1
|
Almeida JMS, Pedro ZSB, Buoro RM, Brett CMA. Binary and Ternary Deep Eutectic Solvents for Methylene Green Electropolymerization on Multiwalled Carbon Nanotubes: Optimization, Characterization and Application. Chemistry 2024; 30:e202401752. [PMID: 38900538 DOI: 10.1002/chem.202401752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Choline chloride (ChCl) based binary and ternary deep eutectic solvents (DES) were evaluated for methylene green electropolymerization with oxalic acid (OA) and ethylene glycol (EG) as hydrogen bond donors. Binary DES ChCl : OA in molar ratios 1 : 1 and 2 : 1 and ChCl : EG 1 : 2 and ternary DES (tDES) in different molar ratios and percentages of water were evaluated. The highest polymer growth was in ChCl : OA : EG-tDES with 13% added water, that had a lower viscosity and higher ionic conductivity when associated with HCl as dopant. This enhanced the formation of more cation radicals and, consequently, more polymer formation. The PMG/MWCNT/GCE-tDES sensor was successfully applied to the simultaneous determination of 5-aminosalicylic acid (5-ASA) and acetaminophen (APAP) by differential pulse voltammetry in the concentration range 1 μM-200 μM, with detection limits of 0.37 μM and 0.49 μM for 5-ASA and APAP, respectively. The sensor demonstrated good repeatability, reproducibility and stability, and was successfully applied in pharmaceutical formulations.
Collapse
Affiliation(s)
- Joseany M S Almeida
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Zeferino S B Pedro
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Rafael M Buoro
- Department of Chemistry and Molecular Physics, São Carlos Chemistry Institute, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Christopher M A Brett
- Department of Chemistry, CEMMPRE, ARISE, Faculty of Sciences and Technology, University of Coimbra, 3004-535, Coimbra, Portugal
| |
Collapse
|
2
|
Kulikova T, Shamagsumova R, Rogov A, Stoikov I, Padnya P, Shiabiev I, Evtugyn G. Electrochemical DNA-Sensor Based on Macrocyclic Dendrimers with Terminal Amino Groups and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:4761. [PMID: 37430675 DOI: 10.3390/s23104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established. The developed DNA sensors were tested on discrimination of native, thermally denatured, and chemically damaged DNA and on the determination of doxorubicin as the model intercalator. The limit of detection of doxorubicin established for the biosensor based on multi-walled carbon nanotubes was equal to 1.0 pM with recovery from spiked human serum of 105-120%. After further optimization of the assembling directed towards the stabilization of the signal, the developed DNA sensors can find application in the preliminary screening of antitumor drugs and thermal damage of DNA. They can also be applied for testing potential drug/DNA nanocontainers as future delivery systems.
Collapse
Affiliation(s)
- Tatjana Kulikova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Rezeda Shamagsumova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Igor Shiabiev
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Gennady Evtugyn
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
3
|
Liang X, Zhou Y, Almeida JM, Brett CM. A novel electrochemical acetaminophen sensor based on multiwalled carbon nanotube and poly(neutral red) modified electrodes with electropolymerization in ternary deep eutectic solvents. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Soranzo T, Ben Tahar A, Chmayssem A, Zelsmann M, Vadgama P, Lenormand JL, Cinquin P, K. Martin D, Zebda A. Electrochemical Biosensing of Glucose Based on the Enzymatic Reduction of Glucose. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197105. [PMID: 36236202 PMCID: PMC9572614 DOI: 10.3390/s22197105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/12/2023]
Abstract
In this work, the enzyme aldehyde reductase, also known as aldose reductase, was synthesized and cloned from a human gene. Spectrophotometric measurements show that in presence of the nicotinamide adenine dinucleotide phosphate cofactor (NADPH), the aldehyde reductase catalyzed the reduction of glucose to sorbitol. Electrochemical measurements performed on an electrodeposited poly(methylene green)-modified gold electrode showed that in the presence of the enzyme aldehyde reductase, the electrocatalytic oxidation current of NADPH decreased drastically after the addition of glucose. These results demonstrate that aldehyde reductase is an enzyme that allows the construction of an efficient electrochemical glucose biosensor based on glucose reduction.
Collapse
Affiliation(s)
- Thomas Soranzo
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Awatef Ben Tahar
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Ayman Chmayssem
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Marc Zelsmann
- Univ. Grenoble Alpes, CNRS, CEA-LETI, Grenoble INP, LTM, F-38054 Grenoble, France
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jean-Luc Lenormand
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Phillipe Cinquin
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Donald K. Martin
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Abdelkader Zebda
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| |
Collapse
|
5
|
Tesfaye G, Hailu T, Ele E, Negash N, Tessema M. Square wave voltammetric determination of quercetin in wine and fruit juice samples at poly (safranine O) modified glassy carbon electrode. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Chen S, Zhang M, Zhang H, Yan X, Xie J, Qi J, Sun X, Li J. Dicyandiamide-assisted HKUST-1 derived Cu/N-doped porous carbon nanoarchitecture for electrochemical detection of acetaminophen. ENVIRONMENTAL RESEARCH 2021; 201:111500. [PMID: 34147465 DOI: 10.1016/j.envres.2021.111500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
MOFs-derived metal/carbon materials have been considered as promising candidates for the electrochemical detection of micropollutants. However, the aggregation of metal nanoparticles and structure collapse of precursor MOFs during pyrolysis significantly hamper the improvement on detecting performance. Herein, a dicyandiamide-assisted strategy is utilized to synthesize well-dispersed Cu/N-doped porous carbon nanoarchitecture (CuNC) for the electrochemical detection of acetaminophen (AP). The constructed CuNC sensor exhibits excellent electro-analytical performance for monitoring AP with linear range from 0.01 μM to 921.2 μM, and the low detection limit of 2.46 nM (S/N = 3). The improved performance of CuNC sensor is ascribed to the introduction of dicyandiamide, which can prevent HKUST-1 framework breakage and reduce the aggregation tendency of Cu, leading to the evenly distributed small Cu nanoparticles, abundant N species, hierarchical channel structure, and high conductivity carbon framework. These advantages endow predominant repeatability, stability, and selectivity of CuNC sensor. This strategy provided a novel approach to preparing MOFs-derived carbon nanoarchitectures with excellent electroanalysis performance to monitor micropollutants.
Collapse
Affiliation(s)
- Saisai Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Ming Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jia Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
7
|
An expedition of WBiVO4 blended f-MWCNTs nanocomposite for enhanced electrochemical detection of non-steroidal anti-inflammatory drug acetaminophenol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Dalkiran B, Brett CMA. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial-based electrochemical sensors and biosensors: a review. Mikrochim Acta 2021; 188:178. [PMID: 33913010 DOI: 10.1007/s00604-021-04821-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
In recent years, an increasing number of studies has demonstrated that redox polymers can be used in simple and effective electrochemical sensing platforms due to their fast electron transfer and electrocatalytic ability. To develop more sensitive and selective electrochemical (bio)sensors, the electrocatalytic properties of redox polymers and the electrical, mechanical, and catalytic properties of various nanomaterials are combined. This review aims to summarize and contribute to the development of (bio)sensors based on polyphenazine or polytriphenylmethane redox polymers combined with nanomaterials, including carbon-based nanomaterials, metal/metal oxide, and semiconductor nanoparticles. The synthesis, preparation, and modification of these nanocomposites is presented and the contribution of each material to the performance of (bio)sensor has been be examined. It is explained how the combined use of these redox polymers and nanomaterials as a sensing platform leads to improved analytical performance of the (bio)sensors. Finally, the analytical performance characteristics and practical applications of polyphenazine and polytriphenylmethane redox polymer/nanomaterial-based electrochemical (bio)sensors are compared and discussed.
Collapse
Affiliation(s)
- Berna Dalkiran
- Department of Chemistry, University of Coimbra, CEMMPRE, 3004-535, Coimbra, Portugal.,Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey
| | - Christopher M A Brett
- Department of Chemistry, University of Coimbra, CEMMPRE, 3004-535, Coimbra, Portugal.
| |
Collapse
|
9
|
Hybrid Nanocomposite Platform, Based on Carbon Nanotubes and Poly(Methylene Blue) Redox Polymer Synthesized in Ethaline Deep Eutectic Solvent for Electrochemical Determination of 5-Aminosalicylic Acid. SENSORS 2021; 21:s21041161. [PMID: 33562228 PMCID: PMC7915580 DOI: 10.3390/s21041161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
A novel hybrid composite of conductive poly(methylene blue) (PMB) and carbon nanotubes (CNT) was prepared for the detection of 5-aminosalicylic acid (5-ASA). Electrosynthesis of PMB with glassy carbon electrode (GCE) or with carbon nanotube modified GCE was done in ethaline deep eutectic solvent of choline chloride mixed with ethylene glycol and a 10% v/v aqueous solution. Different sensor architectures were evaluated in a broad range of pH values in a Britton-Robinson (BR) buffer using electrochemical techniques, chronoamperometry (CA), and differential pulse voltammetry (DPV), to determine the optimum sensor configuration for 5-ASA sensing. Under optimal conditions, the best analytical performance was obtained with CNT/PMBDES/GCE in 0.04 M BR buffer pH 7.0 in the range 5-100 µM 5-ASA using the DPV method, with an excellent sensitivity of 9.84 μA cm-2 μM-1 (4.9 % RSD, n = 5) and a detection limit (LOD) (3σ/slope) of 7.7 nM, outclassing most similar sensors found in the literature. The sensitivity of the same sensor obtained in CA (1.33 μA cm-2 μM-1) under optimal conditions (pH 7.0, Eapp = +0.40 V) was lower than that obtained by DPV. Simultaneous detection of 5-ASA and its analogue, acetaminophen (APAP), was successfully realized, showing a catalytic effect towards the electro-oxidation of both analytes, lowering their oxidation overpotential, and enhancing the oxidation peak currents and peak-to-peak separation as compared with the unmodified electrode. The proposed method is simple, sensitive, easy to apply, and economical for routine analysis.
Collapse
|
10
|
Development of carbon-based sensors for electrochemical quantification of vitamins B2 and B6 at nanomolar levels. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01387-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Kaçar C. Disposable Bienzymatic Choline Biosensor Based on MnO
2
Nanoparticles Decorated Carbon Nanofibers and Poly(methylene green) Modified Screen Printed Carbon Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ceren Kaçar
- Department of Chemistry Faculty of Science Ankara University Ankara TURKEY
| |
Collapse
|
12
|
da Silva W, Queiroz AC, Brett CM. Nanostructured Poly(Phenazine)/Fe2O3 nanoparticle film modified electrodes formed by electropolymerization in ethaline - Deep eutectic solvent. Microscopic and electrochemical characterization. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136284] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Design and synthesis of phenothiazine based imidazolium ionic liquid for electrochemical nonenzymatic detection of sulfite in food samples. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Amini R, Asadpour‐Zeynali K. Cauliflower‐like NiCo
2
O
4
−Zn/Al Layered Double Hydroxide Nanocomposite as an Efficient Electrochemical Sensing Platform for Selective Pyridoxine Detection. ELECTROANAL 2020. [DOI: 10.1002/elan.201900600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Roghayeh Amini
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Tabriz Tabriz 51666-16471 Iran
- Pharmaceutical Analysis Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Karim Asadpour‐Zeynali
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of Tabriz Tabriz 51666-16471 Iran
| |
Collapse
|
15
|
Gold nanoparticles/tetraaminophenyl porphyrin functionalized multiwalled carbon nanotubes nanocomposites modified glassy carbon electrode for the simultaneous determination of p-acetaminophen and p-aminophenol. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
16
|
Abstract
Background:
The determination of drugs in pharmaceutical formulations and human biologic fluids is
important for pharmaceutical and medical sciences. Successful analysis requires low sensitivity, high selectivity
and minimum interference effects. Current analytical methods can detect drugs at very low levels but these methods
require long sample preparation steps, extraction prior to analysis, highly trained technical staff and high-cost
instruments. Biosensors offer several advantages such as short analysis time, high sensitivity, real-time analysis,
low-cost instruments, and short pretreatment steps over traditional techniques. Biosensors allow quantification not
only of the active component in pharmaceutical formulations, but also the degradation products and metabolites in
biological fluids. The present review gives comprehensive information on the application of biosensors for drug
discovery and analysis. Moreover, this review focuses on the fabrication of these biosensors.
Methods:
Biosensors can be classified as the utilized bioreceptor and the signal transduction mechanism. The classification
based on signal transductions includes electrochemical optical, thermal or acoustic. Electrochemical and
optic transducers are mostly utilized transducers used for drug analysis. There are many biological recognition elements,
such as enzymes, antibodies, cells that have been used in fabricating of biosensors. Aptamers and antibodies
are the most widely used recognition elements for the screening of the drugs. Electrochemical sensors and biosensors
have several advantages such as low detection limits, a wide linear response range, good stability and reproducibility.
Optical biosensors have several advantages such as direct, real-time and label-free detection of many
biological and chemical substances, high specificity, sensitivity, small size and low cost. Modified electrodes enhance
sensitivity of the electrodes to develop a new biosensor with desired features. Chemically modified electrodes
have gained attention in drug analysis owing to low background current, wide potential window range, simple
surface renewal, low detection limit and low cost. Modified electrodes produced by modifying of a solid surface
electrode via different materials (carbonaceous materials, metal nanoparticles, polymer, biomolecules) immobilization.
Recent advances in nanotechnology offer opportunities to design and construct biosensors. Unique features
of nanomaterials provide many advantages in the fabrication of biosensors. Nanomaterials have controllable
chemical structures, large surface to volume ratios, functional groups on their surface. To develop proteininorganic
hybrid nanomaterials, four preparation methods have been used. These methods are immobilization, conjugation,
crosslinking and self-assembly. In the present manuscript, applications of different biosensors, fabricated
by using several materials, for drug analysis are reviewed. The biosensing strategies are investigated and discussed
in detail.
Results:
Several analytical techniques such as chromatography, spectroscopy, radiometry, immunoassays and electrochemistry
have been used for drug analysis and quantification. Methods based on chromatography require timeconsuming
procedure, long sample-preparation steps, expensive instruments and trained staff. Compared to chromatographic
methods, immunoassays have simple protocols and lower cost. Electrochemical measurements have
many advantages over traditional chemical analyses and give information about drug quantity, metabolic fate of
drugs, and pharmacological activity. Moreover, the electroanalytical methods are useful to determine drugs sensitively
and selectivity. Additionally, these methods decrease analysis cost and require low-cost instruments and
simple sample pretreatment steps.
Conclusion:
In recent years, drug analyses are performed using traditional techniques. These techniques have a
good detection limit, but they have some limitations such as long analysis time, expensive device and experienced
personnel requirement. Increased demand for practical and low-cost analytical techniques biosensor has gained interest
for drug determinations in medical sciences. Biosensors are unique and successful devices when compared to
traditional techniques. For drug determination, different electrode modification materials and different biorecognition
elements are used for biosensor construction. Several biosensor construction strategies have been developed to
enhance the biosensor performance. With the considerable progress in electrode surface modification, promotes the
selectivity of the biosensor, decreases the production cost and provides miniaturization. In the next years, advances
in technology will provide low cost, sensitive, selective biosensors for drug analysis in drug formulations and biological
samples.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Muhammet Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Mustafa Kemal Sezginturk
- Canakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Canakkale, Turkey
| |
Collapse
|
17
|
Koçak ÇC. Poly(Taurine‐Glutathione)/Carbon Nanotube Modified Glassy Carbon Electrode as a New Levofloxacin Sensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Çağrı Ceylan Koçak
- Dokuz Eylul UniversityBergama Vocational School 35700 Bergama, Izmir Turkey Tel: +90 (0232) 632 12 47/115 Fax: +90 (0232) 631 11 10
| |
Collapse
|
18
|
Manoj D, Rajendran S, Qin J, Sundaravadivel E, Yola ML, Atar N, Gracia F, Boukherroub R, Gracia-Pinilla M, Gupta VK. Heterostructures of mesoporous TiO2 and SnO2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets. J Colloid Interface Sci 2019; 542:45-53. [DOI: 10.1016/j.jcis.2019.01.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
|
19
|
Electrochemical sensing of acetaminophen using a practical carbon paste electrode modified with a graphene oxide-Y2O3 nanocomposite. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Li F, Li R, Feng Y, Gong T, Zhang M, Wang L, Meng T, Jia H, Wang H, Zhang Y. Facile synthesis of Au-embedded porous carbon from metal-organic frameworks and for sensitive detection of acetaminophen in pharmaceutical products. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:78-85. [DOI: 10.1016/j.msec.2018.10.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 09/11/2018] [Accepted: 10/21/2018] [Indexed: 01/07/2023]
|
21
|
Enhanced electrochemical sensitivity towards acetaminophen determination using electroactive self-assembled ferrocene derivative polymer nanospheres with multi-walled carbon nanotubes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Veera Manohara Reddy Y, Bathinapatla S, Łuczak T, Osińska M, Maseed H, Ragavendra P, Subramanyam Sarma L, Srikanth VVSS, Madhavi G. An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. NEW J CHEM 2018. [DOI: 10.1039/c7nj04775d] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we report a one-step procedure for the fabrication of Pd–Ag bimetallic nanoparticles on the surface of a graphene oxide (rGO) support.
Collapse
Affiliation(s)
- Y. Veera Manohara Reddy
- Electrochemical Research Laboratory
- Department of Chemistry
- Sri Venkateswara University
- Tirupati
- India
| | - Sravani Bathinapatla
- Nanoelectrochemistry Laboratory
- Department of Chemistry
- Yogi Vemana University
- Kadapa
- India
| | - T. Łuczak
- Department of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - M. Osińska
- Poznan University of Technology
- Institute of Chemistry and Technical Electrochemistry
- Poznań
- Poland
| | - H. Maseed
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad
- India
| | - P. Ragavendra
- Nanoelectrochemistry Laboratory
- Department of Chemistry
- Yogi Vemana University
- Kadapa
- India
| | - L. Subramanyam Sarma
- Nanoelectrochemistry Laboratory
- Department of Chemistry
- Yogi Vemana University
- Kadapa
- India
| | - V. V. S. S. Srikanth
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad
- India
| | - G. Madhavi
- Electrochemical Research Laboratory
- Department of Chemistry
- Sri Venkateswara University
- Tirupati
- India
| |
Collapse
|
23
|
Ex-situ decoration of ordered mesoporous carbon with palladium nanoparticles via polyoxometalates and for sensitive detection of acetaminophen in pharmaceutical products. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2420-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Kurbanoglu S, Ozkan SA. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2017; 147:439-457. [PMID: 28780997 DOI: 10.1016/j.jpba.2017.06.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology has become very popular in the sensor fields in recent times. It is thought that the utilization of such technologies, as well as the use of nanosized materials, could well have beneficial effects for the performance of sensors. Nano-sized materials have been shown to have a number of novel and interesting physical and chemical properties. Low-dimensional nanometer-sized materials and systems have defined a new research area in condensed-matter physics within past decades. Apart from the aforesaid categories of materials, there exist various materials of different types for fabricating nanosensors. Carbon is called as a unique element, due to its magnificent applications in many areas. Carbon is an astonishing element that can be found many forms including graphite, diamond, fullerenes, and graphene. This review provides an overview of some of the important and recent developments brought about by the application of carbon based nanostructures to nanotechnology for both chemical and biological sensor development and their application in pharmaceutical and biomedical area.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey.
| |
Collapse
|
26
|
Song Y, Shen Y, Gong C, Chen J, Xu M, Wang L, Wang L. A Novel Glucose Biosensor Based on Tb@Mesoporous Metal-Organic Frameworks/Carbon Nanotube Nanocomposites. ChemElectroChem 2017. [DOI: 10.1002/celc.201600895] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Yuan Shen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Coucong Gong
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Jingyi Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Mengli Xu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Linyu Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering; Jiangxi Normal University; Nanchang 330022 P.R. China
| |
Collapse
|
27
|
Hosu O, Bârsan MM, Cristea C, Săndulescu R, Brett CM. Nanostructured electropolymerized poly(methylene blue) films from deep eutectic solvents. Optimization and characterization. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Fernandes DM, Nunes M, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Delerue-Matos C, Freire C. PMo11V@N-CNT electrochemical properties and its application as electrochemical sensor for determination of acetaminophen. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3463-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Raj MA, Gowthaman NSK, John SA. Highly sensitive interference-free electrochemical determination of pyridoxine at graphene modified electrode: Importance in Parkinson and Asthma treatments. J Colloid Interface Sci 2016; 474:171-8. [PMID: 27124811 DOI: 10.1016/j.jcis.2016.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
To reduce the side effects in the medication of Parkinson and Asthma, pyridoxine (PY) is administered along with l-3,4-dihydroxyphenyl alanine (l-dopa) and theophylline (TP), respectively. However, excessive dosage of PY leads to nervous disorder. Thus, a sensitive and selective electrochemical method was developed for the determination of PY in the presence of major interferences including TP, l-dopa, ascorbic acid (AA) and riboflavin (RB) using electrochemically reduced graphene oxide (ERGO) film modified glassy carbon electrode (GCE) in this paper. The ERGO fabrication process involves the nucleophilic substitution of graphene oxide at basic pH on amine terminal of 1,6-hexadiamine which was pre-assembled on GCE followed by electrochemical reduction. The electrocatalytic activity of the ERGO modified electrode was examined towards the oxidation of PY. It greatly enhanced the oxidation current of PY in contrast to bare and GO modified GCEs due to facile electron transfer besides π-π interaction between ERGO film and PY. Since TP and l-dopa drugs antagonize the drug action of PY, ERGO modified GCE was also used for the simultaneous determination of PY and l-dopa and PY and TP. Further, the selective determination of PY in the presence of other water soluble vitamins such as ascorbic acid and riboflavin was also demonstrated. Using amperometry, detection of 100nM PY was achieved and the detection limit was found to be 5.6×10(-8)M (S/N=3). The practical application of the present method was demonstrated by determining the concentration of PY in human blood serum and commercial drugs.
Collapse
Affiliation(s)
- M Amal Raj
- Department of Chemistry, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - N S K Gowthaman
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, Tamil Nadu, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, Tamil Nadu, India.
| |
Collapse
|
30
|
|
31
|
Patra S, Roy E, Das R, Karfa P, Kumar S, Madhuri R, Sharma PK. RETRACTED: Bimetallic magnetic nanoparticle as a new platform for fabrication of pyridoxine and pyridoxal-5′-phosphate imprinted polymer modified high throughput electrochemical sensor. Biosens Bioelectron 2015; 73:234-244. [DOI: 10.1016/j.bios.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/22/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
|
32
|
Cernat A, Tertiş M, Săndulescu R, Bedioui F, Cristea A, Cristea C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal Chim Acta 2015; 886:16-28. [PMID: 26320632 DOI: 10.1016/j.aca.2015.05.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
This study describes the advancements made over the last five years in the development of electrochemical sensors and biosensors for acetaminophen detection. This study reviews the different configurations based on unmodified and chemically modified carbon nanotubes and graphene. The influence of various modifiers on the two types of materials is presented along with their role on the enhancement of the selectivity and sensitivity of (bio)sensors. The review is focused on a comparative description of the applications of carbon-based nanomaterials towards acetaminophen detection and presents the results in a critical manner.
Collapse
Affiliation(s)
- Andreea Cernat
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Mihaela Tertiş
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Robert Săndulescu
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Fethi Bedioui
- PSL Research University, Chimie Paris Tech, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France; CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris UMR 8258, Paris, France; Université Paris Descartes, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris, France; INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé 1022, Paris, France
| | - Alexandru Cristea
- Department of Building Services, Faculty of Building Services, Technical University of Cluj-Napoca, 21 December 1989 Avenue, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania.
| |
Collapse
|
33
|
Poly(thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2926-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|