1
|
Hengge E, Steyskal EM, Dennig A, Nachtnebel M, Fitzek H, Würschum R, Nidetzky B. Electrochemically Induced Nanoscale Stirring Boosts Functional Immobilization of Flavocytochrome P450 BM3 on Nanoporous Gold Electrodes. SMALL METHODS 2024:e2400844. [PMID: 39300852 DOI: 10.1002/smtd.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/22/2024]
Abstract
Enzyme-modified electrodes are core components of electrochemical biosensors for diagnostic and environmental analytics and have promising applications in bioelectrocatalysis. Despite huge research efforts spanning decades, design of enzyme electrodes for superior performance remains challenging. Nanoporous gold (npAu) represents advanced electrode material due to high surface-to-volume ratio, tunable porosity, and intrinsic redox activity, yet its coupling with enzyme catalysis is complex. Here, the study reports a flexible-modular approach to modify npAu with functional enzymes by combined material and protein engineering and use a tailored assortment of surface and in-solution methodologies for characterization. Self-assembled monolayer (SAM) of mercaptoethanesulfonic acid primes the npAu surface for electrostatic adsorption of the target enzyme (flavocytochrome P450 BM3; CYT102A1) that is specially equipped with a cationic protein module for directed binding to anionic surfaces. Modulation of the SAM surface charge is achieved by electrochemistry. The electrode-adsorbed enzyme retains well the activity (33%) and selectivity (complete) from in-solution. Electrochemically triggered nanoscale stirring in the internal porous network of npAu-SAM enhances speed (2.5-fold) and yield (3.0-fold) of the enzyme immobilization. Biocatalytic reaction is fueled from the electrode via regeneration of its reduced coenzyme (NADPH). Collectively, the study presents a modular design of npAu-based enzyme electrode that can support flexible bioelectrochemistry applications.
Collapse
Affiliation(s)
- Elisabeth Hengge
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
| | - Manfred Nachtnebel
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Harald Fitzek
- Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, Graz, 8010, Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology, Petergasse 16, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, Graz, 8010, Austria
| |
Collapse
|
2
|
Zhang W, Zhang J, Fan S, Zhang L, Liu C, Liu J. Oxygen reduction catalyzed by bilirubin oxidase and applications in biosensors and biofuel cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Serleti A, Xiao X, Shortall K, Magner E. Use of Self‐Assembled Monolayers for the Sequential and Independent Immobilisation of Enzymes. ChemElectroChem 2021. [DOI: 10.1002/celc.202101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alessandro Serleti
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick Ireland
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Kongens Lyngby 2800 Denmark
| | - Kim Shortall
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick Ireland
| | - Edmond Magner
- Department of Chemical Sciences Synthesis and Solid State Pharmaceutical Research Centre Bernal Institute MS1016, University of Limerick Limerick Ireland
| |
Collapse
|
4
|
Gonzalez-Solino C, Bernalte E, Bayona Royo C, Bennett R, Leech D, Di Lorenzo M. Self-Powered Detection of Glucose by Enzymatic Glucose/Oxygen Fuel Cells on Printed Circuit Boards. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26704-26711. [PMID: 34038080 PMCID: PMC8735749 DOI: 10.1021/acsami.1c02747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 05/31/2023]
Abstract
Monitoring glucose levels in physiological fluids can help prevent severe complications associated with hypo- and hyper-glycemic events. Current glucose-monitoring systems require a three-electrode setup and a power source to function, which can hamper the system miniaturization to the patient discomfort. Enzymatic fuel cells (EFCs) offer the opportunity to develop self-powered and minimally invasive glucose sensors by eliminating the need for an external power source. Nevertheless, practical applications demand for cost-effective and mass-manufacturable EFCs compatible with integration strategies. In this study, we explore for the first time the use of gold electrodes on a printed circuit board (PCB) for the development of an EFC and demonstrate its application in saliva. To increase the specific surface area, the PCB gold-plated electrodes were modified with porous gold films. At the anode, glucose oxidase is immobilized with an osmium redox polymer that serves as an electron-transfer mediator. At the cathode, bilirubin oxidase is adsorbed onto the porous gold surface with a blocking agent that prevents parasitic reactions while maintaining the enzyme catalytic activity. The resulting EFC showed a linear response to glucose in phosphate buffer within the range 50 μM to 1 mM, with a sensitivity of 14.13 μA cm-2 mM-1. The sensor was further characterized in saliva, showing the linear range of detection of 0.75 to 2 mM, which is within the physiological range, and sensitivity of 21.5 μA cm-2 mM-1. Overall, this work demonstrates that PCBs are suitable platforms for EFCs, paving the way for the development of fully integrated systems in a seamless and miniaturized device.
Collapse
Affiliation(s)
- Carla Gonzalez-Solino
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath BA2 7AY, U.K.
| | - Elena Bernalte
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath BA2 7AY, U.K.
| | - Clara Bayona Royo
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath BA2 7AY, U.K.
| | - Richard Bennett
- School
of Chemistry & Ryan Institute, National
University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Dónal Leech
- School
of Chemistry & Ryan Institute, National
University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Mirella Di Lorenzo
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Biosensors, Bioelectronics and Biodevices (C3Bio), University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
5
|
Izzo M, Osella S, Jacquet M, Kiliszek M, Harputlu E, Starkowska A, Łasica A, Unlu CG, Uśpieński T, Niewiadomski P, Bartosik D, Trzaskowski B, Ocakoglu K, Kargul J. Enhancement of direct electron transfer in graphene bioelectrodes containing novel cytochrome c 553 variants with optimized heme orientation. Bioelectrochemistry 2021; 140:107818. [PMID: 33905959 DOI: 10.1016/j.bioelechem.2021.107818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 04/03/2021] [Indexed: 11/20/2022]
Abstract
The highly efficient bioelectrodes based on single layer graphene (SLG) functionalized with pyrene self-assembled monolayer and novel cytochromec553(cytc553)peptide linker variants were rationally designed to optimize the direct electron transfer (DET) between SLG and the heme group of cyt. Through a combination of photoelectrochemical and quantum mechanical (QM/MM) approaches we show that the specific amino acid sequence of a short peptide genetically inserted between the cytc553holoprotein and thesurface anchoring C-terminal His6-tag plays a crucial role in ensuring the optimal orientation and distance of the heme group with respect to the SLG surface. Consequently, efficient DET occurring between graphene and cyt c553 leads to a 20-fold enhancement of the cathodic photocurrent output compared to the previously reported devices of a similar type. The QM/MM modeling implies that a perpendicular or parallel orientation of the heme group with respect to the SLG surface is detrimental to DET, whereas the tilted orientation favors the cathodic photocurrent generation. Our work confirms the possibility of fine-tuning the electronic communication within complex bio-organic nanoarchitectures and interfaces due to optimization of the tilt angle of the heme group, its distance from the SLG surface and optimal HOMO/LUMO levels of the interacting redox centers.
Collapse
Affiliation(s)
- Miriam Izzo
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Margot Jacquet
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Małgorzata Kiliszek
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Ersan Harputlu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey
| | - Alicja Starkowska
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - C Gokhan Unlu
- Department of Biomedical Engineering, Pamukkale University, TR-20070 Denizli, Turkey
| | - Tomasz Uśpieński
- Laboratory of Molecular and Cellular Signaling, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Paweł Niewiadomski
- Laboratory of Molecular and Cellular Signaling, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Kasim Ocakoglu
- Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey
| | - Joanna Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
6
|
Yu S, Myung NV. Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells. Front Chem 2021; 8:620153. [PMID: 33644003 PMCID: PMC7902792 DOI: 10.3389/fchem.2020.620153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.
Collapse
Affiliation(s)
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
7
|
Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers. Catalysts 2020. [DOI: 10.3390/catal10121458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Self-assembled molecular monolayers (SAMs) have long been recognized as crucial “bridges” between redox enzymes and solid electrode surfaces, on which the enzymes undergo direct electron transfer (DET)—for example, in enzymatic biofuel cells (EBFCs) and biosensors. SAMs possess a wide range of terminal groups that enable productive enzyme adsorption and fine-tuning in favorable orientations on the electrode. The tunneling distance and SAM chain length, and the contacting terminal SAM groups, are the most significant controlling factors in DET-type bioelectrocatalysis. In particular, SAM-modified nanostructured electrode materials have recently been extensively explored to improve the catalytic activity and stability of redox proteins immobilized on electrochemical surfaces. In this report, we present an overview of recent investigations of electrochemical enzyme DET processes on SAMs with a focus on single-crystal and nanoporous gold electrodes. Specifically, we consider the preparation and characterization methods of SAMs, as well as SAM applications in promoting interfacial electrochemical electron transfer of redox proteins and enzymes. The strategic selection of SAMs to accord with the properties of the core redox protein/enzymes is also highlighted.
Collapse
|
8
|
Bollella P. Porous Gold: A New Frontier for Enzyme-Based Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E722. [PMID: 32290306 PMCID: PMC7221854 DOI: 10.3390/nano10040722] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022]
Abstract
Porous gold (PG) layers modified electrodes have emerged as valuable enzyme support to realize multiple enzyme-based bioelectrochemical devices like biosensors, enzymatic fuel cells (EFCs), smart drug delivery devices triggered by enzyme catalyzed reactions, etc. PG films can be synthesized by using different methods such as dealloying, electrochemical (e.g., templated electrochemical deposition, self-templated electrochemical deposition, etc.) self-assembly and sputter deposition. This review aims to summarize the recent findings about PG synthesis and electrosynthesis, its characterization and application for enzyme-based electrodes used for biosensors and enzymatic fuel cells (EFCs) development.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, 13699-5810 NY, USA
| |
Collapse
|
9
|
Rational Design of Enzyme‐Modified Electrodes for Optimized Bioelectrocatalytic Activity. ChemElectroChem 2019. [DOI: 10.1002/celc.201901022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Abstract
Redox enzymes, which catalyze reactions involving electron transfers in living organisms, are very promising components of biotechnological devices, and can be envisioned for sensing applications as well as for energy conversion. In this context, one of the most significant challenges is to achieve efficient direct electron transfer by tunneling between enzymes and conductive surfaces. Based on various examples of bioelectrochemical studies described in the recent literature, this review discusses the issue of enzyme immobilization at planar electrode interfaces. The fundamental importance of controlling enzyme orientation, how to obtain such orientation, and how it can be verified experimentally or by modeling are the three main directions explored. Since redox enzymes are sizable proteins with anisotropic properties, achieving their functional immobilization requires a specific and controlled orientation on the electrode surface. All the factors influenced by this orientation are described, ranging from electronic conductivity to efficiency of substrate supply. The specificities of the enzymatic molecule, surface properties, and dipole moment, which in turn influence the orientation, are introduced. Various ways of ensuring functional immobilization through tuning of both the enzyme and the electrode surface are then described. Finally, the review deals with analytical techniques that have enabled characterization and quantification of successful achievement of the desired orientation. The rich contributions of electrochemistry, spectroscopy (especially infrared spectroscopy), modeling, and microscopy are featured, along with their limitations.
Collapse
|