1
|
Smith LO, Thatcher KM, Henderson-Walshe OJ, Crittenden DL. Redox Behaviour and Redox Potentials of Dyes in Aqueous Buffers and Protic Ionic Liquids. Chemistry 2024; 30:e202400573. [PMID: 38660913 DOI: 10.1002/chem.202400573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Organic dyes hold promise as inexpensive electrochemically-active building blocks for new renewable energy technologies such as redox-flow batteries and dye-sensitised solar cells, especially if they display high oxidation and/or low reduction potentials in cheap, non-flammable solvents such as water or protic ionic liquids. Systematic computational and experimental characterisation of a representative selection of acidic and basic dyes in buffered aqueous solutions and propylammonium formate confirm that quinoid-type mechanisms impart electrochemical reversibility for the majority of systems investigated, including quinones, fused tricyclic heteroaromatics, indigo carmine and some aromatic nitrogenous species. Conversely, systems that generate longlived radical intermediates - arylmethanes, hydroquinones at high pH, azocyclic systems - tend to display irreversible electrochemistry, likely undergoing ring-opening, dimerisation and/or disproportionation reactions.
Collapse
Affiliation(s)
- Lachlan O Smith
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Kathryn M Thatcher
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Deborah L Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
2
|
Malarat N, Soleh A, Saisahas K, Samoson K, Promsuwan K, Saichanapan J, Wangchuk S, Meng L, Limbut W. Electropolymerization of poly(phenol red) on laser-induced graphene electrode enhanced adsorption of zinc for electrochemical detection. Talanta 2024; 272:125751. [PMID: 38377665 DOI: 10.1016/j.talanta.2024.125751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
We present a highly sensitive and selective electrode of laser-induced graphene modified with poly(phenol red) (P(PhR)@LIG) for measuring zinc nutrition in rice grains using square wave anodic stripping voltammetry (SWASV). The physicochemical properties of P(PhR)@LIG were investigated with scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier infrared spectroscopy (FT-IR) and Raman spectroscopy. The modified electrode demonstrated an amplified anodic stripping response of Zn2+ due to the electropolymerization of P(PhR), which enhanced analyte adsorption during the accumulation step of SWASV. Under optimized parameters, the developed sensor provided a linear range from 30 to 3000 μg L-1 with a detection limit of 14.5 μg L-1. The proposed electrode demonstrated good reproducibility and good anti-interference properties. The sensor detected zinc nutrition in rice grain samples with good accuracy and the results were consistent with the standard ICP-OES method.
Collapse
Affiliation(s)
- Natchaya Malarat
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krisada Samoson
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lingyin Meng
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
3
|
Rioboó-Legaspi P, González-López A, Beltrán-Sánchez JF, Cima-Cabal MD, García-Suárez MM, Sánchez AJG, Fernández-Otero T, Haro JG, Costa-Rama E, Fernández-Abedul MT. Phenol red as electrochemical indicator for highly sensitive quantification of SARS-CoV-2 by loop-mediated isothermal amplification detection. Talanta 2024; 266:124963. [PMID: 37517341 DOI: 10.1016/j.talanta.2023.124963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
The current COVID-19 pandemic has made patent the need for rapid and cost-effective diagnostic tests, crucial for future infectious outbreaks. Loop-mediated isothermal amplification (LAMP) is a promising and decentralized alternative to qPCR. In this work we have developed a sensitive, fast, and simple innovative methodology for quantification of SARS-CoV-2 RNA copies, combining reverse-transcription LAMP with electrochemical detection. This is based on the oxidation of phenol red (PR), a visual and electroactive LAMP indicator, which oxidation peak potential (Ep) changes with the progress of the LAMP reaction. Using that Ep shift as analytical signal, a calibration curve was obtained for fragment N1 copies of SARS-CoV2 (which provided better results than N or S fragments), with a potential shift of 16.2 mV per order of magnitude, and a practical limit of detection of 21 copies·μL-1. Moreover, the precision of Ep is excellent (RSD < 2%): 557 ± 5 mV for negative and 602 ± 7 mV for positive (2148 N fragment RNA copies·µL-1·-1) LAMP controls. This methodology has been applied to the analysis of nasopharyngeal swab samples, resulting in total concordance with clinical RT-qPCR results. Advances towards fully decentralization have been achieved by designing and fabricating a small portable heater for isothermal procedures, obtaining comparable results to those from a commercial benchtop thermal cycler.
Collapse
Affiliation(s)
- P Rioboó-Legaspi
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Spain
| | - A González-López
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Spain
| | - J F Beltrán-Sánchez
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Murcia, Spain
| | - M D Cima-Cabal
- Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Spain.
| | - M M García-Suárez
- Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Spain
| | - A J García Sánchez
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Murcia, Spain
| | - T Fernández-Otero
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Murcia, Spain
| | - J García Haro
- Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Murcia, Spain
| | - E Costa-Rama
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Spain
| | - M T Fernández-Abedul
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Spain.
| |
Collapse
|
4
|
Magnaghi LR, Zanoni C, Alberti G, Biesuz R. The colorful world of sulfonephthaleins: Current applications in analytical chemistry for "old but gold" molecules. Anal Chim Acta 2023; 1281:341807. [PMID: 38783746 DOI: 10.1016/j.aca.2023.341807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 05/25/2024]
Abstract
Sulfonephthaleins represent one of the most common and widely employed reactive dyes in analytical chemistry, thanks to their stability, low-cost, well-visible colors, reactivity and possibilities of chemical modification. Despite being first proposed in 1916, nowadays, these molecules play a fundamental role in biological and medical applications, environmental analyses, food quality monitoring and other fields, with a particular focus on low-cost and disposable devices or methods for practical applications. Since up to our knowledge, no reviews or book chapters focused explicitly on sulfonephthaleins have ever been published, in this review, we will briefly describe sulfonephthaleins history, their acid-base properties will be discussed, and the most recent applications in different fields will be presented, focusing on the last ten years literature (2014-2023). Finally, safety and environmental issues will be briefly discussed, despite being quite controversial.
Collapse
Affiliation(s)
- Lisa Rita Magnaghi
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy; Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121, Firenze, Italy.
| | - Camilla Zanoni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Raffaela Biesuz
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy; Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
5
|
Liu C, Chen D, Zhu C, Liu X, Wang Y, Lu Y, Zheng D, Fu B. Fabrication of a Disposable Amperometric Sensor for the Determination of Nitrite in Food. MICROMACHINES 2023; 14:687. [PMID: 36985095 PMCID: PMC10056392 DOI: 10.3390/mi14030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Silver nanoparticles (AgNPs) were synthesized through an environmentally friendly method with tea extract as a reduction agent. By immobilizing them on the surface of a low-cost pencil graphite electrode (PGE) with the aid of a simple and well-controlled in-situ electropolymerization method, a novel nanosensing interface for nitrite was constructed. The film-modified PGE showed good electrocatalytic effects on the oxidation of nitrite and was characterized through scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. Characterization results clearly show that the successful modification of AgNPs improved the surface area and conductivity of PGEs, which is beneficial to the high sensitivity and short response time of the nitrite sensor. Under the optimal detection conditions, the oxidation peak current of nitrite had a good linear relationship with its concentration in the range of 0.02-1160 μmol/L with a detection limit of 4 nmol/L and a response time of 2 s. Moreover, the sensor had high sensitivity, a wide linear range, a good anti-interference capability, and stability and reproducibility. Additionally, it can be used for the determination of nitrite in food.
Collapse
Affiliation(s)
- Chao Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Wuhan 430074, China
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
| | - Daoming Chen
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Wuhan 430074, China
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
| | - Chunnan Zhu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Wuhan 430074, China
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
| | - Xiaojun Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Wuhan 430074, China
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
| | - Yu Wang
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430040, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430040, China
| | - Yuepeng Lu
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430040, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan 430040, China
| | - Dongyun Zheng
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Wuhan 430074, China
- Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China
| | - Baorong Fu
- Wuhan Great Sea Hi-Tech Co., Ltd., Wuhan 430223, China
| |
Collapse
|
6
|
Nazir NU, Abbas SR. Identification of phenol 2,2-methylene bis, 6 [1,1-D] as breath biomarker of hepatocellular carcinoma (HCC) patients and its electrochemical sensing: E-nose biosensor for HCC. Anal Chim Acta 2023; 1242:340752. [PMID: 36657885 DOI: 10.1016/j.aca.2022.340752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND According to WHO, Hepatocellular cancer (HCC) was the second leading cause of death in 2019 and is gradually increasing. The lipid peroxidation mechanism in cancer cells causes the emission of VOCs in the breath. Volatile organic compounds (VOCs) in breath are becoming favorable biomarkers, especially for cancers, for their sample retrieval and specific association with early metabolic changes. Since both diagnosis and prognosis of the disease depend on the quantity and kind of circulatory biomarkers to be detected, sensitive and selective biosensors with the possibility for portability are constantly in demand. RESULTS In this study, breath samples of HCC patients were screened for identification of VOCs via GCMS and later verified by applying unsupervised machine learning models. Phenol 2,2 methylene bis [6-(1,1-dimethyl ethyl)-4-methyl] (MBMBP) was found to be significant VOC in the breath of HCC patients, with a minimum concentration of 2100 ppm. Thiol-modified AuNPs were synthesized, as we reported earlier, and immobilized on the working electrode surface to electrochemically sense MBMBP in purified form and later from clinical breath samples. During the electrochemical experiment of AuNPs with MPMBP, the analyte gets electro-oxidized, whereas the Au (III) ions get reduced to the phenoxy radical's species. The electrochemical analysis of MBMBP detection using hexane thiol AuNPs showed a LOD of 0.005 molL 1. The thiolated AuNPs-based biosensor for HCC diagnosis via VOC detection confirmed MPMBP in lab standards and raw clinical breath samples of HCC patients. SIGNIFICANCE This study reveals that GCE modified with hexanethiol AuNPs for the adsorption of significant breath biomarker, is a potential platform for the development of e-nose sensor for the detection of HCC at early stage.
Collapse
Affiliation(s)
- Noor Ua Nazir
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Shah R Abbas
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
7
|
González-López A, Cima-Cabal MD, Rioboó-Legaspi P, Costa-Rama E, García-Suárez MDM, Fernández-Abedul MT. Electrochemical Detection for Isothermal Loop-Mediated Amplification of Pneumolysin Gene of Streptococcus pneumoniae Based on the Oxidation of Phenol Red Indicator. Anal Chem 2022; 94:13061-13067. [PMID: 36106671 PMCID: PMC9523611 DOI: 10.1021/acs.analchem.2c02127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A highly sensitive electrochemical methodology for end-point detection
of loop-mediated isothermal nucleic acid amplification reactions was
developed. It is based on the oxidation process of phenol red (PR),
commonly used as a visual indicator. The dependence of its redox process
on pH, which changes during amplification, allows performing quantitative
measurements. Thus, the change in the oxidation potential of PR during
the amplification is used, for the first time, as the analytical signal
that correlates with the number of initial DNA copies. As a proof-of-concept,
the amplification of the pneumolysin gene from Streptococcus
pneumoniae, one of the main pathogens causing community-acquired
pneumonia, is performed. Combination of isothermal amplification with
electrochemical detection, performed on small-size flexible electrodes,
allows easy decentralization. Adaptation to the detection of other
pathogens causing infectious diseases would be very useful in the
prevention of future epidemics.
Collapse
Affiliation(s)
- Andrea González-López
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | - María Dolores Cima-Cabal
- Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Avda. de La Paz 137, Logroño 26006, Spain
| | - Pablo Rioboó-Legaspi
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | - Estefanía Costa-Rama
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| | | | - M. Teresa Fernández-Abedul
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo 33006, Spain
| |
Collapse
|
8
|
Zhang J, Li Y. Green synthesis of poly(
o
‐phenylenediamine) polymer film on stainless steel as a corrosion protection layer. J Appl Polym Sci 2022. [DOI: 10.1002/app.51572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jia‐Wei Zhang
- School of Metallurgy Northeastern University Shenyang China
- Liaoning Key Laboratory of Metallurgical Sensor Materials and Technology, Northeastern University Shenyang China
| | - Ying Li
- School of Metallurgy Northeastern University Shenyang China
- Liaoning Key Laboratory of Metallurgical Sensor Materials and Technology, Northeastern University Shenyang China
| |
Collapse
|
9
|
Liang H, Zhu M, Ye H, Zeng C, Wang S, Niu Y. Carbon fiber microelectrode array loaded with the diazonium salt-single-walled carbon nanotubes composites for the simultaneous monitoring of dopamine and serotonin in vivo. Anal Chim Acta 2021; 1186:339086. [PMID: 34756249 DOI: 10.1016/j.aca.2021.339086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Carbon fiber microelectrode arrays based on diazonium salt and single-walled carbon nanotubes composites (DS-SWCNT/CFMEA) have been fabricated, and it developed for the simultaneous monitoring of dopamine (DA) and serotonin (5-HT) with differential pulse voltammary (DPV). The diazonium salt can improve the water-solubility of single-walled carbon nanotubes and show good selectivity to DA, thus DS-SWCNT/CFMEA exhibits enhanced electrocatalytic activity for the oxidation of DA and 5-HT, and well antifouling ability to the other biomolecules. Moreover, DS-SWCNT/CFMEA shows the wider liner range, and the good performance of precision, reproducibility and biocompatibility. The excellent characteristics of the prepared microsensor array make it to be used to monitor the release of DA and 5-HT in the mouse brain striatum of different group over time. Meanwhile, the results of in vivo on line assay further confirmed the pharmacological effects of Uncaria alkaloid extract solution on DA and 5-HT. This research may provide a new method for monitoring the release of neurobiomolecules, and the microsensor array are expected to be a tool for the study of pharmacological and physiological processes on line in vivo.
Collapse
Affiliation(s)
- Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Changqing Zeng
- College of Chinese Traditional Medicines, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, 510006, PR China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, PR China
| | - Yanan Niu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| |
Collapse
|
10
|
Manoj D, Shanmugasundaram S, Anandharamakrishnan C. Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Electro-Polymerized Titan Yellow Modified Carbon Paste Electrode for the Analysis of Curcumin. SURFACES 2021. [DOI: 10.3390/surfaces4030017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized circumstances, a linear response of the electrode was observed for CRC in the concentration range 2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of biologically significant compounds. Additionally, the proposed electrode has demonstrated many advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity, and can be successfully applied in real sample analysis.
Collapse
|
12
|
Li Y, Shen Y, Zhang Y, Zeng T, Wan Q, Lai G, Yang N. A UiO-66-NH 2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Anal Chim Acta 2021; 1158:338419. [PMID: 33863410 DOI: 10.1016/j.aca.2021.338419] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022]
Abstract
Carbon nanomaterials are quite promising to be combined with metal-organic frameworks (MOFs) to enhance the sensing ability of both materials. In this work, a MOF nanoparticle of UiO-66-NH2 is integrated with carbon nanotubes (CNTs) (UiO-66-NH2/CNTs) with a facile solvothermal method. The morphology, surface area and properties of this UiO-66-NH2/CNTs nanocomposite was investigated using electron microscopy, XRD, XPS, BET analysis and electrochemical techniques. Catalytic oxidation of dopamine (DA) and acetaminophen (AC) on this nanocomposite was achieved, owing to a 3D hybrid structure or a large electroactive surface area, excellent electrical conductivity, a large number of active sites of this nanocomposite. It was further utilized as a sensing platform to establish an electrochemical sensor for the monitoring of both DA and AC. The enhanced oxidation signals led to the voltametric sensing of DA and AC in a broad linear range from 0.03 to 2.0 μM and low detection limits (S/N = 3) of 15 and 9 nM for DA and AC, respectively. The proposed sensor also possessed good reproducibility, repeatability, long-term stability, selectivity, and satisfactory recovery in serum samples analysis. Therefore, it has the great potential for the accurate quantification of DA and AC in complex matrixes.
Collapse
Affiliation(s)
- Yao Li
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuli Shen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi, 435002, China.
| | - Ting Zeng
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qijin Wan
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi, 435002, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
13
|
Promsuwan K, Kaewjunlakan C, Saichanapan J, Soleh A, Saisahas K, Thipwimonmas Y, Kongkaew S, Kanatharana P, Thavarungkul P, Limbut W. Poly(phenol red) hierarchical micro-structure interface enhanced electrode kinetics for adsorption and determination of hydroquinone. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Enshaei H, Puiggalí‐Jou A, del Valle LJ, Turon P, Saperas N, Alemán C. Nanotheranostic Interface Based on Antibiotic-Loaded Conducting Polymer Nanoparticles for Real-Time Monitoring of Bacterial Growth Inhibition. Adv Healthc Mater 2021; 10:e2001636. [PMID: 33336558 DOI: 10.1002/adhm.202001636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Indexed: 01/18/2023]
Abstract
Conducting polymers have been increasingly used as biologically interfacing electrodes for biomedical applications due to their excellent and fast electrochemical response, reversible doping-dedoping characteristics, high stability, easy processability, and biocompatibility. These advantageous properties can be used for the rapid detection and eradication of infections associated to bacterial growth since these are a tremendous burden for individual patients as well as the global healthcare system. Herein, a smart nanotheranostic electroresponsive platform, which consists of chloramphenicol (CAM)-loaded in poly(3,4-ethylendioxythiophene) nanoparticles (PEDOT/CAM NPs) for concurrent release of the antibiotic and real-time monitoring of bacterial growth is presented. PEDOT/CAM NPs, with an antibiotic loading content of 11.9 ± 1.3% w/w, are proved to inhibit the growth of Escherichia coli and Streptococcus sanguinis due to the antibiotic release by cyclic voltammetry. Furthermore, in situ monitoring of bacterial activity is achieved through the electrochemical detection of β-nicotinamide adenine dinucleotide, a redox active specie produced by the microbial metabolism that diffuse to the extracellular medium. According to these results, the proposed nanotheranostic platform has great potential for real-time monitoring of the response of bacteria to the released antibiotic, contributing to the evolution of the personalized medicine.
Collapse
Affiliation(s)
- Hamidreza Enshaei
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
| | - Anna Puiggalí‐Jou
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
| | - Pau Turon
- B. Braun Surgical S.A. Carretera de Terrassa 121, Rubí Barcelona 08191 Spain
| | - Núria Saperas
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 10‐12 Barcelona 08028 Spain
| |
Collapse
|
15
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
16
|
Lin WF, Zhai WY, Yan Y, Liu YQ. Highly sensitive Pb2+ sensor based on rod-like poly-tyrosine/Bi modified glassy carbon electrode combined with electrodeposition to eliminate Cu2+ interference. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Chauhan R, Gill AA, Nate Z, Karpoormath R. Highly selective electrochemical detection of ciprofloxacin using reduced graphene oxide/poly(phenol red) modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Tang J, Liu Y, Hu J, Zheng S, Wang X, Zhou H, Jin B. Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: A sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Jiang N, Wang Y, Zhao Q, Ye Z. Application of Ti/IrO 2 electrode in the electrochemical oxidation of the TNT red water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113801. [PMID: 31891908 DOI: 10.1016/j.envpol.2019.113801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/15/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Via the thermal sintering, a nanocrystalline IrO2 coating was formed on the Ti substrate to successfully prepare a Ti/IrO2 electrode. Based on the electrochemical analysis, the prepared Ti/IrO2 electrode was found to have powerful oxidation effect on the organics in the TNT red water, where the nitro compound was oxidized through an irreversible electrochemical process at 0.6 V vs. SCE. According to the analysis of the nitro compound content, the UV-vis spectra, and the FTIR spectra of 2,4,6-trinitrotoluene (TNT) red water with electrolytic periods, the degradation mechanism of the dinitrotoluene sulfonate (DNTS) was developed. And the intermediates were characterized by UPLC-HRMS. The DNTS mainly occurred one electron transfer reaction on the Ti/IrO2 electrode. At the early stage of the electrolysis, the polymerization of DNTS was mainly dominated. The generated polymer did not form a polymer film on the electrode surface, but instead it promoted a further reduction. After electrolyzing for 30 h, all NO2 function group in the TNT red water was degraded completely.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Yuchao Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
20
|
Luo X, Lim LT. An inkjet-printed sulfonephthalein dye indicator array for volatile amine detection. J Food Sci 2020; 85:442-454. [PMID: 31976555 DOI: 10.1111/1750-3841.15020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 11/27/2022]
Abstract
Colorimetric indicators are versatile for applications such as intelligent food packaging, for reflecting the actual quality and/or monitoring distribution history of food products. In this study, a colorimetric indicator array composed of sulfonephthalein dyes was successfully developed by piezoelectric inkjet printing, for the detection of volatile amines-the primary spoilage gases for fish and seafood products. The printing inks were formulated in water/ethanol/1-butanol mixture. By refilling the printer's cartridges with our formulated inks and controlling the red, green, and blue color parameters, a 7 × 9 indicator array was printed onto inkjet transparency films. The color response of the indicator array was tested with different volatile amines at various concentrations. The array indicator was capable of discriminating six different volatile amines: ammonia, trimethylamine, dimethylamine, triethylamine, piperidine, and hydrazine. The printability of the inks was investigated by characterizing their density, surface tension, and dynamic viscosity, dictating that all formulated inks were printable fluid. The microstructural morphologies of the printed dyes on transparency films were evaluated using scanning electron microscopy. Interactions of the dye with the volatiles were studied by Fourier transform infrared spectroscopy. In summary, the piezoelectric inkjet printing method presented in this study offers a convenient, efficient, and flexible means to fabricate colorimetric indicators for detecting food spoilage volatiles. These indicators are promising as sensing components in intelligent packaging systems, to reveal the freshness of fish products by correlating with quality parameters such as total volatile basic nitrogen, microbial growth, and sensory attributes. Further studies on the feasibility of using the array indicators in real food packaging systems, development of strategy to mitigate the potential migration of the indicator dyes, and designing array patterns optimal for machine/human interpretation, are important to commercialize the technology. PRACTICAL APPLICATION: Piezoelectric inkjet printing offers a convenient way to fabricate sensing materials and aligns with industrial packaging operations. The use of indicators on food package helps consumers more accurately perceive real-time food quality information.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Dept. of Food Science, Univ. of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - Loong-Tak Lim
- Dept. of Food Science, Univ. of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
21
|
Aydoğdu Tığ G, Koyuncu Zeybek D, Zeybek B, Pekyardımcı Ş. Interaction of prednisone with dsDNA at silver nanoparticles/poly(glyoxal-bis(2-hydroxyanil))/dsDNA modified electrode and its analytical application. Bioelectrochemistry 2019; 126:56-63. [DOI: 10.1016/j.bioelechem.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022]
|
22
|
3D electrochemical sensor based on poly(hydroquinone)/gold nanoparticles/nickel foam for dopamine sensitive detection. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|