1
|
Shabana N, Arjun AM, Rajendran K, Pathan S, Rasheed PA. Ru-W modified graphitic carbon nitride by a monomer complexation synthesis approach from a tailored polyoxometalate: towards electrochemical detection of hydrogen peroxide released by cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:587-595. [PMID: 36633183 DOI: 10.1039/d2ay01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Detection of hydrogen peroxide (H2O2) from cell cultures is important for monitoring different diseases. Here, g-C3N4 (gCN) was incorporated into well-defined clusters of RuW (RuW-gCN) through monomer complexation of Ru-substituted phosphotungstate and melamine for electrochemical detection of H2O2. RuW-gCN exhibited enhanced electrochemical sensing properties in comparison to its constituents due to the synergic effects between RuW and gCN. The characterization of RuW-gCN revealed successful complexation to form the composite in addition to the presence of a layered structure of gCN. The electrochemical sensor made of RuW-gCN was able to detect H2O2 with a detection limit of 46 nM in the linear ranges from 100 nM to 50 μM and from 50 μM to 1 mM. The developed sensor was employed for the selective detection of H2O2 in the presence of analytes like ascorbic acid (AA), dopamine, and glucose in addition to being stable even after a week of storage at room temperature. It has also been verified for real sample application by detecting H2O2 produced by cancer cells as a result of an AA trigger.
Collapse
Affiliation(s)
- Neermunda Shabana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557.
| | - Ajith Mohan Arjun
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557
| | - K Rajendran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557.
| | - Soyeb Pathan
- Centre of Research for Development (CR4D), Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India-391760
- Department of Chemistry, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India-391760
| | - P Abdul Rasheed
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557.
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India-678 557
| |
Collapse
|
2
|
Veerakumar P, Hung ST, Hung PQ, Lin KC. Review of the Design of Ruthenium-Based Nanomaterials and Their Sensing Applications in Electrochemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8523-8550. [PMID: 35793416 DOI: 10.1021/acs.jafc.2c01856] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, ruthenium nanoparticles (Ru NPs)-based functional nanomaterials have attractive electrocatalytic characteristics and they offer considerable potential in a number of fields. Ru-based binary or multimetallic NPs are widely utilized for electrode modification because of their unique electrocatalytic properties, enhanced surface-area-to-volume ratio, and synergistic effect between two metals provides as an effective improved electrode sensor. This perspective review suggests the current research and development of Ru-based nanomaterials as a platform for electrochemical (EC) sensing of harmful substances, biomolecules, insecticides, pharmaceuticals, and environmental pollutants. The advantages and limitations of mono-, bi-, and multimetallic Ru-based nanocomposites for EC sensors are discussed. Besides, the relevant EC properties and analyte sensing approaches are also presented. On the basis of these insights, we highlighted recent results for synthesizing techniques and EC environmental pollutant sensors from the perspectives of diverse supports, including graphene, carbon nanotubes, silica, semiconductors, metal sulfides, and polymers. Finally, this work overviews the modern improvements in the utilization of Ru-based nanocomposites on the basis for electroanalytical sensors as well as suggestions for the field's future development.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Tung Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Pei-Qi Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Borges PH, Catto AC, Longo E, Nossol E. Electrochemical synthesis of reduced graphene oxide/ruthenium oxide hexacyanoferrate nanocomposite film and its application for ranitidine detection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Sinusoidal voltage electrodeposition of PEDOT-Prussian blue nanoparticles composite and its application to amperometric sensing of H 2O 2 in human blood. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:661-669. [PMID: 31147039 DOI: 10.1016/j.msec.2019.04.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 11/20/2022]
Abstract
A selective electrochemical sensor based on poly(3,4-ethylenedioxythiophene) (PEDOT) - Prussian blue nanoparticles (PBNPs) for hydrogen peroxide (H2O2) determination was prepared by innovative sinusoidal voltage (SV) method. The successful incorporation of citrate-stabilized PBNPs into PEDOT matrix was confirmed by energy dispersive X-ray analysis (EDX), Raman spectroscopy, UV-Vis spectroelectrochemistry and cyclic voltammetry measurements. The SV preparation method provides a PEDOT-PBNPs coating with rough surface morphology and good electrocatalytic activity toward H2O2 reduction. The amperometric response of PEDOT-PBNPs-based sensor at -50 mV vs. Ag/AgCl is linear within the range of concentrations from 5 μM to 1 mM H2O2 with a detection limit of 1.4 μM H2O2. The proposed Pt/PEDOT-PBNPs sensor displays good repeatability, reproducibility, operational stability as well as good selectivity toward H2O2 determination in the presence of interfering species like dopamine (DA), uric acid (UA), KNO2 glucose (Glu), KNO3 and ascorbic acid (AA), and was successfully applied to H2O2 determination in human blood samples without biofouling.
Collapse
|
5
|
Nonenzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with graphene oxide, a polyamidoamine dendrimer, and with polyaniline deposited by the Fenton reaction. Mikrochim Acta 2018; 185:569. [PMID: 30506518 DOI: 10.1007/s00604-018-3089-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
A highly sensitive electrochemical sensor is described for the determination of H2O2. It is based on based on the use of polyaniline that was generated in-situ and within 1 min on a glassy carbon electrode (GCE) with the aid of the Fe(II)/H2O2 system. Initially, a 2-dimensional composite was prepared from graphene oxide and polyamidoamine dendrimer through covalent interaction. It was employed as a carrier for Fe(II) ions. Then, the nanocomposite was drop-coated onto the surface of the GCE. When exposed to H2O2, the Fe(II) on the GCE is converted to Fe(III), and free hydroxy radicals are formed. The Fe(III) ions and the hydroxy radicals catalyze the oxidation of aniline to produce electroactive polyaniline on the GCE. The resulting sensor, best operated at a working potential as low as 50 mV (vs. SCE) which excludes interference by dissolved oxygen, has a linear response in the 500 nM to 2 mM H2O2 concentration range, and the detection limit is 180 nM. The sensor was successfully applied to the determination of H2O2 in spiked milk and fetal bovine serum samples. Graphical abstract Schematic presentation of a sensitive electrochemical sensor employed for detection of H2O2 in sophisticated matrices by using graphene oxide-PAMAM dendrimer as initiator container and Fe2+/H2O2 system as signal enhancer.
Collapse
|
6
|
Rutely C. BC, Jean-M. F, Walter Z. T, Xochitl DB, Mika S. Towards reliable quantification of hydroxyl radicals in the Fenton reaction using chemical probes. RSC Adv 2018; 8:5321-5330. [PMID: 35542446 PMCID: PMC9078104 DOI: 10.1039/c7ra13209c] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Quantification of hydroxyl radical concentration using two chemical probes was assessed through the Fenton reaction. The probes were 1,2-benzopyrone (coumarin) for fluorescence and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) for electron spin resonance (ESR). The corresponding hydroxylated species, namely 7-hydroxycoumarin (7HC) and 2-hydroxy-5,5-dimethyl-1-pyrroline-N-oxide (DMPO-OH adduct), were monitored by fluorescence and ESR-spin trapping techniques, respectively. The experiments were designed according to the theoretical conditions determined for stable fluorescence and EPR signals. The results demonstrate that: the optimal [chemical probe] : [H2O2] ratio predicted by a simplified quasi-steady-state model was in good agreement with the optimal [chemical probe] : [H2O2] ratio observed experimentally for [H2O2] : [Fe2+] = 10, and the proper adjustment of the [chemical probe] : [H2O2] ratio at a given concentration of the Fenton's reagent improves the detected amount of hydroxyl radicals. Finally, using DMPO required a higher concentration compared to coumarin to yield the same amount of ˙OH detected but resulted in a more reliable probe for detecting ˙OH under the consideration of this study. Quantification of hydroxyl radical concentration using two chemical probes was assessed through the Fenton reaction.![]()
Collapse
Affiliation(s)
- Burgos Castillo Rutely C.
- Laboratory of Green Chemistry
- School of Engineering Science
- Lappeenranta University of Technology
- Finland
- Separation and Conversion Technologies
| | - Fontmorin Jean-M.
- Laboratory of Green Chemistry
- School of Engineering Science
- Lappeenranta University of Technology
- Finland
| | - Tang Walter Z.
- Department of Civil and Environmental Engineering
- Florida International University
- Miami
- USA
| | - Dominguez-Benetton Xochitl
- Separation and Conversion Technologies
- Flemish Institute for Technological Research (VITO)
- Belgium
- SIM vzw
- Belgium
| | - Sillanpää Mika
- Laboratory of Green Chemistry
- School of Engineering Science
- Lappeenranta University of Technology
- Finland
- Department of Civil and Environmental Engineering
| |
Collapse
|
7
|
Devendiran M, Krishna Kumar K, Sriman Narayanan S. Fabrication of a novel Ferrocene/Thionin bimediator modified electrode for the electrochemical determination of dopamine and hydrogen peroxide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Sukeri A, Lima AS, Bertotti M. Development of non-enzymatic and highly selective hydrogen peroxide sensor based on nanoporous gold prepared by a simple unusual electrochemical approach. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Abdelwahab AA. Electrochemical Pretreatment of Graphene Composite CNT Encapsulated Au Nanoparticles for H2O2Sensor. ELECTROANAL 2016. [DOI: 10.1002/elan.201600032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adel A. Abdelwahab
- Department of Chemistry, Faculty of Science; Al-Azhar University; Assiut 71524 Egypt
| |
Collapse
|
10
|
Voltammetric determination of hydrogen peroxide at high concentration level using a copper electrode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Deng K, Li C, Qiu X, Zhou J, Hou Z. Synthesis of Cobalt hexacyanoferrate decorated graphene oxide/carbon nanotubes-COOH hybrid and their application for sensitive detection ofhydrazine. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Castro Júnior JGM, Ferreira GMM, de Oliveira FG, Damos FS, Luz RDCS. A novel platform based on graphene/poly(3,4-ethylenedioxythiophene)/iron (III) hexacyanoferrate (II) composite film for electrocatalytic reduction of H2O2. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Butwong N, Zhou L, Ng-eontae W, Burakham R, Moore E, Srijaranai S, Luong JH, Glennon JD. A sensitive nonenzymatic hydrogen peroxide sensor using cadmium oxide nanoparticles/multiwall carbon nanotube modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|