1
|
Jiang H, Lu J, Bi L, Zhang L, Yang J, Liu C, Yu S, Shen J, Zhu Y. Oxygen reduction reaction kinetics of platinum-based catalysts under stress induction. Chem Commun (Camb) 2025; 61:2059-2062. [PMID: 39789910 DOI: 10.1039/d4cc05856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The ORR kinetic optimization for PtNi and PtPb catalysts is conferred by stress induction. First principles calculation shows the cleavage barrier reduction of the key intermediate *OOH to 28.48 and 0 kJ mol-1, respectively. Proper kinetic tuning led to a mass activity promotion of PtNi to 3.57 times that of Pt/C, whereas excessive modulation induced activity degradation for PtPb and shifted the rate-determining step to the first electron transfer, which was verified by in situ infrared spectroscopy and electrochemical characterization.
Collapse
Affiliation(s)
- Haibo Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Jiyuan Lu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Liyuan Bi
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Lili Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Jiajia Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Cui Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Shengwei Yu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jianhua Shen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Yihua Zhu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Veroneau SS, Hartnett AC, Ryu J, Hong H, Costentin C, Nocera DG. A Straightforward Model for Quantifying Local pH Gradients Governing the Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:28925-28931. [PMID: 39393067 DOI: 10.1021/jacs.4c09521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The production and consumption of protons by an electrocatalyst will, under certain conditions, generate localized microenvironments with properties distinct from those of the bulk solution. These local properties are particularly impactful for reactions involving proton-coupled electron transfer, where the generation of locally basic or acidic environments may significantly influence the energy efficiency and reaction selectivity of the electrocatalyst. Whereas local pH environments have been observed and characterized in reductive half-reactions, including the CO2 reduction and hydrogen evolution reactions, the incompatibility of conventional techniques and materials has limited studies in oxidative half-reactions, including the oxygen evolution reaction (OER), which provides the reducing equivalents for solar-to-fuels electrolysis. With the straightforward parameters bulk pH, buffer composition and pKa, and mass transport, we develop a model for describing local pH as a function of current density regardless of the microscopic details of the mechanism. Using an acid-stable PbOx OER catalyst, we observe the formation and dissipation of pH gradients during the OER and validate the model with voltammetric and potentiometric studies. The model predicts how local acidic environments can develop over a narrow OER current density window, thus providing further motivation for the development of OER catalysts that are stable to acid, even when operating in basic aqueous conditions. More generally, the model is not restricted to the OER and is useful for determining the onset of local pH gradients for other electrocatalytic reactions that involve the consumption or generation of protons in energy conversion reactions.
Collapse
Affiliation(s)
- Samuel S Veroneau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Alaina C Hartnett
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jaeyune Ryu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hyukhun Hong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Huang B, Yan J, Li Z, Chen L, Shi J. Anode-Electrolyte Interfacial Acidity Regulation Enhances Electrocatalytic Performances of Alcohol Oxidations. Angew Chem Int Ed Engl 2024; 63:e202409419. [PMID: 38975974 DOI: 10.1002/anie.202409419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/09/2024]
Abstract
The local acidity at the anode surface during electrolysis is apparently stronger than that in bulk electrolyte due to the deprotonation from the reactant, which leads to the deteriorated electrocatalytic performances and product distributions. Here, an anode-electrolyte interfacial acidity regulation strategy has been proposed to inhibit local acidification at the surface of anode and enhance the electrocatalytic activity and selectivity of anodic reactions. As a proof of the concept, CeO2-x Lewis acid component has been employed as a supporter to load Au nanoparticles to accelerate the diffusion and enrichment of OH- toward the anode surface, so as to accelerate the electrocatalytic alcohol oxidation reaction. As the result, Au/CeO2-x exhibits much enhanced lactic acid selectivity of 81 % and electrochemical activity of 693 mA⋅cm-2 current density in glycerol oxidation reaction compared to pure Au. Mechanism investigation reveals that the introduced Lewis acid promotes the mass transport and concentration of OH- on the anode surface, thus promoting the generation of lactic acid through the simultaneous enhancements of Faradaic and non-Faradaic processes. Attractively, the proposed strategy can be used for the electro-oxidation performance enhancements of a variety of alcohols, which thereby provides a new perspective for efficient alcohol electro-oxidations and the corresponding electrocatalyst design.
Collapse
Affiliation(s)
- Bingji Huang
- State Key Laboratory of Petroleum Molecular and Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jiabiao Yan
- State Key Laboratory of Petroleum Molecular and Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lisong Chen
- State Key Laboratory of Petroleum Molecular and Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
4
|
Yeo J, Kim K, Kwak SJ, Kim MS, Yang JH, Lee WB, Kim Y, Chae J, Chang J. Probing Local pH Change during Electrode Oxidation of TEMPO Derivative: Implication of Redox-Induced Acidity Alternation by Imidazolium-Linker Functional Groups. Anal Chem 2024; 96:5537-5545. [PMID: 38545995 DOI: 10.1021/acs.analchem.3c05796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The chemical degradation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-based aqueous energy storage and catalytic systems is pH sensitive. Herein, we voltammetrically monitor the local pH (pHlocal) at a Pt ultramicroelectrode (UME) upon electro-oxidation of imidazolium-linker functionalized TEMPO and show that its decrease is associated with the greater acidity of the cationic (oxidized) rather than radical (reduced) form of TEMPO. The protons that drive the decrease in pH arise from hydrolysis of the conjugated imidazolium-linker functional group of 4-[2-(N-methylimidazolium)acetoxy]-2,2,6,6-tetramethylpiperidine-1-oxyl chloride (MIMAcO-T), which was studied in comparison with 4-hydroxyl-TEMPO (4-OH-T). Voltammetric hysteresis is observed during the electrode oxidation of 4-OH-T and MIMAcO-T at a Pt UME in an unbuffered aqueous solution. The hysteresis arises from the pH-dependent formation and dissolution of Pt oxides, which interact with pHlocal in the vicinity of the UME. We find that electrogenerated MIMAcO-T+ significantly influences pHlocal, whereas 4-OH-T+ does not. Finite element analysis reveals that the thermodynamic and kinetic acid-base properties of MIMAcO-T+ are much more favorable than those of its reduced counterpart. Imidazolium-linker functionalized TEMPO molecules comprising different linking groups were also investigated. Reduced TEMPO molecules with carbonyl linkers behave as weak acids, whereas those with alkyl ether linkers do not. However, oxidized TEMPO+ molecules with alkyl ether linkers exhibit more facile acid-base kinetics than those with carbonyl ones. Density functional theory calculations confirm that OH- adduct formation on the imidazolium-linker functional group of TEMPO is responsible for the difference in the acid-base properties of the reduced and oxidized forms.
Collapse
Affiliation(s)
| | - Kyungmi Kim
- Sungshin Women's University, Seoul 01133, Republic of Korea
- Korea Institute of Science and Technology Europe, Campus E7 1, 66123 Saarbrücken, Germany
| | - Seung Jae Kwak
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi Song Kim
- Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Jung Hoon Yang
- Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and Engineering, Kookmin University, Seoul 02707, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Junghyun Chae
- Sungshin Women's University, Seoul 01133, Republic of Korea
| | | |
Collapse
|
5
|
Bruckschlegel C, Schlosser M, Wongkaew N. Investigating nanocatalyst-embedding laser-induced carbon nanofibers for non-enzymatic electrochemical sensing of hydrogen peroxide. Anal Bioanal Chem 2023; 415:4487-4499. [PMID: 36933056 PMCID: PMC10329077 DOI: 10.1007/s00216-023-04640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
In this present study, we explored the catalytic behaviors of the in situ generated metal nanoparticles, i.e., Pt/Ni, embedded in laser-induced carbon nanofibers (LCNFs) and their potential for H2O2 detection under physiological conditions. Furthermore, we demonstrate current limitations of laser-generated nanocatalyst embedded within LCNFs as electrochemical detectors and possible strategies to overcome the issues. Cyclic voltammetry revealed the distinctive electrocatalytic behaviors of carbon nanofibers embedding Pt and Ni in various ratios. With chronoamperometry at +0.5 V, it was found that modulation of Pt and Ni content affected only current related to H2O2 but not other interfering electroactive substances, i.e., ascorbic acid (AA), uric acid (UA), dopamine (DA), and glucose. This implies that the interferences react to the carbon nanofibers regardless of the presence of metal nanocatalysts. Carbon nanofibers loaded only with Pt and without Ni performed best in H2O2 detection in phosphate-buffered solution with a limit of detection (LOD) of 1.4 µM, a limit of quantification (LOQ) of 5.7 µM, a linear range from 5 to 500 µM, and a sensitivity of 15 µA mM-1 cm-2. By increasing Pt loading, the interfering signals from UA and DA could be minimized. Furthermore, we found that modification of electrodes with nylon improves the recovery of H2O2 spiked in diluted and undiluted human serum. The study is paving the way for the efficient utilization of laser-generated nanocatalyst-embedding carbon nanomaterials for non-enzymatic sensors, which ultimately will lead to inexpensive point-of-need devices with favorable analytical performance.
Collapse
Affiliation(s)
- Christoph Bruckschlegel
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Marc Schlosser
- Institute of Inorganic Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Muthukrishnan A, James A. Effect of Local pH Change in non-PGM Catalysts – A Potential Dependent Mechanistic Analysis of the Oxygen Reduction Reaction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Typically, the ORR show higher activity in alkaline electrolytes than in acidic medium on either platinum-group metal (PGM) or non-PGM catalysts, known from their outer sphere electron transfer (OSET) mechanism...
Collapse
|
7
|
Bollella P, Melman A, Katz E. Operando
Local pH Mapping of Electrochemical and Bioelectrochemical Reactions Occurring at an Electrode Surface: Effect of the Buffer Concentration. ChemElectroChem 2021. [DOI: 10.1002/celc.202101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
- Department of Chemistry University of Bari A. Moro Via E. Orabona 4 70125 Bari Italy
| | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| |
Collapse
|
8
|
Rodríguez O, Denuault G. The Influence of the Oxygen Reduction Reaction (ORR) on Pt Oxide Electrochemistry. ChemElectroChem 2021. [DOI: 10.1002/celc.202100710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver Rodríguez
- Chemistry University of Southampton Southampton SO17 1BJ UK
- Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 United States
| | - Guy Denuault
- Chemistry University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
9
|
Zhang MK, Chen W, Xu ML, Wei Z, Zhou D, Cai J, Chen YX. How Buffers Resist Electrochemical Reaction-Induced pH Shift under a Rotating Disk Electrode Configuration. Anal Chem 2021; 93:1976-1983. [PMID: 33395265 DOI: 10.1021/acs.analchem.0c03033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In mild acidic or alkaline solutions with limited buffer capacity, the pH at the electrode/electrolyte interface (pHs) may change significantly when the supply of H+ (or OH-) is slower than its consumption or production by the electrode reaction. Buffer pairs are usually applied to resist the change of pHs during the electrochemical reaction. In this work, by taking H2X ⇄ 2H+ + X + 2e- under a rotating disk electrode configuration as a model reaction, numerical simulations are carried out to figure out how pHs changes with the reaction rate in solutions of different bulk pHs (pHb in the range from 0 to 14) and in the presence of buffer pairs with different pKa values and concentrations. The quantitative relation of pHs, pHb, pKa, and concentration of buffer pairs as well as of the reaction current density is established. Diagrams of pHs and ΔpH (ΔpH = pHs - pHb) as a function of pHb and the reaction current density as well as of the jmax-pHb plots are provided, where jmax is defined as the maximum allowable current density within the acceptable tolerance of deviation of pHs from that of pHb (e.g., ΔpH < 0.2). The j-pHs diagrams allow one to estimate the pHs and ΔpH without direct measurement. The jmax-pHb plots may serve as a guideline for choosing buffer pairs with appropriate pKa and concentration to mitigate the pHs shift induced by electrode reactions.
Collapse
Affiliation(s)
- Meng-Ke Zhang
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mian-Le Xu
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Wei
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Da Zhou
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Xia Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Calderón-Cárdenas A, Hartl FW, Gallas JA, Varela H. Modeling the triple-path electro-oxidation of formic acid on platinum: Cyclic voltammetry and oscillations. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.04.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Zhang MK, Wei Z, Chen W, Xu ML, Cai J, Chen YX. Bell shape vs volcano shape pH dependent kinetics of the electrochemical oxidation of formic acid and formate, intrinsic kinetics or local pH shift? Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Chen W, Xu ML, Li MF, Wei Z, Cai J, Chen YX. Quantifying intrinsic kinetics of electrochemical reaction controlled by mass transfer of multiple species under rotating disk electrode configuration. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Freire JG, Calderón-Cárdenas A, Varela H, Gallas JAC. Phase diagrams and dynamical evolution of the triple-pathway electro-oxidation of formic acid on platinum. Phys Chem Chem Phys 2020; 22:1078-1091. [DOI: 10.1039/c9cp04324a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A detailed numerical study including stability phase diagrams for the dynamical evolution of the electro-oxidation of formic acid on platinum was reported. The study evidences the existence of intertwined stability phases and the absence of chaos.
Collapse
Affiliation(s)
- Joana G. Freire
- Instituto Dom Luiz (IDL)
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | - Alfredo Calderón-Cárdenas
- Instituto de Química de São Carlos
- Universidade de São Paulo
- 13560-970 São Carlos
- Brazil
- GIFBA, Universidad de Nariño
| | - Hamilton Varela
- Instituto de Química de São Carlos
- Universidade de São Paulo
- 13560-970 São Carlos
- Brazil
- Max-Planck Institute for the Physics of Complex Systems
| | - Jason A. C. Gallas
- Max-Planck Institute for the Physics of Complex Systems
- 01187 Dresden
- Germany
- Instituto de Altos Estudos da Paraíba
- 58039-190 João Pessoa
| |
Collapse
|
14
|
Petrii OA. The Progress in Understanding the Mechanisms of Methanol and Formic Acid Electrooxidation on Platinum Group Metals (a Review). RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519010129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Li JJ, Wei J, Cai J, Chen YX. pH effect on oxidation of hydrogen peroxide on Au(111) electrode in alkaline solutions. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1804064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jiao-jiao Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Wei
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan-xia Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
The determination of thermal junction potential difference. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wei Y, Zuo XQ, He ZD, Chen W, Lin CH, Cai J, Sartin M, Chen YX. The mechanisms of HCOOH/HCOO – oxidation on Pt electrodes: Implication from the pH effect and H/D kinetic isotope effect. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Weremfo A, Fong STC, Khan A, Hibbert DB, Zhao C. Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Koshikawa H, Nakanishi S, Hashimoto K, Kamiya K. Heat-treated 3,5-diamino-1,2,4-triazole/graphene hybrid functions as an oxygen reduction electrocatalyst with high activity and stability. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.08.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
O 2 surface concentration change and its implication on oxygen reduction mechanism and kinetics at platinum in acidic media. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Figueiredo MC, Arán-Ais RM, Climent V, Kallio T, Feliu JM. Evidence of Local pH Changes during Ethanol Oxidation at Pt Electrodes in Alkaline Media. ChemElectroChem 2015. [DOI: 10.1002/celc.201500151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
The evidence of limitation of oxygen reduction reaction by proton diffusion in low-concentration acid solutions. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Chen DJ, Tong YYJ. In situ Raman spectroscopic measurement of near-surface proton concentration changes during electrochemical reactions. Chem Commun (Camb) 2015; 51:5683-6. [DOI: 10.1039/c5cc00427f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A ClO4− anion is a simple and robust in situ Raman spectroscopic reporter of near-surface acidity changes during electrochemical reactions.
Collapse
Affiliation(s)
- D.-J. Chen
- Department of Chemistry
- Georgetown University
- Washington
- USA
| | - Y. Y. J. Tong
- Department of Chemistry
- Georgetown University
- Washington
- USA
| |
Collapse
|
24
|
Mei D, He ZD, Zheng YL, Jiang DC, Chen YX. Mechanistic and kinetic implications on the ORR on a Au(100) electrode: pH, temperature and H-D kinetic isotope effects. Phys Chem Chem Phys 2014; 16:13762-73. [PMID: 24809910 DOI: 10.1039/c4cp00257a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
pH, temperature and H-D kinetic isotope effects (KIEs) on the ORR on Au(100) have been examined systematically using a hanging meniscus rotating disk electrode system. We found that for the cases with pH > 7, the ORR mainly goes through a 4-electron reduction to OH(-) at E > pzc (potential of zero charge) without any pH and H-D KIEs. When the pH at the electrode/electrolyte interface (pH(s)) is below 7, O2 only reduces to H2O2, its activity increases with pH(s), and a H-D KIE of above 2 is observed in 0.1 M HClO4. According to the experimental results in acid solution, a mechanism with O2 + H(+) + e → HO(2,ad) as the rate determining step followed by decoupled electron and proton transfer steps is proposed. The high activation barrier for O-O bond breaking and the fast oxidation of H2O2 or HO2(-) to O2 render the ORR observable only at potentials negative of the equilibrium potential (Eeq) of the redox of H2O2/O2 in acidic media or of HO2(-)/O2 in an alkaline environment. The apparent activation energy (E(a,app)) for O2 reduction to H2O2 is ca. 35 ± 3 kJ mol(-1) and to OH(-) is 60 ± 6 kJ mol(-1), while the pre-exponential factor (A) for the former is ca. 3-6 orders of magnitude smaller than that of the latter. The lower activity for O2 reduction to H2O2 on Au(100) is attributed to the small pre-exponential factor.
Collapse
Affiliation(s)
- Dong Mei
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China.
| | | | | | | | | |
Collapse
|
25
|
Li MF, Liao LW, Yuan DF, Mei D, Chen YX. pH effect on oxygen reduction reaction at Pt(111) electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.04.096] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Rouhet M, Bozdech S, Bonnefont A, Savinova E. Influence of the proton transport on the ORR kinetics and on the H2O2 escape in three-dimensionally ordered electrodes. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|