1
|
Sun R, Xiong S, Zhang W, Huang Y, Zheng J, Shao J, Chi Y. Highly Active Coreactant-Capped and Water-Stable 3D@2D Core-Shell Perovskite Quantum Dots as a Novel and Strong Self-Enhanced Electrochemiluminescence Probe. Anal Chem 2024; 96:5711-5718. [PMID: 38551104 DOI: 10.1021/acs.analchem.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuyun Xiong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
2
|
Feng Y, Wang N, Ju H. Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Wang Z, Guo H, Luo Z, Duan Y, Feng Y. Low-Triggering-Potential Electrochemiluminescence from a Luminol Analogue Functionalized Semiconducting Polymer Dots for Imaging Detection of Blood Glucose. Anal Chem 2022; 94:5615-5623. [PMID: 35352933 DOI: 10.1021/acs.analchem.1c05377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, semiconducting polymer dots (Pdots) as environmentally friendly and high-brightness electrochemiluminescence (ECL) nanoemitters have attracted intense attention in ECL biosensing and imaging. However, most of the available Pdots have a high ECL excitation potential in the aqueous phase (>1.0 V vs Ag/AgCl), which causes poor selectivity in actual sample detection. Therefore, it is particularly important to construct a simple and universal strategy to lower the trigger potential of Pdots. This work has realized the ECL emission of Pdots at low-trigger-potential based on the electrochemiluminescence resonance energy transfer (ERET) strategy. By covalently coupling the Pdots with a luminol analogue, N-(4-aminobutyl)-N-ethylisoluminol (ABEI), the ABEI-Pdots showed an anodic ECL emission with a low onset potential of +0.34 V and a peak potential at +0.45 V (vs Ag/AgCl), which was the lowest trigger potential reported so far. We further explored this low-triggering-potential ECL for imaging detection of glucose in buffer and serum. By imaging the ABEI-Pdots-modified screen-printed electrodes (SPCE) at +0.45 V for 16 s, the ECL imaging method could quantify the glucose concentration in buffer from 10 to 200 μM with detection limits of 3.3 μM, while exhibiting excellent selectivity. When applied to real serum, the results of our method were highly consistent with a commercial blood glucose meter, with the relative errors ranging from 3.2 to 13%. This work provided a universal strategy for constructing low potential Pdots and demonstrated its application potential in complex biological sample analysis.
Collapse
Affiliation(s)
- Zhuanzhuan Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Haijing Guo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yaqiang Feng
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| |
Collapse
|
4
|
Zhang X, Wang P, Nie Y, Ma Q. Recent development of organic nanoemitter-based ECL sensing application. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Liu JL, Zhang JQ, Zhou Y, Xiao DR, Zhuo Y, Chai YQ, Yuan R. Crystallization-Induced Enhanced Electrochemiluminescence from Tetraphenyl Alkene Nanocrystals for Ultrasensitive Sensing. Anal Chem 2021; 93:10890-10897. [PMID: 34313108 DOI: 10.1021/acs.analchem.1c01258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organic materials with diverse structures and brilliant glowing colors have been attracting extensive attention in optical electronic devices and electrochemiluminescence (ECL) fields and are currently faced with the issue of low ECL efficiency. Herein, a series of tetraphenyl alkene nanocrystals (TPA NCs) with an ordered molecular structure were synthesized to explore regularities in the crystallization-induced enhanced (CIE) ECL emission effects by altering the number and position of vinyl on the backbone of TPA molecules. Among those TPA NCs, tetraphenyl-1,3-butadiene (TPB) NCs exhibit the brightest ECL emission via a coreactant pathway, with the relative ECL efficiency of up to 31.53% versus the standard [Ru(bpy)3]2+/TEA system, which is thousands of times higher than that of free TPB molecules. The high ECL efficiency of TPB NCs originates from the effective electron transfer of unique J-aggregates on the a axis of the nanocrystals to notably promote radiative transition and the restriction on the free rotation of TPB molecules to further suppress the nonradiative transition, which has exhibited great potential in ultrasensitive biosensing, efficient light-emitting devices, and clear ECL imaging fields. As a proof of concept, since dopamine (DA) can form benzoquinone species by electrochemical oxidation to realize intermediate radical quenching and excited-state quenching on the TPB NCs/TEA system, the TPB NCs with the CIE ECL effect are used to construct an ultrasensitive ECL-sensing platform for the determination of DA with a lower detection limit of 3.1 nM.
Collapse
Affiliation(s)
- Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Qi Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
6
|
Sun J, Zhang Q, Dai X, Ling P, Gao F. Engineering fluorescent semiconducting polymer nanoparticles for biological applications and beyond. Chem Commun (Camb) 2021; 57:1989-2004. [DOI: 10.1039/d0cc07182j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We summarize the recent advances in engineering approaches to obtain functionalized semiconducting polymer nanoparticles (SPNs) for biological applications. The challenges and outlook of fabricating functionalized SPNs are also provided.
Collapse
Affiliation(s)
- Junyong Sun
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| |
Collapse
|
7
|
Wei X, Zhu MJ, Yan H, Lu C, Xu JJ. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chemistry 2019; 25:12671-12683. [PMID: 31283848 DOI: 10.1002/chem.201902465] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/31/2022]
Abstract
The emergence of the rising alliance between aggregation-induced emission (AIE) and electrochemiluminescence (ECL) is defined as aggregation-induced electrochemiluminescence (AIECL). The booming science of AIE has proved to be not only distinguished in luminescent materials but could also inject new possibility into ECL analysis. Especially in the aqueous phase and solid state for hydrophobic materials, AIE helps ECL circumvent the dilemma between substantial emission intensity and biocompatible media. The wide range of analytes makes ECL an overwhelmingly interesting analytical technique. Therefore, AIECL has gained potential in clinical diagnostics, environmental assays, and biomarker detections. This review will focus on introduction of the novel concept of AIECL, current applied luminophores, and related applications developed in recent years.
Collapse
Affiliation(s)
- Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Jiao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Fiorani A, Irkham, Valenti G, Paolucci F, Einaga Y. Electrogenerated Chemiluminescence with Peroxydisulfate as a Coreactant Using Boron Doped Diamond Electrodes. Anal Chem 2018; 90:12959-12963. [DOI: 10.1021/acs.analchem.8b03622] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223−8522, Japan
| | - Irkham
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223−8522, Japan
| | - Giovanni Valenti
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- ICMATE-CNR Bologna Associate Unit, University of Bologna, 40126, Bologna, Italy
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223−8522, Japan
- JST-ACCEL, 3-14-1 Hiyoshi, Yokohama 223−8522, Japan
| |
Collapse
|
9
|
Feng Y, Wang N, Ju H. Highly Efficient Electrochemiluminescence of Cyanovinylene-Contained Polymer Dots in Aqueous Medium and Its Application in Imaging Analysis. Anal Chem 2017; 90:1202-1208. [DOI: 10.1021/acs.analchem.7b03821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yaqiang Feng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ningning Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y. Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosens Bioelectron 2017; 100:28-34. [PMID: 28850825 DOI: 10.1016/j.bios.2017.08.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/04/2017] [Accepted: 08/21/2017] [Indexed: 01/02/2023]
Abstract
This work designed a three-component polymer for the preparation of polymer dots (Pdots). The polymer contained 9-(diphenylmethylene)-9H-fluorene (DPF), 9,9-dioctyl-9H-fluorene (DOF) and 1,1'-binaphthyl moieties, and was synthesized via Pd-catalyzed Suzuki reaction. It exhibited obvious yellow-colored aggregation-induced emission (AIE) for fluorescence enhancement at 543nm via an intramolecular fluorescence resonance energy transfer from DOF moiety to DPF moiety. The Pdots prepared by nanoprecipitation could be conveniently cast on electrode surface and showed a stable anodic electrochemiluminescence (ECL) emission in the presence of triethylamine as a co-reactant. The ECL emission could be effectively quenched by rhodamine B via resonance energy transfer, which led to an "off-on" switch for the design of ECL sensing methodology. Using Pb2+ as a target model, an ECL aptasensor for the detection of trace Pb2+ was proposed, which showed a linear range of 100pM to 1.0μM with a detection limit down to 38.0pM This work demonstrated the first Pdots prepared with AIE-active polymer for highly efficient ECL sensing.
Collapse
Affiliation(s)
- Feng Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Ziyu Wang
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Yaqiang Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Yixiang Cheng
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yiwu Quan
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
11
|
Yu J, Rong Y, Kuo CT, Zhou XH, Chiu DT. Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal Chem 2017; 89:42-56. [PMID: 28105818 PMCID: PMC5682631 DOI: 10.1021/acs.analchem.6b04672] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yu Rong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Ting Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xing-Hua Zhou
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|