1
|
Belotti M, Lyu X, Xu L, Halat P, Darwish N, Silvester DS, Goh C, Izgorodina EI, Coote ML, Ciampi S. Experimental Evidence of Long-Lived Electric Fields of Ionic Liquid Bilayers. J Am Chem Soc 2021; 143:17431-17440. [PMID: 34657417 DOI: 10.1021/jacs.1c06385] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein we demonstrate that ionic liquids can form long-lived double layers, generating electric fields detectable by straightforward open circuit potential (OCP) measurements. In imidazolium-based ionic liquids an external negative voltage pulse leads to an exceedingly stable near-surface dipolar layer, whose field manifests as long-lived (∼1-100 h) discrete plateaus in OCP versus time traces. These plateaus occur within an ionic liquid-specific and sharp potential window, defining a simple experimental method to probe the onset of interfacial ordering phenomena, such as overscreening and crowding. Molecular dynamics modeling reveals that the OCP arises from the alignment of the individual ion dipoles to the external electric field pulse, with the magnitude of the resulting OCP correlating with the product of the projected dipole moment of the cation and the ratio between the cation diffusion coefficient and its volume. Our findings also reveal that a stable overscreened structure is more likely to form if the interface is first forced through crowding, possibly accounting for the scattered literature data on relaxation kinetics of near-surface structures in ionic liquids.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Xin Lyu
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Longkun Xu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Peter Halat
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ching Goh
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | | | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
2
|
Rossi F, Bevilacqua M, Busson B, Corva M, Tadjeddine A, Vizza F, Vesselli E, Bozzini B. An in situ IR-Vis Sum Frequency Generation Spectroscopy study of cyanide adsorption during zinc electrodeposition. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Bozzini B, Busson B, Humbert C, Mele C, Tadjeddine A. Electrochemical fabrication of nanoporous gold decorated with manganese oxide nanowires from eutectic urea/choline chloride ionic liquid. Part III − Electrodeposition of Au–Mn: a study based on in situ Sum-Frequency Generation and Raman spectroscopies. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Park J, Jung Y, Kusumah P, Lee J, Kwon K, Lee CK. Application of ionic liquids in hydrometallurgy. Int J Mol Sci 2014; 15:15320-43. [PMID: 25177864 PMCID: PMC4200866 DOI: 10.3390/ijms150915320] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 01/15/2023] Open
Abstract
Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.
Collapse
Affiliation(s)
- Jesik Park
- School of Advanced Materials & Systems Engineering, Kumoh National Institute of Technology, Gumi, Kyungbuk 203-701, Korea.
| | - Yeojin Jung
- Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 143-747, Korea.
| | - Priyandi Kusumah
- Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 143-747, Korea.
| | - Jinyoung Lee
- Metallurgy Research Team, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea.
| | - Kyungjung Kwon
- Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 143-747, Korea.
| | - Churl Kyoung Lee
- School of Advanced Materials & Systems Engineering, Kumoh National Institute of Technology, Gumi, Kyungbuk 203-701, Korea.
| |
Collapse
|
5
|
Li H, Rutland MW, Atkin R. Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. Phys Chem Chem Phys 2013; 15:14616-23. [DOI: 10.1039/c3cp52638k] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Electrodeposition of a Au-Dy2O3 Composite Solid Oxide Fuel Cell Catalyst from Eutectic Urea/Choline Chloride Ionic Liquid. ENERGIES 2012. [DOI: 10.3390/en5125363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Suryanto BH, Gunawan CA, Lu X, Zhao C. Tuning the electrodeposition parameters of silver to yield micro/nano structures from room temperature protic ionic liquids. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.07.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Dilasari B, Kwon KJ, Lee CK, Kim HS. Electrodeposition of Some Selective Metals Belonging to Light, Refractory and Noble Metals from Ionic Liquid Electrolytes. JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY 2012. [DOI: 10.5229/jkes.2012.15.2.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Bozzini B, Busson B, Gayral A, Humbert C, Mele C, Six C, Tadjeddine A. In situ electrochemical SFG/DFG study of CN- and nitrile adsorption at Au from 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ionic liquid([BMP][TFSA]) containing 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]diazenyl} benzonitrile (CTDB) and K[Au(CN)₂]. Molecules 2012; 17:7722-36. [PMID: 22732885 PMCID: PMC6268479 DOI: 10.3390/molecules17077722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/29/2022] Open
Abstract
In this paper we report an in situ electrochemical Sum-/Difference Frequency Generation (SFG/DFG) spectroscopy investigation of the adsorption of nitrile and CN− from the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) amide ([BMP][TFSA]) containing 4-{2-[1-(2-cyanoethyl)-1,2,3,4-tetrahydroquinolin-6-yl]- diazenyl}benzonitrile (CTDB) at Au electrodes in the absence and in the presence of the Au-electrodeposition process from K[Au(CN)2]. The adsorption of nitrile and its coadsorption with CN− resulting either from the cathodic decomposition of the dye or from ligand release from the Au(I) cyanocomplex yield potential-dependent single or double SFG bands in the range 2,125–2,140 cm−1, exhibiting Stark tuning values of ca. 3 and 1 cm−1 V−1 in the absence and presence of electrodeposition, respectively. The low Stark tuning found during electrodeposition correlates with the cathodic inhibiting effect of CTDB, giving rise to its levelling properties. The essential insensitivity of the other DFG parameters to the electrodeposition process is due to the growth of smooth Au.
Collapse
Affiliation(s)
- Benedetto Bozzini
- Department of Innovation Engineering, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Prediction of Morphological Properties of Smart-Coatings for Cr Replacement, Based on Mathematical Modelling. ACTA ACUST UNITED AC 2010. [DOI: 10.4028/www.scientific.net/amr.138.93] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we present an extension of a mathematical model for the morphological evolution of metal electrodeposits – recently developed by some of the authors – accounting for mass-transport of electroactive species from the bulk of the bath to the cathode surface. The implementation of mass-transport effects is specially necessary for the quantitative rationalisation of electrodeposition processes from ionic liquids, since these electrolytes exhibit a viscosity that is notably higher than that of cognate aqueous solutions and consequently mass-transport control is active at all practically relevant plating rates. In this work we show that, if mass-transport is coupled to cathodic adsorption of ionic liquid species and surface diffusion of adatoms, it can lead to electrodeposit smoothing. This seemingly paradoxical theoretical result has been validated by a series of Mn electrodeposition experiments from aqueous baths and eutectic ionic liquids. The latter solutions have been shown to be able to form remarkably smoother coatings than the former ones. Mn electroplates have been proposed for Cd replacement and their corrosion protection performance seems comparable, but so far the required surface finish quality has not been achieved with aqueous electrolytes. Ionic liquids thus seem to provide a viable approach to aeronautic-grade Mn electroplating.
Collapse
|