1
|
de Lima LF, Ferreira AL, Ranjan I, Collman RG, de Araujo WR, de la Fuente-Nunez C. A bacterial cellulose-based and low-cost electrochemical biosensor for ultrasensitive detection of SARS-CoV-2. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101476. [PMID: 38239909 PMCID: PMC10795702 DOI: 10.1016/j.xcrp.2023.101476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
COVID-19 has led to over 6.8 million deaths worldwide and continues to affect millions of people, primarily in low-income countries and communities with low vaccination coverage. Low-cost and rapid response technologies that enable accurate, frequent testing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are crucial for outbreak prevention and infectious disease control. Here we produce and characterize cellulose fibers naturally generated by the bacterium Gluconacetobacter hansenii as an alternative biodegradable substrate for manufacturing an eco-friendly diagnostic test for COVID-19. Using this green technology, we describe a novel and label-free potentiometric diagnostic test that can detect SARS-CoV-2 within 10 min and costs US$3.50 per unit. The test has bacterial cellulose (BC) as its substrate and a carbon-based electrode modified with graphene oxide and the human angiotensin-converting enzyme-2 (ACE2) as its receptor. Our device accurately and precisely detects emerging SARS-CoV-2 variants and demonstrates exceptional sensitivity, specificity, and accuracy for tested clinical nasopharyngeal/oropharyngeal (NP/OP) samples.
Collapse
Affiliation(s)
- Lucas F. de Lima
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
- These authors contributed equally
| | - André L. Ferreira
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
- These authors contributed equally
| | - Ishani Ranjan
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William R. de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Lead contact
| |
Collapse
|
2
|
Pilan L. Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochemistry 2020; 138:107697. [PMID: 33486222 DOI: 10.1016/j.bioelechem.2020.107697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanomaterials (CNs) offer some of the most valuable properties for electrochemical biosensing applications, such as good electrical conductivity, wide electrochemical stability, high specific surface area, and biocompatibility. Regardless the envisioned sensing application, endowing CNs with specific functions through controlled chemical functionalization is fundamental for promoting the specific binding of the analyte. As a versatile and straightforward method of surface functionalization, aryldiazonium chemistry have been successfully used to accommodate in a stable and reproducible way different functionalities, while the electrochemical route has become the favourite choice since the deposition conditions can be readily controlled and adapted to the substrate. In particular, the modification of CNs by electrochemical reduction of aryl diazonium salts is established as a powerful tool which allows tailoring the chemical and electronic properties of the sensing platform. By outlining the stimulating results disclosed in the last years, this article provides not only a comprehensively review, but also a rational assessment on contribution of aryldiazonium electrografting in developing CNs-based electrochemical biosensors. Furthermore, some of the emerging challenges to be surpassed to effectively implement this methodology for in vivo and point of care analysis are also highlighted.
Collapse
Affiliation(s)
- Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
3
|
Silver Chloride/Ferricyanide-Based Quasi-Reference Electrode for Potentiometric Sensing Applications. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Processes’ occurring at the Ag/AgCl/Cl–, ([Fe(CN)6]3–/4–) ions interface study results are presented. Conditions are selected for the mixed salts’ precipitate formation on the silver surface. It has been shown that the potential of a silver screen-printed electrode (AgSPE) coated with a mixed precipitate containing silver chloride/ferricyanide is stable in the presence of [Fe(CN)6]3–/4–. The electrode can serve as a quasi-reference electrode (QRE) in electrochemical measurements in media containing ions [Fe(CN)6]3−/4−. The electrode is formed during polarization of AgSPE (0.325 V vs. Ag/AgCl/KCl, 3.5 M) in a solution containing chloride- and ferri/ferrocyanides ions. The results of the obtained QRE study by potentiometry, scanning electron microscopy and cyclic voltammetry are presented. The proposed QRE was used in a sensor system to evaluate the antioxidant activity (AOA) of solutions by hybrid potentiometric method (HPM). The results of AOA assessment of fruit juices and biofluids obtained using new QRE and commercial Ag/AgCl RE with separated spaces do not differ.
Collapse
|
4
|
Kas R, Ayemoba O, Firet NJ, Middelkoop J, Smith WA, Cuesta A. In-Situ Infrared Spectroscopy Applied to the Study of the Electrocatalytic Reduction of CO 2 : Theory, Practice and Challenges. Chemphyschem 2019; 20:2904-2925. [PMID: 31441195 DOI: 10.1002/cphc.201900533] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/22/2019] [Indexed: 11/11/2022]
Abstract
The field of electrochemical CO2 conversion is undergoing significant growth in terms of the number of publications and worldwide research groups involved. Despite improvements of the catalytic performance, the complex reaction mechanisms and solution chemistry of CO2 have resulted in a considerable amount of discrepancies between theoretical and experimental studies. A clear identification of the reaction mechanism and the catalytic sites are of key importance in order to allow for a qualitative breakthrough and, from an experimental perspective, calls for the use of in-situ or operando spectroscopic techniques. In-situ infrared spectroscopy can provide information on the nature of intermediate species and products in real time and, in some cases, with relatively high time resolution. In this contribution, we review key theoretical aspects of infrared reflection spectroscopy, followed by considerations of practical implementation. Finally, recent applications to the electrocatalytic reduction of CO2 are reviewed, including challenges associated with the detection of reaction intermediates.
Collapse
Affiliation(s)
- Recep Kas
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Onagie Ayemoba
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| | - Nienke J Firet
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Joost Middelkoop
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Wilson A Smith
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Angel Cuesta
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK
| |
Collapse
|
5
|
Vermisoglou E, Jakubec P, Bakandritsos A, Pykal M, Talande S, Kupka V, Zbořil R, Otyepka M. Chemical Tuning of Specific Capacitance in Functionalized Fluorographene. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:4698-4709. [PMID: 31371868 PMCID: PMC6662882 DOI: 10.1021/acs.chemmater.9b00655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/06/2019] [Indexed: 05/14/2023]
Abstract
Owing to its high surface area and excellent conductivity, graphene is considered an efficient electrode material for supercapacitors. However, its restacking in electrolytes hampers its broader utilization in this field. Covalent graphene functionalization is a promising strategy for providing more efficient electrode materials. The chemistry of fluorographene is particularly attractive as it allows scalable chemical production of useful graphene derivatives. Nevertheless, the influence of chemical composition on the capacitance of graphene derivatives is a largely unexplored field in nanomaterials science, limiting further development of efficient graphene-based electrode materials. In the present study, we obtained well-defined graphene derivatives differing in chemical composition but with similar morphologies by controlling the reaction time of 5-aminoisophthalic acid with fluorographene. The gravimetric specific capacitance ranged from 271 to 391 F g-1 (in 1 M Na2SO4), with the maximum value achieved by a delicate balance between the amount of covalently grafted functional groups and density of the sp2 carbon network governing the conductivity of the material. Molecular dynamics simulations showed that covalent grafting of functional groups with charged and ionophilic/hydrophilic character significantly enhanced the ionic concentration and hydration due to favorable electrostatic interactions among the charged centers and ions/water molecules. Therefore, conductive and hydrophilic graphitic surfaces are important features of graphene-based supercapacitor electrode materials. These findings provide important insights into the role of chemical composition on capacitance and pave the way toward designing more efficient graphene-based supercapacitor electrode materials.
Collapse
Affiliation(s)
- Eleni
C. Vermisoglou
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Petr Jakubec
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Aristides Bakandritsos
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Martin Pykal
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Smita Talande
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vojtěch Kupka
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre for Advanced
Technologies and Materials, Department of Physical Chemistry, Faculty
of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|