1
|
Vinnikov A, Sheppard CW, Wemple AH, Stern JE, Leopold MC. An Amperometric Sensor with Anti-Fouling Properties for Indicating Xylazine Adulterant in Beverages. MICROMACHINES 2024; 15:1340. [PMID: 39597161 PMCID: PMC11596286 DOI: 10.3390/mi15111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Amperometric electrochemical sensing schemes, which are easily fabricated and can directly relate measured current with analyte concentrations, remain a promising strategy for the development of the portable, in situ detection of commonly employed adulterants. Xylazine (XYL) is a non-narcotic compound designed for veterinary use as a sedative known as Rompun®. XYL is increasingly being abused as a recreational drug, as an opioid adulterant and, because of its chemical properties, has found unfortunate prominence as a date rape drug spiked into beverages. In this study, a systematic exploration and development of fouling-resistant, amperometric XYL sensors is presented. The sensing strategy features layer-by-layer (LBL) modification of glassy carbon electrodes (GCEs) with carbon nanotubes (CNTs) for sensitivity and the engagement of cyclodextrin host-guest chemistry in conjunction with polyurethane (PU) semi-permeable membranes for selectivity. The optimization of different materials and parameters during development created a greater fundamental understanding of the interfacial electrochemistry, allowing for a more informed subsequent design of effective sensors exhibiting XYL selectivity, effective sensitivity, rapid response times (<20 s), and low estimated limits of detection (~1 ppm). Most importantly, the demonstrated XYL sensors are versatile and robust, easily fabricated from common materials, and can effectively detect XYL at <10 ppm in both common alcoholic and non-alcoholic beverages, requiring only minimal volume (20 µL) of the spiked beverage for a standard addition analysis.
Collapse
Affiliation(s)
| | | | | | | | - Michael C. Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA; (A.V.); (C.W.S.); (A.H.W.)
| |
Collapse
|
2
|
Stern JE, Wemple AH, Sheppard CW, Vinnikov A, Leopold MC. Fouling-Resistant Voltammetric Xylazine Sensors for Detection of the Street Drug "Tranq". TOXICS 2024; 12:791. [PMID: 39590971 PMCID: PMC11598047 DOI: 10.3390/toxics12110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
As the opioid crisis continues to wreak havoc on a global scale, it is increasingly critical to develop methodologies to detect the most dangerous drugs such as fentanyl and its derivatives, which have orders of magnitude higher potency than morphine. The scientific challenge for chemical detection of fentanyl and its derivatives is complicated by both the constantly increasing synthetic variations of the drug as well as the expanded use of adulterants. One tragically consequential example is the nocuous street drug known as "Tranq", which combines fentanyl or a fentanyl derivative with the veterinary sedative Rompun®, chemically identified as xylazine (XYL). This pervasive street cocktail is exacerbating the already staggering number of fentanyl-related deaths as its acute toxicity poses a danger to medical first-responders and complicates their initial assessment and treatment options for overdose victims. Given the widespread use of XYL as an adulterant, an electrochemical XYL sensor capable of on-site operation by non-experts as a fast-screening tool is a notable goal. This work presents a voltammetry-based sensor featuring carbon electrodes modified with carboxylic-acid functionalized multi-walled carbon nanotubes layered with cyclodextrin and polyurethane membranes for sensitivity and selectivity enhancements. The sensor has critical and robust fouling resistance while providing sensitivity at 950 μA/mM∙cm2, a low limit of detection (~5 ppm), and the ability to detect XYL in the presence of fentanyl and/or other non-fentanyl stimulants like cocaine. The demonstrated sensor can be applied to promote public health with its ability to detect and indicate XYL in the presence of opioids, serving to protect drug-users, first responders, medical examiners, and on-site forensic investigators from exposure to these dangerous mixtures.
Collapse
Affiliation(s)
- Joyce E Stern
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Ann H Wemple
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Charles W Sheppard
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Arielle Vinnikov
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Michael C Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| |
Collapse
|
3
|
Lee J, Maji S, Lee H. Fabrication and integration of a low-cost 3D printing-based glucose biosensor for bioprinted liver-on-a-chip. Biotechnol J 2023; 18:e2300154. [PMID: 37632204 DOI: 10.1002/biot.202300154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
In the last two decades, significant progress has been made in the development of more physiologically relevant organ-on-a-chip (OOC) systems that can mimic tissue microenvironments. Despite the advantages of these microphysiological systems, such as portability, ability to mimic physiological flow conditions, and reduction of the number of reagents required for preparation and detection, they lack real-time analyte detection with high accuracy. To address this limitation, biosensor technologies have been integrated with OOC systems to facilitate simultaneous analysis of different analytes with a single device. However, the integration of biosensors with OOC systems is challenging because of the competing demands of low-cost, simple fabrication processes and speed. In this study, we fabricate a glucose-sensing device and integrate it with a liver-on-a-chip (LOC) platform. A carbon black-polylactic acid-based three-electrode system was printed using fused deposit molding 3D printing technology to simplify the fabrication process. The sensitivity of the fabricated glucose biosensing device was enhanced by coating the electrodes with multi-walled carbon nanotubes. A biosensing integration study performed using a perfusion-based LOC demonstrated the stability, biocompatibility, and sensitivity of the proposed glucose sensing device. Furthermore, drug-toxicity studies conducted using the LOC platform demonstrated the ability of the device to detect a broad range of glucose concentrations and its enhanced sensitivity.
Collapse
Affiliation(s)
- Jaehee Lee
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon-si, Gangwon-do, Republic of Korea
| | - Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hyungseok Lee
- Department of Smart Health Science and Technology, Kangwon National University (KNU), Chuncheon-si, Gangwon-do, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
4
|
Panahi Z, Ren T, Halpern JM. Nanostructured Cyclodextrin-Mediated Surface for Capacitive Determination of Cortisol in Multiple Biofluids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42374-42387. [PMID: 35918826 PMCID: PMC9504479 DOI: 10.1021/acsami.2c07701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The aim of this work is to develop a reusable polypropylene glycol (PPG):β-cyclodextrin (βCD) biosensor for cortisol detection. To achieve the most stable support for βCD, we developed two PPG surfaces. The first surface is based on a gold surface modified with SAM of 3-mercaptopropionic acid (3MPA), and the second surface is based on a glassy carbon surface grafted with 4-carboxyphenyl diazonium salt. We characterized both surfaces by EIS, XPS, and ATR-FTIR and evaluated the stability and reusability of each surface. We found the GC-carboxyphenyl-PPG:βCD is stable for at least 1 month. We have also demonstrated the reusability of the surface up to 10 times. In detecting cortisol, we used a nonfaradaic electrochemical impedance capacitive model to interpret the surface confirmation changes. We achieved sensitive detection of cortisol in PBS buffer, urine, and saliva with limit of detection of 2.13, 1.29, and 1.33 nM, respectively.
Collapse
Affiliation(s)
- Zahra Panahi
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Tianyu Ren
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jeffrey Mark Halpern
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
5
|
Electrocatalytic Analysis of Diclofenac in the Presence of Dopamine at Surface Amplified Voltammetric Sensor Based on Poly Glycine Modified Carbon Nano Tube Paste Electrode. Top Catal 2022. [DOI: 10.1007/s11244-022-01567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5103-5119. [PMID: 34664562 DOI: 10.1039/d1ay01275d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of nucleic acids has become significantly important in molecular diagnostics, gene therapy, mutation analysis, forensic investigations and biomedical development, and so on. In recent years, exonuclease III (Exo III) as an enzyme in the 3'-5' exonuclease family has evolved as a frequently used technique for signal amplification of low level DNA target detection. Different from the traditional target amplification strategies, the Exo III-assisted amplification strategy has been used for target DNA detection through directly amplifying the amounts of signal reagents. The Exo III-assisted amplification strategy has its unique advantages and characters, because the character of non-specific recognition of Exo III can overcome the limitation of a target-to-probe ratio of 1 : 1 in the traditional nucleic acid hybridization assay and acquire higher sensitivity. In this review, we selectively discuss the recent advances in the Exo III-assisted amplification strategy, including the amplification strategy integrated with nanomaterials, biosensors, hairpin probes and other nucleic acid detection methods. We also discuss the strengths and limitations of each strategy and methods to overcome the limitations.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yuhao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
7
|
Hira SA, Yusuf M, Annas D, Nagappan S, Song S, Park S, Park KH. Recent Advances on Conducting Polymer-Supported Nanocomposites for Nonenzymatic Electrochemical Sensing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shamim Ahmed Hira
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Mohammad Yusuf
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Dicky Annas
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Saravanan Nagappan
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Sehwan Song
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
8
|
Healy B, Rizzuto F, de Rose M, Yu T, Breslin CB. Electrochemical determination of acetaminophen at a carbon electrode modified in the presence of β-cyclodextrin: role of the activated glassy carbon and the electropolymerised β-cyclodextrin. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAcetaminophen is a well-known drug commonly used to provide pain relief, but it can also lead to acute liver failure at high concentrations. Therefore, there is considerable interest in monitoring its concentrations. Sensitive and selective acetaminophen electrochemical sensors were designed by cycling a glassy carbon electrode (GCE) to high potentials in the presence of β-CD in a phosphate electrolyte, or by simply activating the GCE electrode in the phosphate solution. Using cyclic voltammetry, adsorption-like voltammograms were recorded. The acetaminophen oxidation product, N-acetyl benzoquinone imine, was protected from hydrolysis, and this was attributed to the adsorption of acetaminophen at the modified GCE. The rate constants for the oxidation of acetaminophen were estimated as 4.3 × 10–3 cm2 s–1 and 3.4 × 10–3 cm2 s–1 for the β-CD-modified and -activated electrodes, respectively. Using differential pulse voltammetry, the limit of detection was calculated as 9.7 × 10–8 M with a linear concentration range extending from 0.1 to 80 μM. Furthermore, good selectivity was achieved in the presence of caffeine, ascorbic acid and aspirin, enabling the determination of acetaminophen in a commercial tablet. Similar electrochemical data were obtained for both the β-CD-modified and activated GCE surfaces, suggesting that the enhanced detection of acetaminophen is connected mainly to the activation and oxidation of the GCE. Using SEM, EDX and FTIR, no evidence was obtained to indicate that the β-CD was electropolymerised at the GCE.
Collapse
|
9
|
Ansari R, Hasanzadeh M, Ehsani M, Soleymani J, Jouyban A. Sensitive identification of silibinin as anticancer drug in human plasma samples using poly (β-CD)-AgNPs: A new platform towards efficient clinical pharmacotherapy. Biomed Pharmacother 2021; 140:111763. [PMID: 34044273 DOI: 10.1016/j.biopha.2021.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 10/01/2022] Open
Abstract
Silibinin is effective in significantly inhibiting the growth of cancer cells which shown significant anti-neoplastic effects in a variety of in vitro and in vivo cancer models, including skin, breast, lung, colon, bladder, prostate and kidney carcinomas. So, development of a new method to its biomedical analysis in clinical samples in highly demanded. In this study, an innovative electroanalysis method for the accurate, sensitive and rapid recognition of silibinin in human plasma samples was proposed and validated. The sensing platform was designed using silver nanoparticles (AgNPs) dispersed on the polymeric layer of β-cyclodextrin (β-CD). AgNPs with cubic shape providing a large effective surface area for β-CD electropolymerization. So, a layer with high electron conductivity boosting the detection electrochemical signals. Also, poly(β-CD) providing an efficient substrate with cavities to interact with silibinin and its oxidation. Differential pulse voltammetry technique was conducted to measure silibinin concentration in human real samples. Under optimized conditions, proposed sensor indicated linear relationship between the anodic peak current and concentration of silibinin in the range of 0.0103-10.3 µM on the standard and human plasma samples. Based on obtained results, proposed sensor is an efficient platform to efficient therapy of cancer based on recognition of silibinin in clinical samples.
Collapse
Affiliation(s)
- Rana Ansari
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Ehsani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Healy B, Yu T, C. da Silva Alves D, Okeke C, Breslin CB. Cyclodextrins as Supramolecular Recognition Systems: Applications in the Fabrication of Electrochemical Sensors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1668. [PMID: 33800708 PMCID: PMC8036645 DOI: 10.3390/ma14071668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Supramolecular chemistry, although focused mainly on noncovalent intermolecular and intramolecular interactions, which are considerably weaker than covalent interactions, can be employed to fabricate sensors with a remarkable affinity for a target analyte. In this review the development of cyclodextrin-based electrochemical sensors is described and discussed. Following a short introduction to the general properties of cyclodextrins and their ability to form inclusion complexes, the cyclodextrin-based sensors are introduced. This includes the combination of cyclodextrins with reduced graphene oxide, carbon nanotubes, conducting polymers, enzymes and aptamers, and electropolymerized cyclodextrin films. The applications of these materials as chiral recognition agents and biosensors and in the electrochemical detection of environmental contaminants, biomolecules and amino acids, drugs and flavonoids are reviewed and compared. Based on the papers reviewed, it is clear that cyclodextrins are promising molecular recognition agents in the creation of electrochemical sensors, chiral sensors, and biosensors. Moreover, they have been combined with a host of materials to enhance the detection of the target analytes. Nevertheless, challenges remain, including the development of more robust methods for the integration of cyclodextrins into the sensing unit.
Collapse
Affiliation(s)
- Bronach Healy
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Tian Yu
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 90040-060, Brazil
| | - Cynthia Okeke
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| |
Collapse
|
11
|
García-Valverde M, Soriano M, Lucena R, Cárdenas S. Cotton fibers functionalized with β-cyclodextrins as selectivity enhancer for the direct infusion mass spectrometric determination of cocaine and methamphetamine in saliva samples. Anal Chim Acta 2020; 1126:133-143. [DOI: 10.1016/j.aca.2020.05.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
|
12
|
Khan RK, Yadavalli VK, Collinson MM. Flexible Nanoporous Gold Electrodes for Electroanalysis in Complex Matrices. ChemElectroChem 2019. [DOI: 10.1002/celc.201900894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rezaul K. Khan
- Department of Chemistry Virginia Commonwealth University Richmond, VA 23284-2006
| | - Vamsi K. Yadavalli
- Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond, VA 23284
| | - Maryanne M Collinson
- Department of Chemistry Virginia Commonwealth University Richmond, VA 23284-2006
| |
Collapse
|
13
|
Adaptable Xerogel-Layered Amperometric Biosensor Platforms on Wire Electrodes for Clinically Relevant Measurements. SENSORS 2019; 19:s19112584. [PMID: 31174353 PMCID: PMC6603663 DOI: 10.3390/s19112584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023]
Abstract
Biosensing strategies that employ readily adaptable materials for different analytes, can be miniaturized into needle electrode form, and function in bodily fluids represent a significant step toward the development of clinically relevant in vitro and in vivo sensors. In this work, a general scheme for 1st generation amperometric biosensors involving layer-by-layer electrode modification with enzyme-doped xerogels, electrochemically-deposited polymer, and polyurethane semi-permeable membranes is shown to achieve these goals. With minor modifications to these materials, sensors representing potential point-of-care medical tools are demonstrated to be sensitive and selective for a number of conditions. The potential for bedside measurements or continuous monitoring of analytes may offer faster and more accurate clinical diagnoses for diseases such as diabetes (glucose), preeclampsia (uric acid), galactosemia (galactose), xanthinuria (xanthine), and sepsis (lactate). For the specific diagnostic application, the sensing schemes have been miniaturized to wire electrodes and/or demonstrated as functional in synthetic urine or blood serum. Signal enhancement through the incorporation of platinum nanoparticle film in the scheme offers additional design control within the sensing scheme. The presented sensing strategy has the potential to be applied to any disease that has a related biomolecule and corresponding oxidase enzyme and represents rare, adaptable, sensing capabilities.
Collapse
|
14
|
Kong D, Han L, Wang Z, Jiang L, Zhang Q, Wu Q, Su J, Lu C, Chen G. An electrochemical sensor based on poly(procaterol hydrochloride)/carboxyl multi-walled carbon nanotube for the determination of bromhexine hydrochloride. RSC Adv 2019; 9:11901-11911. [PMID: 35516997 PMCID: PMC9063560 DOI: 10.1039/c8ra08510b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
Poly(procaterol hydrochloride) (p-ProH) polymeric film was successfully deposited onto the carboxyl multi-walled carbon nanotube (CMWCNT) modified glass carbon electrode (GCE) to construct a p-ProH/CMWCNT composite modified GCE. Due to the synergistic effect of p-ProH and CMWCNT in the composite, the developed sensor can enormously enhance the oxidation peak current of bromhexine hydrochloride (BrH) at ca. + 0.90 V. Based on this appearance, an electrochemical method was established for the sensitive and selective determination of BrH with differential pulse voltammetry (DPV). Various conditions affecting the peak current response of BrH were studied and optimized. Under the best conditions, the oxidation peak current of BrH is linear to its concentration in two linear dynamic ranges of 0.2–1.0 μmol L−1 (R = 0.9948) and 1.0–8.0 μmol L−1 (R = 0.9956), with a detection limit of 0.1 μmol L−1 (S/N = 3). Interference experiment indicated that the as-prepared electrochemical sensor showed wonderful selectivity to the recognition of BrH and was free from disturbance of many other electro-active substances such as dopamine, ascorbic and uric acid. Finally, the practicability of the BrH sensor was verified by the satisfactory results acquired from the BrH determination in pharmaceutical preparation and human serum. The fabrication process of the p-ProH/CMWCNT/GCE.![]()
Collapse
Affiliation(s)
- Dexian Kong
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Libin Han
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Zeming Wang
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Lili Jiang
- College of Chemistry, Fuzhou University Fujian 350108 China
| | - Qian Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Qiong Wu
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Jinwei Su
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Chunhua Lu
- College of Chemistry, Fuzhou University Fujian 350108 China
| | - Guonan Chen
- College of Chemistry, Fuzhou University Fujian 350108 China
| |
Collapse
|
15
|
Enhanced electrochemical responses at supramolecularly modified graphene: Simultaneous determination of sulphasalazine and its metabolite 5-aminosalicylic acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
First Generation Amperometric Biosensing of Galactose with Xerogel-Carbon Nanotube Layer-By-Layer Assemblies. NANOMATERIALS 2018; 9:nano9010042. [PMID: 30597967 PMCID: PMC6359589 DOI: 10.3390/nano9010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 01/03/2023]
Abstract
A first-generation amperometric galactose biosensor has been systematically developed utilizing layer-by-layer (LbL) construction of xerogels, polymers, and carbon nanotubes toward a greater fundamental understanding of sensor design with these materials and the potential development of a more efficient galactosemia diagnostic tool for clinical application. The effect of several parameters (xerogel silane precursor, buffer pH, enzyme concentration, drying time and the inclusion of a polyurethane (PU) outer layer) on galactose sensitivity were investigated with the critical nature of xerogel selection being demonstrated. Xerogels formed from silanes with medium, aliphatic side chains were shown to exhibit significant enhancements in sensitivity with the addition of PU due to decreased enzyme leaching. Semi-permeable membranes of diaminobenzene and resorcinol copolymer and Nafion were used for selective discrimination against interferent species and the accompanying loss of sensitivity with adding layers was countered using functionalized, single-walled carbon nanotubes (CNTs). Optimized sensor performance included effective galactose sensitivity (0.037 μA/mM) across a useful diagnostic concentration range (0.5 mM to 7 mM), fast response time (~30 s), and low limits of detection (~80 μM) comparable to literature reports on galactose sensors. Additional modification with anionic polymer layers and/or nanoparticles allowed for galactose detection in blood serum samples and additional selectivity effectiveness.
Collapse
|
17
|
Raman Spectroscopy as an Assay to Disentangle Zinc Oxide Carbon Nanotube Composites for Optimized Uric Acid Detection. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6040065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Refluxed zinc oxide (ZnO) nanoparticles (NPs) were prepared and attached to carboxylic acid functionalized multi-walled carbon nanotubes (COOH-MWNTs) via sonication. Practical optimization of electrocatalysts using sonication to disentangle a carbon nanotube composite for monitoring uric acid (UA) is shown. Monitoring UA is important for the management of medical disorders. Selection of sonication time is a crucial step in producing the desired composite. We report, for the first time, the practical use of Raman spectroscopy to tune the sonication involved in tethering ZnO NPs to the multi-walled carbon nanotube (MWNT) surface. Maximum current for detecting UA, using chronoamperometry and cyclic voltammetry, correlated with the highest sp2-hybridized carbon signal, as seen in the integrated Raman G band peak areas denoting maximum COOH-MWNT disentanglement. An array of ZnO/COOH-MWNT composites were prepared ranging from 60 to 240 min sonication times. Optimum sonication (150 min) corresponded with both maximum measured current and MWNT disentanglement. The sensor was able to quantitatively and selectively measure UA at clinically relevant concentrations (100–900 μM) with rapid current response time (< 5 s).
Collapse
|
18
|
Wayu MB, Pannell MJ, Labban N, Case WS, Pollock JA, Leopold MC. Functionalized carbon nanotube adsorption interfaces for electron transfer studies of galactose oxidase. Bioelectrochemistry 2018; 125:116-126. [PMID: 30449323 DOI: 10.1016/j.bioelechem.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
Modified electrodes featuring specific adsorption platforms able to access the electrochemistry of the copper containing enzyme galactose oxidase (GaOx) were explored, including interfaces featuring nanomaterials such as nanoparticles and carbon nanotubes (CNTs). Electrodes modified with various self-assembled monolayers (SAMs) including those with attached nanoparticles or amide-coupled functionalized CNTs were examined for their ability to effectively immobilize GaOx and study the redox activity related to its copper core. While stable GaOx electrochemistry has been notoriously difficult to achieve at modified electrodes, strategically designed functionalized CNT-based interfaces, cysteamine SAM-modified electrode subsequently amide-coupled to carboxylic acid functionalized single wall CNTs, were significantly more effective with high GaOx surface adsorption along with well-defined, more reversible, stable (≥ 8 days) voltammetry and an average ET rate constant of 0.74 s-1 in spite of increased ET distance - a result attributed to effective electronic coupling at the GaOx active site. Both amperometric and fluorescence assay results suggest embedded GaOx remains active. Fundamental ET properties of GaOx may be relevant to biosensor development targeting galactosemia while the use functionalized CNT platforms for adsorption/electrochemistry of electroactive enzymes/proteins may present an approach for fundamental protein electrochemistry and their future use in both direct and indirect biosensor schemes.
Collapse
Affiliation(s)
- Mulugeta B Wayu
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Michael J Pannell
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Najwa Labban
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - William S Case
- Department of Biology, Chemistry, and Physics, Converse College, Spartanburg, SC 29302, United States
| | - Julie A Pollock
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Michael C Leopold
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States.
| |
Collapse
|
19
|
New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101925] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-walled carbon nanotubes (MWCNT) have provided unprecedented advances in the design of electrochemical sensors. They are composed by sp2 carbon units oriented as multiple concentric tubes of rolled-up graphene, and present remarkable active surface area, chemical inertness, high strength, and low charge-transfer resistance in both aqueous and non-aqueous solutions. MWCNT are very versatile and have been boosting the development of a new generation of electrochemical sensors with application in medicine, pharmacology, food industry, forensic chemistry, and environmental fields. This work highlights the most important synthesis methods and relevant electrochemical properties of MWCNT for the construction of electrochemical sensors, and the numerous configurations and successful applications of these devices. Thousands of studies have been attesting to the exceptional electroanalytical performance of these devices, but there are still questions in MWCNT electrochemistry that deserve more investigation, aiming to provide new outlooks and advances in this field. Additionally, MWCNT-based sensors should be further explored for real industrial applications including for on-line quality control.
Collapse
|
20
|
Kasprzak A, Poplawska M. Recent developments in the synthesis and applications of graphene-family materials functionalized with cyclodextrins. Chem Commun (Camb) 2018; 54:8547-8562. [PMID: 29972382 DOI: 10.1039/c8cc04120b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of cyclodextrin species to graphene-family materials (GFMs) constitutes an important area of research, especially in terms of the development of applied nanoscience. The chemistry of cyclodextrins is the so-called host-guest chemistry, which has impacted on many fields of research, including catalysis, electrochemistry and nanomedicine. Cyclodextrins are water-soluble and biocompatible supramolecules, and therefore they may introduce new interesting properties to GFMs and may enhance the physicochemical/biological features of native GFMs. The reported methods for the conjugation of cyclodextrins to GFMs utilize either covalent or non-covalent approaches. The recent progress in the applications of GFMs functionalized with cyclodextrins, with the respect to the chemistry and features of these conjugates, is discussed. Special consideration is also given to the recent developments in (i) nanomedicine, (ii) electrochemistry, (iii) adsorption and (iv) catalysis. Examples of these materials are discussed in this work, together with the future outlook on the impact of GFM-cyclodextrin conjugates in the development of applied nanoscience.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
21
|
Pannell MJ, Doll EE, Labban N, Wayu MB, Pollock JA, Leopold MC. Versatile sarcosine and creatinine biosensing schemes utilizing layer-by-layer construction of carbon nanotube-chitosan composite films. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Gutiérrez A, Gutierrez F, Eguílaz M, Parrado C, Rivas GA. Non-covalent Functionalization of Multi-wall Carbon Nanotubes with Polyarginine: Characterization and Analytical Applications for Uric Acid Quantification. ELECTROANAL 2018. [DOI: 10.1002/elan.201800034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alejandro Gutiérrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
- División de Estudios de Posgrado e Investigación; Instituto Tecnológico de Cd. Madero; J. Rosas y J. Urueta S/N Col. Los Mangos Cd. Madero, Tamaulipas C.P. 89440 México
| | - Fabiana Gutierrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| | - Marcos Eguílaz
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| | - Concepción Parrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas; Universidad Complutense de Madrid; Madrid Spain
| | - Gustavo A. Rivas
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Ciudad Universitaria; 5000 Córdoba Argentina
| |
Collapse
|
23
|
Li X, Kan X. A ratiometric strategy -based electrochemical sensing interface for the sensitive and reliable detection of imidacloprid. Analyst 2018; 143:2150-2156. [DOI: 10.1039/c8an00111a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A ratiometric electrochemical sensor was developed for selective and sensitive detection of imidacloprid. Modified poly(thionine) provided a built-in correction to endow the sensor with good accuracy and stability.
Collapse
Affiliation(s)
- Xueyan Li
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P.R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science
- Anhui Key Laboratory of Chemo-Biosensing
- Anhui Normal University
- Wuhu 241000
- P.R. China
| |
Collapse
|
24
|
Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Mikrochim Acta 2017; 185:27. [PMID: 29594393 DOI: 10.1007/s00604-017-2592-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/27/2017] [Indexed: 01/29/2023]
Abstract
The authors describe an aptamer based assay for the food mycotoxin ochratoxin A (OTA). It is based on the use of exonuclease III (Exo III) which assists in signal amplification, and of single-walled carbon nanohorns (SWCNHs) which act as quenchers of fluorescence. The detection scheme employs a hairpin probe (HP) and a signal probe (SP) labeled with carboxyfluorescein (FAM) at its 5'-end. The fluorescence of intact SPs (best measured at excitation/emission wavelengths of 495/518 nm) is quenched by SWCNHs. The HP contains the OTA-specific aptamer sequence and is partially complementary to the SP. After addition of OTA, the aptamer binds OTA and thus exposes a single-stranded sequence that can hybridize with the SP. Exo III digests the SP to liberate the free fluorophore labels. The damaged SPs no longer are adsorbed by the SWCNHs so that fluorescence is no longer quenched. The method has a detection range that is linear from 10 nM to 1000 nM (with a correlation coefficient of 0.997). The limit of detection (LOD), calculated on the basis of a signal to noise ratio of 3, is 4.2 nM. The procedure was validated by the quantitation of OTA in spiked real samples and were found to be free of interference by the sample matrix. Recoveries ranged from 93.8 to 113.0% in beer and from 92.0 to115.9% in red wine. Graphical abstract After adding ochratoxin A (OTA), the aptamer region in hairpin probe (HP) combined with OTA and thus exposed a single-stranded sequence to hybridize with signal probe (SP). Exonuclease III (Exo III) digested SP to liberate the free fluorophore (FAM).
Collapse
|
25
|
Shi Y, Wang J, Li S, Yan B, Xu H, Zhang K, Du Y. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode. NANOSCALE RESEARCH LETTERS 2017; 12:455. [PMID: 28709376 PMCID: PMC5509567 DOI: 10.1186/s11671-017-2225-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121c UA (μM) + 0.3122 (R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.
Collapse
Affiliation(s)
| | - Jin Wang
- Soochow University, Suzhou, China
| | | | - Bo Yan
- Soochow University, Suzhou, China
| | - Hui Xu
- Soochow University, Suzhou, China
| | - Ke Zhang
- Soochow University, Suzhou, China
| | - Yukou Du
- Soochow University, Suzhou, China
| |
Collapse
|
26
|
Zhu G, Qian J, Sun H, Wu X, Wang K, Yi Y. Voltammetric determination of o-chlorophenol using β-cyclodextrin/graphene nanoribbon hybrids modified electrode. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|