• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619887)   Today's Articles (1523)   Subscriber (49404)
For: Li Y, Huangfu C, Du H, Liu W, Li Y, Ye J. Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: An excellent candidate for electroanalysis. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.09.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Number Cited by Other Article(s)
1
Wang S, Xue Y, Huang F, Yu Z, Jin Y. Facet impact of CeO2@C 2D core-shell structure on electrochemical reaction kinetic factor and efficient detection of nitrite. J Colloid Interface Sci 2024;660:1058-1070. [PMID: 38310054 DOI: 10.1016/j.jcis.2024.01.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
2
Niu Z, Liu Y, Li X, Yan K, Chen H. Electrochemical sensor for ultrasensitive detection of paraquat based on metal-organic frameworks and para-sulfonatocalix[4]arene-AuNPs composite. CHEMOSPHERE 2022;307:135570. [PMID: 35803381 DOI: 10.1016/j.chemosphere.2022.135570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
3
Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214627] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
4
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022;12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
5
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022;189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
6
Cui H, Cui S, Tian Q, Zhang S, Wang M, Zhang P, Liu Y, Zhang J, Li X. Electrochemical Sensor for the Detection of 1-Hydroxypyrene Based on Composites of PAMAM-Regulated Chromium-Centered Metal-Organic Framework Nanoparticles and Graphene Oxide. ACS OMEGA 2021;6:31184-31195. [PMID: 34841161 PMCID: PMC8613871 DOI: 10.1021/acsomega.1c04765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 05/31/2023]
7
Construction of a Tl(I) voltammetric sensor based on ZIF-67 nanocrystals: optimization of operational conditions via response surface design. Anal Bioanal Chem 2021;413:5215-5226. [PMID: 34259876 DOI: 10.1007/s00216-021-03493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023]
8
Metal–organic frameworks for electrochemical sensors of neurotransmitters. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213784] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
9
Kornienko N. Operando spectroscopy of nanoscopic metal/covalent organic framework electrocatalysts. NANOSCALE 2021;13:1507-1514. [PMID: 33210692 DOI: 10.1039/d0nr07508f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
10
Ko M, Mendecki L, Eagleton AM, Durbin CG, Stolz RM, Meng Z, Mirica KA. Employing Conductive Metal-Organic Frameworks for Voltammetric Detection of Neurochemicals. J Am Chem Soc 2020;142:11717-11733. [PMID: 32155057 DOI: 10.1021/jacs.9b13402] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
11
Chuang C, Kung C. Metal−Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. ELECTROANAL 2020. [DOI: 10.1002/elan.202060111] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
12
Hashemi F, Zanganeh AR, Naeimi F, Tayebani M. Fabrication of an electrochemical sensor based on metal-organic framework ZIF-8 for quantitation of silver ions: optimizing experimental conditions using central composite design (CCD). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020;12:3045-3055. [PMID: 32930165 DOI: 10.1039/d0ay00843e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
13
Cruz-Navarro JA, Hernandez-Garcia F, Alvarez Romero GA. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
14
Signal amplification for simultaneous determination of two proton pump inhibitors in biological matrix based on newly synthesized metal organic framework and polymeric film. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
15
Zhao L, Kuang X, Kuang R, Tong L, Liu Z, Hou Y, Sun X, Wang Z, Wei Q. MOF-Based Supramolecule Helical Nanomaterials: Toward Highly Enantioselective Electrochemical Recognition of Penicillamine. ACS APPLIED MATERIALS & INTERFACES 2020;12:1533-1538. [PMID: 31815425 DOI: 10.1021/acsami.9b18183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
16
Naghian E, Marzi Khosrowshahi E, Sohouli E, Ahmadi F, Rahimi-Nasrabadi M, Safarifard V. A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of Zn(ii)-MOF. NEW J CHEM 2020. [DOI: 10.1039/d0nj01322f] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
17
Hu ML, Razavi SAA, Piroozzadeh M, Morsali A. Sensing organic analytes by metal–organic frameworks: a new way of considering the topic. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01617a] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
18
Graphite paste electrodes modified with a sulfo-functionalized metal-organic framework (type MIL-101) for voltammetric sensing of dopamine. Mikrochim Acta 2019;186:762. [PMID: 31712906 DOI: 10.1007/s00604-019-3943-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/12/2019] [Indexed: 01/02/2023]
19
Gan T, Li J, Xu L, Yao Y, Liu Y. Construction of a voltammetric sensor based on MIL-101 hollow cages for electrocatalytic oxidation and sensitive determination of nitrofurazone. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
20
Ruichi Zhao, Sun S, Hao W, Guo H, Gao Y, Shi L. A Highly Sensitive Determination for the Melamine in Milk on MIL-101/AuNPs/CTS-PVP-rGO/GCE Electrochemical Sensor. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519070048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
21
Metal-organic frameworks as materials for applications in sensors. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
22
Wang Q, Astruc D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem Rev 2019;120:1438-1511. [DOI: 10.1021/acs.chemrev.9b00223] [Citation(s) in RCA: 894] [Impact Index Per Article: 178.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
23
Facile synthesis and characterization of novel dicarboxylate-Cu based MOFs materials. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
24
Guo H, Guo W, Liu Y, Ren X. Quinone-modified metal-organic frameworks MIL-101(Fe) as heterogeneous catalysts of persulfate activation for degradation of aqueous organic pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019;79:2357-2365. [PMID: 31411590 DOI: 10.2166/wst.2019.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
25
Metal organic frameworks in electrochemical and optical sensing platforms: a review. Mikrochim Acta 2019;186:196. [DOI: 10.1007/s00604-019-3321-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
26
Sofi FA, Bhat MA, Majid K. Cu2+-BTC based metal–organic framework: a redox accessible and redox stable MOF for selective and sensitive electrochemical sensing of acetaminophen and dopamine. NEW J CHEM 2019. [DOI: 10.1039/c8nj06224b] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
27
Al'Abri AM, Abdul Halim SN, Abu Bakar NK, Saharin SM, Sherino B, Rashidi Nodeh H, Mohamad S. Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019;54:930-941. [PMID: 31407615 DOI: 10.1080/03601234.2019.1652072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
28
Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
29
A non-enzymatic voltammetric xanthine sensor based on the use of platinum nanoparticles loaded with a metal-organic framework of type MIL-101(Cr). Application to simultaneous detection of dopamine, uric acid, xanthine and hypoxanthine. Mikrochim Acta 2018;186:9. [DOI: 10.1007/s00604-018-3128-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
30
Liao PQ, Shen JQ, Zhang JP. Metal–organic frameworks for electrocatalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
31
Vulcu A, Biris AR, Borodi G, Berghian-Grosan C. Interference of ascorbic and uric acids on dopamine behavior at graphene composite surface: An electrochemical, spectroscopic and theoretical approach. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
32
Hou C, Zhao D, Wang Y, Zhang S, Li S. Preparation of magnetic Fe3O4/PPy@ZIF-8 nanocomposite for glucose oxidase immobilization and used as glucose electrochemical biosensor. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
33
Gu J, Yin X, Bo X, Guo L. High Performance Electrocatalyst Based on MIL-101(Cr)/Reduced Graphene Oxide Composite: Facile Synthesis and Electrochemical Detections. ChemElectroChem 2018. [DOI: 10.1002/celc.201800588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
34
Wang H, Hu Q, Meng Y, Jin Z, Fang Z, Fu Q, Gao W, Xu L, Song Y, Lu F. Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. JOURNAL OF HAZARDOUS MATERIALS 2018;353:151-157. [PMID: 29660701 DOI: 10.1016/j.jhazmat.2018.02.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
35
Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.028] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
36
Wang Y, Guo W, Li X. Activation of persulfates by ferrocene–MIL-101(Fe) heterogeneous catalyst for degradation of bisphenol A. RSC Adv 2018;8:36477-36483. [PMID: 35558948 PMCID: PMC9088819 DOI: 10.1039/c8ra07007e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022]  Open
37
Liu L, Zhou Y, Liu S, Xu M. The Applications of Metal−Organic Frameworks in Electrochemical Sensors. ChemElectroChem 2017. [DOI: 10.1002/celc.201700931] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
38
Brondani D, Zapp E, da Silva Heying R, de Souza B, Cruz Vieira I. Copper-based Metal-organic Framework Applied in the Development of an Electrochemical Biomimetic Sensor for Catechol Determination. ELECTROANAL 2017. [DOI: 10.1002/elan.201700509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
39
Zheng YY, Li CX, Ding XT, Yang Q, Qi YM, Zhang HM, Qu LT. Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
40
Arul P, John SA. Silver nanoparticles built-in zinc metal organic framework modified electrode for the selective non-enzymatic determination of H2O2. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.097] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
41
The synthesis of a lanthanum metal–organic framework and its sensitivity electrochemical detection of H2O2. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-016-0011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
42
Li X, Guo W, Liu Z, Wang R, Liu H. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2017;324:665-672. [PMID: 27876243 DOI: 10.1016/j.jhazmat.2016.11.040] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
43
Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem Soc Rev 2017;46:3185-3241. [DOI: 10.1039/c7cs00122c] [Citation(s) in RCA: 800] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
44
Solomon MB, Church TL, D'Alessandro DM. Perspectives on metal–organic frameworks with intrinsic electrocatalytic activity. CrystEngComm 2017. [DOI: 10.1039/c7ce00215g] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
45
Zhang W, Chen J, Li Y, Yang W, Zhang Y, Zhang Y. Novel UIO-66-NO2@XC-72 nanohybrid as an electrode material for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 2017. [DOI: 10.1039/c6ra26933h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
46
Liu W, Yin XB. Metal–organic frameworks for electrochemical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.07.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
47
Peng Z, Jiang Z, Huang X, Li Y. A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode. RSC Adv 2016. [DOI: 10.1039/c5ra25251b] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
48
Fotouhi L, Naseri M. Recent Electroanalytical Studies of Metal-Organic Frameworks: A Mini-Review. Crit Rev Anal Chem 2015;46:323-31. [PMID: 26186624 DOI: 10.1080/10408347.2015.1063978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
49
Xu Z, Yang L, Xu C. Pt@UiO-66 Heterostructures for Highly Selective Detection of Hydrogen Peroxide with an Extended Linear Range. Anal Chem 2015;87:3438-44. [DOI: 10.1021/ac5047278] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
50
Yang J, Zhao F, Zeng B. One-step synthesis of a copper-based metal–organic framework–graphene nanocomposite with enhanced electrocatalytic activity. RSC Adv 2015. [DOI: 10.1039/c4ra16950f] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA