1
|
Melo LMA, Souza KAO, Lopes JEB, Muñoz RAA, Costa JL, Dos Santos WTP. Electrochemical methods for the determination of acetaminophen in biological matrices: A critical review in the clinical field. Anal Chim Acta 2025; 1333:343243. [PMID: 39615920 DOI: 10.1016/j.aca.2024.343243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Paracetamol or acetaminophen (APAP), or acetaminophen, is a widely used medication for pain relief and fever reduction due to its analgesic and antipyretic properties. However, excessive APAP consumption can lead to severe hepatotoxicity and nephrotoxicity, posing overdose risks. Consequently, the development of analytical methods for an accurate and rapid detection of APAP in biological matrices is of great interest in the health-related fields. Electrochemical methods have emerged as efficient, cost-effective, and sensitive tools for APAP detection in biological samples. In the light of the reported insights, this review examines critically diverse electrochemical methods for PAR detection in different biological matrices, including serum, urine, oral fluid, and sweat. RESULTS The claimed benefits of chemically-modified electrodes towards the selective determination of paracetamol in such complex sample matrices are discussed. On the other hand, the possible use of unmodified carbon-based electrodes combined with flow methods is highlighted as an alternative that can find relevance in the analysis of biological fluids suspected of PAR overdose occurring in the forensic scenario. Furthermore, the details regarding the distinct techniques and working electrodes for APAP determination are presented, compared and discussed in separate sections for each biological sample (serum, urine, and oral fluid). Another aspect herein debated is the selective determination of APAP in the presence of electroactive drugs naturally found in biological samples, as uric acid, and ascorbic acid, are evaluated. In addition, we have discussed and emphasized the significance of matrix selection to ensure precise results, especially in potential overdose scenarios. SIGNIFICANCE This review article provides a critical discussion on the development of electroanalytical methods for biological fluids, with relevance to the fields of clinical analysis and forensics.
Collapse
Affiliation(s)
- Larissa M A Melo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Karla A O Souza
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, 13083859, Campinas, São Paulo, Brazil; Centro de Informação e Assistência Toxicológica de Campinas, Universidade Estadual de Campinas, 13083859, Campinas, São Paulo, Brazil
| | - Jéssica E B Lopes
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Rodrigo A A Muñoz
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil.
| | - Jose L Costa
- Centro de Informação e Assistência Toxicológica de Campinas, Universidade Estadual de Campinas, 13083859, Campinas, São Paulo, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083859, Campinas, São Paulo, Brazil
| | - Wallans T P Dos Santos
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Gabrielle Sutanto L, Sabilla S, Wardhana BY, Ramadani A, Sari AP, Anjani QK, Basirun WJ, Amrillah T, Amalina I, Jiwanti PK. Carbon nanomaterials as electrochemical sensors for theophylline: a review. RSC Adv 2024; 14:28927-28942. [PMID: 39263434 PMCID: PMC11388037 DOI: 10.1039/d4ra03585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024] Open
Abstract
Theophylline (TP) is a methylxanthine derivative, which serves as a valuable compound in treating respiratory disorders and acts as a bronchodilator agent. However, TP has a limited therapeutic range (20-100 μmol L-1), demanding precise monitoring to prevent potential drug toxicity even with slight level fluctuations during treatment. Thus, to overcome this limitation, electrochemical methods have been extensively used due to their efficacy in achieving sensitivity, selectivity, and accuracy. In the context of electrochemical sensors, nanocarbon-based materials have gained widespread recognition for their extensive applications. Therefore, this review aims to explore the latest advancements in carbon-based electrodes particularly used for the precise determination of TP through electrochemical methods. The results are expected to provide insights into the profound significance of the methods in enhancing the accuracy and sensitivity for the detection of TP.
Collapse
Affiliation(s)
- Laurencia Gabrielle Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Syarifa Sabilla
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Brasstira Yuva Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Anggi Ramadani
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Anis Puspita Sari
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
| | - Wan Jeffrey Basirun
- Nanotechnology and Catalysis Research Center (NANOCAT), University Malaya Kuala Lumpur 50603 Malaysia
- Department of Chemistry, Faculty of Science, University Malaya Kuala Lumpur 50603 Malaysia
| | - Tahta Amrillah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Ilma Amalina
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga Surabaya 60115 Indonesia
| |
Collapse
|
3
|
López-Sánchez C, de Andrés F, Ríos Á. Implications of analytical nanoscience in pharmaceutical and biomedical fields: A critical view. J Pharm Biomed Anal 2024; 243:116118. [PMID: 38513499 DOI: 10.1016/j.jpba.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
This review summarizes recent progress performed in the design and application of analytical tools and methodologies using nanomaterials for pharmaceutical analysis, and specifically new nanomedicines at distinct phases of development and translation from preclinical to clinical stages. Over the last 10-15 years, a growing number of studies have utilized various nanomaterials, including carbon-based, metallic nanoparticles, polymeric nanomaterials, materials based on biological molecules, and composite nanomaterials as tools for improving the analysis of pharmaceutical products. New and more complex nanomaterials are currently being explored to influence different stages of the analytical process. These materials provide unique properties to support the extraction of analytes in complex samples, increase the selectivity and efficiency of chromatographic separations, and improve the analytical properties of many sensor applications. Indeed, nanomaterials, including electrochemical detection approaches and biosensing, are expanding at a remarkable rate. Furthermore, the analytical performance of numerous approaches to determine drugs in different matrices can be significantly improved in terms of precision, detection limits, selectivity, and time of analysis. However, the quality control and metrological characterization of the currently synthesized nanomaterials still depend on the development of new and improved analytical methodologies, and the application of specific and improved instrumentation. Therefore, there is still much to explore about the properties of nanomaterials which need to be determined even more precisely and accurately.
Collapse
Affiliation(s)
- Claudia López-Sánchez
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Dr. José María Sánchez Ibáñez Av. s/n, Albacete 02071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain.
| |
Collapse
|
4
|
Prinith NS, Manjunatha JG, Albaqami MD, Mohamed Tighezza A, Sillanpää M. Electrochemical Analysis of Food additive Vanillin using Poly (Aspartic Acid) Modified Graphene and Graphite composite Paste Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202203572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nambudumada S. Prinith
- Department of Chemistry, FMKMC College Constituent College of Mangalore University, Madikeri Karnataka India
| | - Jamballi G. Manjunatha
- Department of Chemistry, FMKMC College Constituent College of Mangalore University, Madikeri Karnataka India
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Ammar Mohamed Tighezza
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Mika Sillanpää
- Department of Biological and Chemical Engineering Aarhus University, Norrebrogade 44 8000 Aarhus C Denmark
| |
Collapse
|
5
|
Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. CHEMOSPHERE 2022; 306:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acetaminophen is a widely used analgesic throughout the world. Detection of acetaminophen has particular value in pharmacy and clinics. Electrochemical sensors assembled with advanced materials are an effective method for the rapid detection of acetaminophen. Graphene-based carbon nanomaterials have been extensively investigated for potential analytical applications in the last decade. In this article, we selected papers containing both graphene and acetaminophen. Bibliometrics was used to analyze the relationships and trends among these papers. The results show that the topic has grown at a high rate since 2009. Among them, the detection of acetaminophen by an electrochemical sensor based on graphene is the most important direction. Graphene has moved from being a primary sensing material to a substrate for immobilization of other active ingredients. In addition, the degradation of acetaminophen using graphene-modified electrodes is also an important direction. We analyzed the research history and current status of this topic through bibliometrics. Authors, institutions, countries, and key literature were discussed. We also proposed perspectives for this topic.
Collapse
Affiliation(s)
- Shuyan Xiang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
6
|
Imanzadeh H, Bakirhan NK, Kuralay F, Amiri M, Ozkan SA. Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions. Crit Rev Anal Chem 2021; 53:1263-1284. [PMID: 34941476 DOI: 10.1080/10408347.2021.2018568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Graphene, emerging as a true two-dimensional (2D) material, has attracted increasing attention due to its unique physical and electrochemical properties such as high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production. The entire scientific community recognizes the significance and potential impact of graphene. Electrochemical detection strategies have advantages such as being simple, fast, and low-cost. The use of graphene as an excellent interface for electrode modification provides a promising way to construct more sensitive and stable electrochemical (bio)sensors. The review presents sensors based on graphene and its derivatives for electrochemical drug assays from pharmaceutical dosage forms and biological samples. Future perspectives in this rapidly developing field are also discussed. In addition, the interaction of several important anticancer drug molecules with deoxyribonucleic acid (DNA) that was immobilized onto graphene-modified electrodes has been detailed in terms of dosage regulation and utility purposes.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
8
|
Crapnell RD, Banks CE. Electroanalytical overview: The electroanalytical detection of theophylline. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Liu C, Zhang N, Huang X, Wang Q, Wang X, Wang S. Fabrication of a novel nanocomposite electrode with ZnO-MoO3 and biochar derived from mushroom biomaterials for the detection of acetaminophen in the presence of DA. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Hassanpour S, Behnam B, Baradaran B, Hashemzaei M, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta 2020; 221:121610. [PMID: 33076140 DOI: 10.1016/j.talanta.2020.121610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Precise detection of important pharmaceuticals with narrow therapeutic index (NTI) is very critical as there is a small window between their effective dose and the doses at which the adverse reactions are very likely to appear. Regarding the fact that various pharmacokinetics will be plausible while considering pharmacogenetic factors and also differences between generic and brand name drugs, accurate detection of NTI will be more important. Current routine analytical techniques suffer from many drawbacks while using novel biosensors can bring up many advantages including fast detection, accuracy, low cost with simple and repeatable measurements. Recently the well-known carbon Nano-allotropes including carbon nanotubes and graphenes have been widely used for development of different Nano-biosensors for a diverse list of analytes because of their great physiochemical features such as high tensile strength, ultra-light weight, unique electronic construction, high thermo-chemical stability, and an appropriate capacity for electron transfer. Because of these exceptional properties, scientists have developed an immense interest in these nanomaterials. In this case, there are important reports to show the effective Nano-carbon based biosensors in the detection of NTI drugs and the present review will critically summarize the available data in this field.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
11
|
Beitollahi H, Khalilzadeh MA, Tajik S, Safaei M, Zhang K, Jang HW, Shokouhimehr M. Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives. ACS OMEGA 2020; 5:2049-2059. [PMID: 32064365 PMCID: PMC7016907 DOI: 10.1021/acsomega.9b03788] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 05/05/2023]
Abstract
This study is on current developments concerning ferrocene (FC) and its derivatives on the basis of electrochemical biosensors and sensors. The distinct physiochemical characteristics of FC have enabled the development of new sensor devices, specifically electrochemical sensors. Several articles have focused on the implementation of FC as an electrode constituent while discussing its electrochemical behavior. Furthermore, typical FC-design-based biosensors and sensors are considered as well as practical examples. The favorable design of FC-based biosensors and general sensors needs adequate control of their chemical and physical characteristics in addition to their surface immobilization and functionalization.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment
Department, Institute of Science and High Technology and Environmental
Sciences, Graduate University of Advanced
Technology, Kerman, Iran
- E-mail: (H.W.J.)
| | - Mohammad A. Khalilzadeh
- Department
of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Somayeh Tajik
- Research
Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohadeseh Safaei
- Environment
Department, Institute of Science and High Technology and Environmental
Sciences, Graduate University of Advanced
Technology, Kerman, Iran
| | - Kaiqiang Zhang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
- E-mail: (H. W. Jang)
| | - Mohammadreza Shokouhimehr
- Department
of Materials Science and Engineering, Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Republic of Korea
- E-mail: (M.S.)
| |
Collapse
|
12
|
|
13
|
Habibi-Kool-Gheshlaghi M, Faridbod F, Mosammam MK, Ganjali MR. Electroanalysis of Tricyclic Psychotropic Drugs using Modified Electrodes. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180917112548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background:
Tricyclic psychotropic drugs are defined as a tricyclic rings of the dibenzazepine
group with the presence of sulfur and nitrogen atoms. They have been prescribed for antidepressive
therapy over the years. Due to their medical importance, many analytical methods have
been developed for their monitoring. However, benefits of electrochemical techniques such as costeffectiveness,
fast, easy operation and non-destructiveness make them appropriate analytical methods
for drug assays. Electrochemical determinations of pharmaceuticals require suitable working electrodes.
During years, many electrodes are modified by a variety of modifiers and several sensors
were developed based on them. In this regard, nanomaterials, due to their remarkable properties, are
one of the most important choices.
Objective:
Here, the application of electroanalytical methods in the determination of electroactive tricyclic
psychotropic drugs will be reviewed and the nanomaterials which are used for improvements
of the working electrodes will be considered.
Collapse
Affiliation(s)
- Mona Habibi-Kool-Gheshlaghi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mahya Karami Mosammam
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Abstract
Background:
Graphene and its derivatives, as most promising carbonic nanomaterials have
been widely used in design and making electrochemical sensors and biosensors. Graphene quantum dots
are one of the members of this family which have been mostly known as fluorescent nanomaterials and
found extensive applications due to their remarkable optical properties. Quantum confinement and edge
effects in their structures also cause extraordinary electrochemical properties.
Objective:
Recently, graphene quantum dots besides graphene oxides and reduced graphene oxides have
been applied for modification of the electrodes too and exposed notable effects in electrochemical responses.
Here, we are going to consider these significant effects through reviewing some of the recent
published works.
Collapse
Affiliation(s)
- Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Afsaneh L. Sanati
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Beigizadeh H, Ganjali MR, Norouzi P. Voltammetric Sensors Based on Various Nanomaterials for the Determination of Sulfonamides. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180313114313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The widespread applications of sulphonamides, as antibacterial or antimicrobial
agents, and their mechanism of actions in the body, have changed their determination to an important
issue in the area of human health.
Objective:
Here, history of developing voltammetric sensors based on nanomaterials for the detection of
sulfonamides including sulfadiazine, sulfamethoxazole, sulfacetamide, sulfadimethoxine, sulfathiazole,
sulfamethiazole and sulfamerazine is reviewed. Modified electrodes based on various nanomaterials
(carbonaceous nanomaterials, Metallic Nanoparticles (MNPs), conducting nanopolymers) have been
reported, and studies showed that nanomaterials have been mostly used to overcome problems like the
poor sensitivity and selectivity of bare electrodes. The study covers the properties of each sensor in
detail, and reports and compares the linear ranges, Limits of Detection (LODs), reproducibility, and
reusability of the electrodes reported so far.
Collapse
Affiliation(s)
- Hana Beigizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Norouzi P, Larijani B, Alizadeh T, Pourbasheer E, Aghazadeh M, Ganjali MR. Application of Advanced Electrochemical Methods with Nanomaterial-based Electrodes as Powerful Tools for Trace Analysis of Drugs and Toxic Compounds. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180316170607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
The new progress in electronic devices has provided a great opportunity for
advancing electrochemical instruments by which we can more easily solve many problems of interest
for trace analysis of compounds, with a high degree of accuracy, precision, sensitivity, and selectivity.
On the other hand, in recent years, there is a significant growth in the application of nanomaterials for
the construction of nanosensors due to enhanced chemical and physical properties arising from discrete
modified nanomaterial-based electrodes or microelectrodes.
Objective:
Combination of the advanced electrochemical system and nanosensors make these devices
very suitable for the high-speed analysis, as motioning and portable devices. This review will discuss
the recent developments and achievements that have been reported for trace measurement of drugs and
toxic compounds for environment, food and health application.
Collapse
Affiliation(s)
- Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Alizadeh
- Department of Analytical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Eslam Pourbasheer
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Mostafa Aghazadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Beiginejad H. Dependence of mechanism to thermodynamics in electrochemical oxidation of acetaminophen in the presence of different nucleophiles. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Beitollahi H, Ivari SG, Torkzadeh-Mahani M. Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Biosens Bioelectron 2018; 110:97-102. [DOI: 10.1016/j.bios.2018.03.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
|
19
|
Maduraiveeran G, Rasik R, Sasidharan M, Jin W. Bimetallic gold-nickel nanoparticles as a sensitive amperometric sensing platform for acetaminophen in human serum. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Movlaee K, Ganjali MR, Norouzi P, Neri G. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E406. [PMID: 29168771 PMCID: PMC5746896 DOI: 10.3390/nano7120406] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023]
Abstract
Iron oxide nanostructures (IONs) in combination with graphene or its derivatives-e.g., graphene oxide and reduced graphene oxide-hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances.
Collapse
Affiliation(s)
- Kaveh Movlaee
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
- Department of Engineering, University of Messina, I-98166 Messina, Italy.
| | - Mohmmad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Giovanni Neri
- Department of Engineering, University of Messina, I-98166 Messina, Italy.
| |
Collapse
|