1
|
Hemmerová E, Homola J. Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron 2024; 251:116098. [PMID: 38359667 DOI: 10.1016/j.bios.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The idea of combining electrochemical (EC) and plasmonic biosensor methods was introduced almost thirty years ago and the potential of electrochemical-plasmonic (EC-P) biosensors has been highlighted ever since. Despite that, the use of EC-P biosensors in analytics has been rather limited so far and the search for unique applications of the EC-P method continues. In this paper, we review the advances in the field of EC-P biosensors and discuss the features and benefits they can provide. In addition, we identify the main challenges for the development of EC-P biosensors and the limitations that prevent EC-P biosensors from more widespread use. Finally, we review applications of EC-P biosensors for the investigation and quantification of biomolecules, and for the study of biomolecular and cellular processes.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic.
| |
Collapse
|
2
|
Hsu CY, Saleh RO, Pallathadka H, Kumar A, Mansouri S, Bhupathi P, Jasim Ali SH, Al-Mashhadani ZI, Alzubaidi LH, Hizam MM. Advances in electrochemical-optical dual-mode biosensors for detection of environmental pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1306-1322. [PMID: 38344759 DOI: 10.1039/d3ay02217j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Electrochemical techniques are commonly used to analyze and screen various environmental pathogens. When used in conjunction with other optical recognition methods, it can extend the sensing range, lower the detection limit, and offer mutual validation. Nowadays, electrochemical-optical dual-mode biosensors have ensured the accuracy of test results by integrating two signals into one, indicating their potential use in primary food safety quantitative assays and screening tests. Particularly, visible optical signals from electrochemical/colorimetric dual-mode biosensors could meet the demand for real-time screening of microbial pathogens. While electrochemical-optical dual-mode probes have been receiving increasing attention, there is limited emphasis on the design approaches for sensors intended for microbial pathogens. Here, we review the recent progress in the merging of optical and electrochemical techniques, including fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). This study particularly emphasizes the reporting of various sensing performances, including sensing principles, types, cutting-edge design approaches, and applications. Finally, some concerns and upcoming advancements in dual-mode probes are briefly outlined.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia
| | - Priyadharshini Bhupathi
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India.
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Laith H Alzubaidi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Manar Mohammed Hizam
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
3
|
Electrochemistry combined-surface plasmon resonance biosensors: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Manivannan S, Lee D, Kang DK, Kim K. M13 virus-templated open mouth-like platinum nanostructures prepared by electrodeposition: Influence of M13-virus on structure and electrocatalytic activity. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Dols-Perez A, Fumagalli L, Gomila G. Interdigitation in spin-coated lipid layers in air. Colloids Surf B Biointerfaces 2018; 172:400-406. [PMID: 30195157 DOI: 10.1016/j.colsurfb.2018.08.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 10/28/2022]
Abstract
In this study, we show that dry saturated phospholipid layers prepared by the spin-coating technique could present thinner regions associated to interdigitated phases under some conditions. The morphological characteristics of lipid layers of saturated phosphocholines, such as dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC), have been measured by Atomic Force Microscopy and revealed that the presence of interdigitated regions is not induced by the same parameters that induce them in hydrated samples. To achieve these results the effect of the lipid hidrocabonated chain length, the presence of alcohol in the coating solution, the spinning velocity and the presence of cholesterol were tested. We showed that DPPC and DSPC bilayers, on the one side, can show structures with similar height than interdigitated regions observed in hydrated samples, while, on the other side, DLPC and DMPC tend to show no evidence of interdigitation. Results indicate that the presence of interdigitated areas is due to the presence of lateral tensions and, hence, that they can be eliminated by releasing these tensions by, for instance, the addition of cholesterol. These results demonstrate that interdigitation in lipid layers is a rather general phenomena and can be observed in lipid bilayers in dry conditions.
Collapse
Affiliation(s)
- Aurora Dols-Perez
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands.
| | - Laura Fumagalli
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gabriel Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 15-21, 08028, Barcelona, Spain; Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, C/ Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
6
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Lu JY, Zhang XX, Huang WT, Zhu QY, Ding XZ, Xia LQ, Luo HQ, Li NB. Boolean Logic Tree of Label-Free Dual-Signal Electrochemical Aptasensor System for Biosensing, Three-State Logic Computation, and Keypad Lock Security Operation. Anal Chem 2017; 89:9734-9741. [PMID: 28809114 DOI: 10.1021/acs.analchem.7b01498] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.02-100 nM and a detection limit of 1.92 pM. By using these aforementioned chemical events as inputs and the differential pulse voltammetry current changes at different voltages as dual outputs, a resettable three-input biomolecular keypad lock based on sequential logic is established. Moreover, the first example of controllable and selectable three-state molecular logic computation with active-high and active-low logic functions can be implemented and allows the output ports to assume a high impediment or nothing (Z) state in addition to the 0 and 1 logic levels, effectively controlling subsequent branchy logic computation processes. Our approach is helpful in developing the advanced controllable and selectable logic computing and sensing system in large-scale integration circuits for application in biomedical engineering, intelligent sensing, and control.
Collapse
Affiliation(s)
- Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University , Changsha 410081, People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- Key Laboratory of Ecoenvironments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, People's Republic of China
| |
Collapse
|
8
|
Tunable Magneto-Optical Kerr Effects of Nanoporous Thin Films. Sci Rep 2017; 7:2888. [PMID: 28588241 PMCID: PMC5460283 DOI: 10.1038/s41598-017-03241-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
Magnetoplasmonics, combining magnetic and plasmonic functions, has attracted increasing attention owing to its unique magnetic and optical properties in various nano-architectures. In this work, Ag, CoFeB and ITO layers are fabricated on anodic aluminum oxide (AAO) porous films to form hybrid multi-layered nanoporous thin films by magnetron sputtering deposition process. The designed nanostructure supports localized surface plasmon resonance (LSPR) and tunable magneto-optical (MO) activity, namely, the sign inversion, which can be controlled by AAO porous film geometry (pore diameter and inter-pore spacing) flexibly. The physical mechanism of this special MO phenomena is further analyzed and discussed by the correlation of Kerr rotation and electronic oscillations controlled by the surface plasmon resonance that is related to the nanoporous structure.
Collapse
|