1
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
2
|
Gamboa J, Paulo-Mirasol S, Estrany F, Torras J. Recent Progress in Biomedical Sensors Based on Conducting Polymer Hydrogels. ACS APPLIED BIO MATERIALS 2023; 6:1720-1741. [PMID: 37115912 DOI: 10.1021/acsabm.3c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biosensors are increasingly taking a more active role in health science. The current needs for the constant monitoring of biomedical signals, as well as the growing spending on public health, make it necessary to search for materials with a combination of properties such as biocompatibility, electroactivity, resorption, and high selectivity to certain bioanalytes. Conducting polymer hydrogels seem to be a very promising materials, since they present many of the necessary properties to be used as biosensors. Furthermore, their properties can be shaped and enhanced by designing conductive polymer hydrogel-based composites with more specific functionalities depending on the end application. This work will review the recent state of the art of different biological hydrogels for biosensor applications, discuss the properties of the different components alone and in combination, and reveal their high potential as candidate materials in the fabrication of all-organic diagnostic, wearable, and implantable sensor devices.
Collapse
Affiliation(s)
- Jillian Gamboa
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Sofia Paulo-Mirasol
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Francesc Estrany
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| | - Juan Torras
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, Barcelona 08019, Spain
| |
Collapse
|
3
|
Park JY, Kwak Y, Lim HR, Park SW, Lim MS, Cho HB, Myung NV, Choa YH. Tuning the sensing responses towards room-temperature hypersensitive methanol gas sensor using exfoliated graphene-enhanced ZnO quantum dot nanostructures. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129412. [PMID: 35780731 DOI: 10.1016/j.jhazmat.2022.129412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A suitable and non-invasive methanol sensor workable in ambient temperature conditions with a high response has gained wide interest to prevent detrimental consequences for industrial workers from its low-level intoxication. In this work, we present a tunable and highly responsive ppb-level methanol gas sensor device working at room temperature via a bottom-up synthetic approach using exfoliated graphene sheet (EGs) and ZnO quantum dots (QDs) on an aluminum anodic oxide (AAO) template. It is verified that EGs-supported AAO with a vertical electrode configuration enabled high and fast-responsive methanol sensing. Moreover, the hydroxyl and carboxyl groups of the high surface area EGs and ZnO QDs with a 3.37 eV bandgap efficiently absorbing UV light led to 56 times high response due to the enhanced polarization on the sensor surface compared to non-UV-radiated EGs/AAO at 800 ppb of methanol. The optimal resonance frequency of methanol is determined to be 100 kHz, which could detect methanol with high response of 2.65% at 100 ppm. The limit of detection (LOD) concentration is obtained at 2 ppb level. This study demonstrates the potential of UV-assisted ZnO, EGs, and AAO-based capacitance sensor material for rapidly detecting hazardous gaseous light organic molecules at ambient conditions, and the overall approach can be easily expanded to a novel non-invasive monitoring strategy for light and hazardous volatile organic exposures.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Yeonsu Kwak
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark 19716, United States
| | - Hyo-Ryoung Lim
- Major of Human Biocovergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Si-Woo Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Seob Lim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong-Baek Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame 46556, United States
| | - Yong-Ho Choa
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
4
|
Wearable Sensors for Healthcare: Fabrication to Application. SENSORS 2022; 22:s22145137. [PMID: 35890817 PMCID: PMC9323732 DOI: 10.3390/s22145137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
This paper presents a substantial review of the deployment of wearable sensors for healthcare applications. Wearable sensors hold a pivotal position in the microelectronics industry due to their role in monitoring physiological movements and signals. Sensors designed and developed using a wide range of fabrication techniques have been integrated with communication modules for transceiving signals. This paper highlights the entire chronology of wearable sensors in the biomedical sector, starting from their fabrication in a controlled environment to their integration with signal-conditioning circuits for application purposes. It also highlights sensing products that are currently available on the market for a comparative study of their performances. The conjugation of the sensing prototypes with the Internet of Things (IoT) for forming fully functioning sensorized systems is also shown here. Finally, some of the challenges existing within the current wearable systems are shown, along with possible remedies.
Collapse
|
5
|
Highly sensitive and disposable screen-printed ionic liquid/graphene based electrochemical sensors. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
6
|
Cheng J, Yang G, Guo J, Liu S, Guo J. Integrated electrochemical lateral flow immunoassays (eLFIAs): recent advances. Analyst 2022; 147:554-570. [DOI: 10.1039/d1an01478a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schematic of integrated electrochemical lateral flow immunoassays.
Collapse
Affiliation(s)
- Jie Cheng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Guopan Yang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Nashruddin SNA, Abdullah J, Mohammad Haniff MAS, Mat Zaid MH, Choon OP, Mohd Razip Wee MF. Label Free Glucose Electrochemical Biosensor Based on Poly(3,4-ethylenedioxy thiophene):Polystyrene Sulfonate/Titanium Carbide/Graphene Quantum Dots. BIOSENSORS 2021; 11:bios11080267. [PMID: 34436069 PMCID: PMC8393679 DOI: 10.3390/bios11080267] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 05/24/2023]
Abstract
The electrochemical biosensor devices based on enzymes for monitoring biochemical substances are still considered attractive. We investigated the immobilization of glucose oxidase (GOx) on a new composite nanomaterial poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS)/titanium carbide,(Ti3C2)/graphene quantum dots(GQD) modified screen-printed carbon electrode (SPCE) for glucose sensing. The characterization and electrochemical behavior of PEDOT:PSS/Ti3C2/GQD towards the electrocatalytic oxidation of GOx was analyzed by FTIR, XPS, SEM, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This composite nanomaterial was found to tend to increase the electrochemical behavior and led to a higher peak current of 100.17 µA compared to 82.01 µA and 95.04 µA for PEDOT:PSS and PEDOT:PSS/Ti3C2 alone. Moreover, the detection results demonstrated that the fabricated biosensor had a linear voltammetry response in the glucose concentration range 0-500 µM with a relatively sensitivity of 21.64 µAmM-1cm-2 and a detection limit of 65 µM (S/N = 3), with good stability and selectivity. This finding could be useful as applicable guidance for the modification screen printed carbon (SPCE) electrodes focused on composite PEDOT:PSS/Ti3C2/GQD for efficient detection using an enzyme-based biosensor.
Collapse
Affiliation(s)
- Siti Nur AshakirinMohd Nashruddin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhammad Aniq Shazni Mohammad Haniff
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Ooi Poh Choon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Farhanulhakim Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| |
Collapse
|
8
|
Cha S, Lee E, Cho G. Fabrication of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Poly(vinylidene fluoride) Nanofiber-Web-Based Transparent Conducting Electrodes for Dye-Sensitized Photovoltaic Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28855-28863. [PMID: 34110147 DOI: 10.1021/acsami.1c06081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/poly(vinylidene fluoride) (PVDF) nanofiber-web-based transparent conducting electrodes (TCEs) were fabricated for use in dye-sensitized photovoltaic textiles. The PEDOT:PSS solution was mixed with dimethyl sulfoxide (DMSO) solvent, and the PEDOT:PSS/DMSO mixture was applied on the PVDF nanofiber web using a simple brush-painting technique to prepare ultrathin and -lightweight, highly transparent TCEs. When the PVDF nanofiber web was treated with a 3:7 PEDOT:PSS and DMSO mixture (P3D7 sample), it exhibited ∼84% transmittance at a wavelength of 550 nm with an average sheet resistance of ∼1.5 kΩ/sq. In addition, it showed a figure of merit (FOM) of 0.104 × 10-3 Ω-1. In the trial test, the P3D7 TCE-based photovoltaic textile exhibited an average voltage of 73.20 mV and an average current of 0.44 mA/cm2.
Collapse
Affiliation(s)
- Sujin Cha
- Department of Clothing & Textiles, Yonsei University, Seoul 03722, Republic of Korea
| | - Eugene Lee
- Department of Clothing & Textiles, Yonsei University, Seoul 03722, Republic of Korea
| | - Gilsoo Cho
- Department of Clothing & Textiles, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Kitova A, Tarasov S, Plekhanova Y, Bykov A, Reshetilov A. Direct Bioelectrocatalytic Oxidation of Glucose by Gluconobacter oxydans Membrane Fractions in PEDOT:PSS/TEG-Modified Biosensors. BIOSENSORS-BASEL 2021; 11:bios11050144. [PMID: 34066417 PMCID: PMC8148135 DOI: 10.3390/bios11050144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
Recent years have witnessed an ever-increasing interest in developing electrochemical biosensors based on direct electron transfer-type bioelectrocatalysis. This work investigates the bioelectrocatalytic oxidation of glucose by membrane fractions of Gluconobacter oxydans cells on screen-printed electrodes modified with thermally expanded graphite and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Electrooxidation of glucose was shown to occur without the presence of electron transport mediators. Chronoamperometric and cyclic voltametric characteristics showed an increase of anodic currents at electrode potentials of 0–500 mV relative to the reference electrode (Ag/AgCl). The direct electron transfer effect was observed for non-modified PEDOT:PSS as well as for PEDOT:PSS linked with crosslinkers and conductive fillers such as polyethylene glycol diglycidyl or dimethyl sulfoxide. Bioelectrodes with this composite can be successfully used in fast reagent-free glucose biosensors.
Collapse
|
10
|
Uric Acid Sensor Based on PEDOT:PSS Modified Screen-Printed Carbon Electrode Fabricated with a Simple Painting Technique. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.24.2.43-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A screen-printed carbon electrode is a suitable electrode for electrochemical sensors due to its simplicity and portability. This study aimed to fabricate a screen-printed carbon electrode modified with poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (SPCE-PEDOT:PSS) to improve the electrochemical performance for uric acid detection. The SPCE was fabricated using a layer-by-layer painting process of conductive ink consisting of graphite as a conductive material, polystyrene as a polymeric binder, and dichloromethane solvent on a polyvinyl chloride paper substrate. The fabricated SPCE was then modified with PEDOT:PSS by a drop-casting method. The characterization of SPCE-PEDOT:PSS surface morphology was performed using the scanning electron microscopy technique. The SPCE-PEDOT:PSS provided an acceptable linearity (R2 = 0.9985, 0.9993, 0.9985), sensitivity (0.070, 0.015, 0.024 µA/µM), precision (%RSD = 2.70%, 2.89%, 2.40%), limit of detection (1.61 µM, 1.14 µM, 1.62 µM), and limit of quantitation (5.37 µM, 3.81 µM to 5.39 µM) in measurement of uric acid standard solution using cyclic voltammetry, amperometry, and differential pulse voltammetry techniques, respectively. The studies using SPCE-PEDOT:PSS indicated that the electrode could be applied in the electrochemical measurement of uric acid in the human urine sample.
Collapse
|
11
|
Seekaew Y, Pon-On W, Wongchoosuk C. Ultrahigh Selective Room-Temperature Ammonia Gas Sensor Based on Tin-Titanium Dioxide/reduced Graphene/Carbon Nanotube Nanocomposites by the Solvothermal Method. ACS OMEGA 2019; 4:16916-16924. [PMID: 31646238 PMCID: PMC6796937 DOI: 10.1021/acsomega.9b02185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/23/2019] [Indexed: 05/27/2023]
Abstract
Resistive-based gas sensors have been considered as the most favorable gas sensors for detection of toxic gases and volatile organic compounds (VOCs) because of their simple structure, low cost, high sensitivity, ease of use, and high stability. Unfortunately, wide application of resistive-based gas sensors is limited by their low selectivity. In this article, we present the fabrication of ultrahigh selective NH3 gas sensor based on tin-titanium dioxide/reduced graphene/carbon nanotube (Sn-TiO2@rGO/CNT) nanocomposites. The Sn-TiO2@rGO/CNT nanocomposites with different molar ratios of Sn/Ti (1:10, 3:10, and 5:10) were synthesized via the solvothermal method. Characterizations by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy confirmed the decoration of Sn-TiO2 nanoparticles on rGO/CNT nanocomposite surfaces. The Sn-TiO2@rGO/CNT nanocomposite gas sensor exhibited high response and ultrahigh selectivity to NH3 against toluene, dimethylformamide, acetone, ethanol, methanol, isopropanol, formaldehyde, hydrogen, carbon dioxide, acetylene, and VOCs in paint thinners at room temperature. The Sn-TiO2@rGO/CNT nanocomposite gas sensor with molar ratio of Sn/Ti = 1:10 showed the highest response to NH3 over other molar ratios of Sn/Ti as well as pure rGO/CNT and Sn-TiO2 gas sensors. The ammonia-sensing mechanisms of the Sn-TiO2@rGO/CNT gas sensor were proposed based on the formation of p-n heterojunctions of p-type rGO/CNT and n-type Sn-TiO2 nanoparticles via a low-temperature oxidizing reaction process.
Collapse
|
12
|
A FRET assay for the quantitation of inhibitors of exonuclease EcoRV by using parchment paper inkjet-printed with graphene oxide and FAM-labelled DNA. Mikrochim Acta 2019; 186:211. [DOI: 10.1007/s00604-019-3317-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
13
|
Ismail NAB, Abd-Wahab F, Ramli NI, Bader MM, Wan Salim WWA. Electrochemical Methods to Characterize Nanomaterial-Based Transducers for the Development of Noninvasive Glucose Sensors. NANOTECHNOLOGY: APPLICATIONS IN ENERGY, DRUG AND FOOD 2019:423-439. [DOI: 10.1007/978-3-319-99602-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Batrisya Ismail NA, Abd-Wahab F, Amani Wan Salim WW. Cyclic Voltammetry and Electrochemical Impedance Spectroscopy of Partially Reduced Graphene Oxide - PEDOT:PSS Transducer for Biochemical Sensing. 2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES) 2018. [DOI: 10.1109/iecbes.2018.8626618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Monteiro T, Almeida MG. Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems. Crit Rev Anal Chem 2018; 49:44-66. [PMID: 29757683 DOI: 10.1080/10408347.2018.1461552] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Worldwide legislation is driving the development of novel and highly efficient analytical tools for assessing the composition of every material that interacts with Consumers or Nature. The biosensor technology is one of the most active R&D domains of Analytical Sciences focused on the challenge of taking analytical chemistry to the field. Electrochemical biosensors based on redox enzymes, in particular, are highly appealing due to their usual quick response, high selectivity and sensitivity, low cost and portable dimensions. This review paper aims to provide an overview of the most important advances made in the field since the proposal of the first biosensor, the well-known hand-held glucose meter. The first section addresses the current needs and challenges for novel analytical tools, followed by a brief description of the different components and configurations of biosensing devices, and the fundamentals of enzyme kinetics and amperometry. The following sections emphasize on enzyme-based amperometric biosensors and the different stages of their development.
Collapse
Affiliation(s)
- Tiago Monteiro
- a UCIBIO-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa , Caparica , Portugal
| | | |
Collapse
|
17
|
Enzyme–Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications. Methods Enzymol 2018; 609:293-333. [DOI: 10.1016/bs.mie.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Transparent Electrode Based on Silver Nanowires and Polyimide for Film Heater and Flexible Solar Cell. MATERIALS 2017; 10:ma10121362. [PMID: 29186012 PMCID: PMC5744297 DOI: 10.3390/ma10121362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/17/2022]
Abstract
Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53–80% and sheet resistances of 2.8–16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices.
Collapse
|
19
|
|
20
|
Wong A, Santos AM, Fatibello-Filho O. Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
A bio-sensing platform utilizing a conjugated polymer, carbon nanotubes and PAMAM combination. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pd nano/PTCA/aptamer as labeled aptamer for the signal amplification. Anal Chim Acta 2017; 985:61-68. [PMID: 28864195 DOI: 10.1016/j.aca.2017.07.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/16/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
In this research, we demonstrated a flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblasts (CCRF-CEM) based on poly(3,4-ethylenedioxythiophene) decorated with gold nanoparticles (PEDOT-Aunano) as a nano platform to immobilize thiolated sgc8c aptamer and multiwall carbon nanotubes decorated with palladium nanoparticles/3,4,9,10-perylene tetracarboxylic acid (MWCNTs-Pdnano/PTCA) to fabricate catalytic labeled aptamer. In the proposed sensing strategy, the CCRF-CEM cancer cells were sandwiched between immobilized sgc8c aptamer on PEDOT-Aunano modified surface electrode and catalytic labeled sgc8c aptamer (MWCNTs-Pdnano/PTCA/aptamer). After that, the concentration of CCRF-CEM cancer cells was determined in presence of 0.1 mM hydrogen peroxide (H2O2) as an electroactive component. The attached MWCNTs-Pdnano nanocomposites to CCRF-CEM cancer cells amplified the electrocatalytic reduction of H2O2 and improved the sensitivity of the sensor to CCRF-CEM cancer cells. The MWCNT-Pdnano nanocomposite was characterized with transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). The electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to confirm the stepwise changes in the electrochemical surface properties of the electrode. The proposed sandwich-type electrochemical aptasensor exhibited an excellent analytical performance for the detection of CCRF-CEM cancer cells ranging from 1.0 × 101 to 5.0 × 105 cells mL-1. The limit of detection was 8 cells mL-1. The proposed aptasensor showed high selectivity toward CCRF-CEM cancer cells. The proposed aptasensor was also applied to the determination of CCRF-CEM cancer cells in human serum samples.
Collapse
|
23
|
Wen Y, Xu J. Scientific Importance of Water-Processable PEDOT-PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28482] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yangping Wen
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang 330045 People's Republic of China
| | - Jingkun Xu
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 People's Republic of China
| |
Collapse
|
24
|
Liu D, Rahman MM, Ge C, Kim J, Lee JJ. Highly stable and conductive PEDOT:PSS/graphene nanocomposites for biosensor applications in aqueous medium. NEW J CHEM 2017. [DOI: 10.1039/c7nj03330c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PEDOT:PSS/GNP electrode post-treated with H2SO4 stabilizes GNPs on an FTO substrate and improves the aqueous sensitivity and stability of dopamine detection.
Collapse
Affiliation(s)
- Dongtao Liu
- Department of Energy & Materials Engineering
- Dongguk University
- Seoul
- Korea
| | - Md. Mahbubur Rahman
- Nanotechnology Research Center and Department of Applied Life Science
- College of Biomedical and Health Science
- Konkuk University
- Chungju 380-701
- Korea
| | - Chuangye Ge
- Department of Energy & Materials Engineering
- Dongguk University
- Seoul
- Korea
| | - Jaecheon Kim
- Department of Energy & Materials Engineering
- Dongguk University
- Seoul
- Korea
| | - Jae-Joon Lee
- Department of Energy & Materials Engineering
- Dongguk University
- Seoul
- Korea
| |
Collapse
|
25
|
Yukird J, Wongtangprasert T, Rangkupan R, Chailapakul O, Pisitkun T, Rodthongkum N. Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection. Biosens Bioelectron 2017; 87:249-255. [DOI: 10.1016/j.bios.2016.08.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/11/2023]
|
26
|
Waiwijit U, Maturos T, Pakapongpan S, Phokharatkul D, Wisitsoraat A, Tuantranont A. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells. J Biomater Appl 2016; 31:230-40. [DOI: 10.1177/0885328216656477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3–6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing.
Collapse
Affiliation(s)
- Uraiwan Waiwijit
- Thai Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thitima Maturos
- Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Saithip Pakapongpan
- Thai Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Ditsayut Phokharatkul
- Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anurat Wisitsoraat
- Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Adisorn Tuantranont
- Thai Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
27
|
Cinti S, Arduini F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosens Bioelectron 2016; 89:107-122. [PMID: 27522348 DOI: 10.1016/j.bios.2016.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023]
Abstract
K.S. Novoselov in his Nobel lecture (December 8, 2010), described graphene as "more than just a flat crystal" and summarized the best possible impression of graphene with (i) it is the first example of 2D atomic crystals, (ii) it demonstrated unique electronic properties, thanks to charge carriers which mimic massless relativistic particles, and (iii) it has promise for a number of applications. The fascinating and unusual properties of this 2D material were indeed recently investigated and exploited in several disciplines including physics, medicine, and chemistry, indicating the extremely versatile and polyedric aspect of this nanomaterial. The utilization of nanomaterials, printed technology, and microfluidics in electroanalysis has resulted in a period that can be called the "Electroanalysis Renaissance" (Escarpa, 2012) in which graphene is without any doubt a forefront nanomaterial. The rise in affordable fabrication processes, along with the great dispersing attitude in a plenty of matrices, have made graphene powerful in large-scale production of electrochemical platforms. Herein, we overview the employment of graphene to customize and/or fabricate printable based (bio)sensors over the past 5 years, including several modification approaches such as drop casting, screen- and inkjet-printing, different strategies of graphene-based sensing, and applications as well. The objective of this review is to provide a critical perspective related to advantages and disadvantages of using graphene in biosensing tools, based on screen-printed sensors.
Collapse
Affiliation(s)
- Stefano Cinti
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy.
| |
Collapse
|
28
|
Room temperature PEDOT:PSS encapsulated MWCNTs thin film for electrochemical supercapacitor. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Tirawattanakoson R, Rattanarat P, Ngamrojanavanich N, Rodthongkum N, Chailapakul O. Free radical scavenger screening of total antioxidant capacity in herb and beverage using graphene/PEDOT: PSS-modified electrochemical sensor. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.11.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Zheng D, Hu H, Liu X, Hu S. Application of graphene in elctrochemical sensing. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Kasinathan B, Zawawi RM, Lim HN. Voltammetric studies and characterizations of biocompatible graphene/collagen nanocomposite-modified glassy carbon electrode towards enantio-recognition of chiral molecules. J APPL ELECTROCHEM 2015. [DOI: 10.1007/s10800-015-0882-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Krzyczmonik P, Socha E, Skrzypek S. Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry 2015; 101:8-13. [DOI: 10.1016/j.bioelechem.2014.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/14/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
|
33
|
Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 2015; 131:424-43. [DOI: 10.1016/j.talanta.2014.07.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/19/2023]
|
34
|
Qin Y, Yuan J, Ma J, Kong Y, Xue H, Peng Y. Electrocatalytic synthesis of poly(2,6-diaminopyridine) on reduced graphene oxide and its application in glucose sensing. RSC Adv 2015. [DOI: 10.1039/c5ra07345f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to the electrocatalytic reduction of H2O2 at the PDAP-RGO, a sensitive platform for glucose sensing was constructed.
Collapse
Affiliation(s)
- Yong Qin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jie Yuan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jianfeng Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Yonggang Peng
- Jiangsu Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|
35
|
Taleat Z, Khoshroo A, Mazloum-Ardakani M. Screen-printed electrodes for biosensing: a review (2008–2013). Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1181-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|