of Material Science and Engineering, University of Washington , Seattle, Washington 98105, United States
| |
Collapse
|
5
|
Johnson KR, Arevalo Rodriguez P, Brewer CR, Brannaka JA, Shi Z, Yang J, Salazar B, McElwee-White L, Walker AV. Photochemical CVD of Ru on functionalized self-assembled monolayers from organometallic precursors. J Chem Phys 2017; 146:052816. [PMID: 28178809 DOI: 10.1063/1.4971434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemical vapor deposition (CVD) is an attractive technique for the metallization of organic thin films because it is selective and the thickness of the deposited film can easily be controlled. However, thermal CVD processes often require high temperatures which are generally incompatible with organic films. In this paper, we perform proof-of-concept studies of photochemical CVD to metallize organic thin films. In this method, a precursor undergoes photolytic decomposition to generate thermally labile intermediates prior to adsorption on the sample. Three readily available Ru precursors, CpRu(CO)2Me, (η3-allyl)Ru(CO)3Br, and (COT)Ru(CO)3, were employed to investigate the role of precursor quantum yield, ligand chemistry, and the Ru oxidation state on the deposition. To investigate the role of the substrate chemistry on deposition, carboxylic acid-, hydroxyl-, and methyl-terminated self-assembled monolayers were used. The data indicate that moderate quantum yields for ligand loss (φ ≥ 0.4) are required for ruthenium deposition, and the deposition is wavelength dependent. Second, anionic polyhapto ligands such as cyclopentadienyl and allyl are more difficult to remove than carbonyls, halides, and alkyls. Third, in contrast to the atomic layer deposition, acid-base reactions between the precursor and the substrate are more effective for deposition than nucleophilic reactions. Finally, the data suggest that selective deposition can be achieved on organic thin films by judicious choice of precursor and functional groups present on the substrate. These studies thus provide guidelines for the rational design of new precursors specifically for selective photochemical CVD on organic substrates.
Collapse
Affiliation(s)
- Kelsea R Johnson
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Paul Arevalo Rodriguez
- Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, Texas 75080, USA
| | - Christopher R Brewer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Joseph A Brannaka
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Zhiwei Shi
- Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, Texas 75080, USA
| | - Jing Yang
- Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, Texas 75080, USA
| | - Bryan Salazar
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Lisa McElwee-White
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Amy V Walker
- Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, Texas 75080, USA
| |
Collapse
|
6
|
Escalera-López D, Gómez E, Vallés E. Electrochemical growth of CoNi and Pt-CoNi soft magnetic composites on an alkanethiol monolayer-modified ITO substrate. Phys Chem Chem Phys 2015; 17:16575-86. [PMID: 26055346 DOI: 10.1039/c5cp02291f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CoNi and Pt-CoNi magnetic layers on indium-tin oxide (ITO) substrates modified by an alkanethiol self-assembled monolayer (SAM) have been electrochemically obtained as an initial stage to prepare semiconducting layer-SAM-magnetic layer hybrid structures. The best conditions to obtain the maximum compactness of adsorbed layers of dodecanethiol (C12-SH) on ITO substrate have been studied using contact angle, AFM, XPS and electrochemical tests. The electrochemical characterization (electrochemical probe or voltammetric response in blank solutions) is fundamental to ensure the maximum blocking of the substrate. Although the electrodeposition process on the SAM-modified ITO substrate is very slow if the blocking of the surface is significant, non-cracked metallic layers of CoNi, with or without a previously electrodeposited seed-layer of platinum, have been obtained by optimizing the deposition potentials. Initial nucleation is expected to take place at the pinhole defects of the C12-SH SAM, followed by a mushroom-like growth regime through the SAM interface that allows the formation of a continuous metallic layer electrically connected to the ITO surface. Due to the potential of the methodology, the preparation of patterned metallic deposits on ITO substrate using SAMs with different coverage as templates is feasible.
Collapse
Affiliation(s)
- D Escalera-López
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (Ge-CPN), Departament de Química Física and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | | | | |
Collapse
|