1
|
Sorout M, Bhogal S. Current trends of functional monomers and cross linkers used to produce molecularly imprinted polymers for food analysis. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38907585 DOI: 10.1080/10408398.2024.2365337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Molecularly imprinted polymers (MIPs) as artificial synthetic receptors are in high demand for food analysis due to their inherent molecular recognition abilities. It is common practice to employ functional monomers with basic or acidic groups that can interact with analyte molecules via hydrogen bonds, covalent bonds, and other interactions (π-π, dipole-ion, hydrophobic, and Van der Waals). Therefore, selecting the appropriate functional monomer and cross-linker is crucial for determining how precisely they interact with the template and developing the polymeric network's three-dimensional structure. This study summarizes the advancements made in MIP's functional monomers and cross-linkers for food analysis from 2018 to 2023. The subsequent computational design of MIP has been thoroughly explained. The discussion has concluded with a look at the difficulties and prospects for MIP in food analysis.
Collapse
Affiliation(s)
- Mohit Sorout
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Shikha Bhogal
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
2
|
Tiwari MS, Thorat RG, Popatkar BB, Borge VV, Kadu AK. Voltammetric determination of doxycycline in feedstock using modified carbon screen-printed electrode. ANAL SCI 2023; 39:1889-1899. [PMID: 37495926 DOI: 10.1007/s44211-023-00395-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In this work, we describe the development of an electrochemical sensing platform that employs electrochemically reduced graphene oxide (ErGO) and gold (Au) deposited on a screen-printed carbon electrode (SPCE) to synthesize Au/ErGO/SPCE for the determination of the antibiotic drug doxycycline (DC). A modified Hummer's approach was adopted to initially prepare graphene oxide, which was then characterized by using powder XRD, FTIR, and UV spectroscopy before being utilized for modification on SPCE. Cyclic voltammetry was performed to form ErGO on SPCE to give ErGO/SPCE followed by electrodeposition of gold to get a final modified electrode Au/ErGO/SPCE. The effect of experimental conditions, like scan rate and pH on the electrochemical behavior of DC for Au/ErGO/SPCE, was evaluated. Square wave voltammetry (SWV) and cyclic voltammetry (CV) measurements were used to assess the electro-oxidation of DC on Au/ErGO/SPCE, and the electrochemical reaction conditions were also optimized. Furthermore, Au/ErGO/SPCE-based electrochemical sensors showed good recovery and high accuracy for DC determination in the complex food matrix and blood serum. The limit of detection (LOD), the limit of quantification (LOQ), and the linear calibration range of DC on Au/ErGO/SPCE under optimum experimental conditions were 0.124 µm, 0.415 µm, and 1-100 µm respectively, with high sensitivity of 0.194 μA μM-1 cm-2. Finally, the proposed electrochemical sensing platform was effectively used to determine low DC concentrations in real samples such as chicken flesh and blood serum, indicating its wide range of applications in quality control.
Collapse
Affiliation(s)
- M S Tiwari
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India
| | - R G Thorat
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India
| | - B B Popatkar
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India
| | - V V Borge
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India
| | - A K Kadu
- University Department of Chemistry, University of Mumbai, Santacruz (East), Mumbai, Maharashtra, 400 098, India.
| |
Collapse
|
3
|
Koçak İ. ZnO and Au nanoparticles supported highly sensitive and selective electrochemical sensor based on molecularly imprinted polymer for sulfaguanidine and sulfamerazine detection. J Pharm Biomed Anal 2023; 234:115518. [PMID: 37336038 DOI: 10.1016/j.jpba.2023.115518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
This study aimed to develop a molecularly imprinted polymer (MIP) sensor using electropolymerization of thiophene acetic acid monomer around template molecules, sulfaguanidine (SGN) and sulfamerazine (SMR), for selective and sensitive detection of both antibiotics. Au nanoparticles were then deposited on the modified electrode surface, and SGN and SMR were extracted from the resulting layer. Surface characterization, changes in the oxidation peak current of both analytes, and investigation of the electrochemical properties of the MIP sensor were examined using scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The developed MIP sensor with Au nanoparticles showed a detection limit of 0.030 µmol L-1 and 0.046 µmol L-1 for SGN and SMR, respectively, with excellent selectivity in the presence of interferents. The sensor was successfully used for SGN and SMR analysis in human fluids, including blood serum and urine, with excellent stability and reproducibility.
Collapse
Affiliation(s)
- İzzet Koçak
- Zonguldak Bülent Ecevit University Faculty of Pharmacy, Zonguldak, Turkey.
| |
Collapse
|
4
|
Tchaikovskaya O, Bocharnikova E, Bazyl O, Chaidonova V, Mayer G, Avramov P. Nature of Luminescence and Pharmacological Activity of Sulfaguanidine. Molecules 2023; 28:molecules28104159. [PMID: 37241901 DOI: 10.3390/molecules28104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sulfonamides are one of the oldest groups of veterinary chemotherapeutic agents. Physico-chemical properties, the concentration and the nature of the environment are the factors responsible for the distribution of sulfonamides in the living organism. Although these drug compounds have been in use for more than half a century, knowledge about their behavior is still limited. Physiological activity is currently attributed to the sulfanyl radical. Our study is devoted to the spectral properties of aqueous solutions of sulfaguanidine, in which the formation of complexes with an H-bond and a protonated form takes place. The nature of the fluorescent state of sulfaguanidine was interpreted using computational chemistry, the electronic absorption method and the luminescence method. The structure of sulfaguanidine includes several active fragments: aniline, sulfonic and guanidine. To reveal the role of fragments in the physiological activity of the studied antibiotic, we calculated and compared the effective charges of the fragments of aniline and sulfaguanidine molecules. Chromophore groups were identified in molecules, which determine the intermolecular interaction between a molecule and a proton-donor solvent. The study also revealed the impact of sulfone and guanidine groups, as well as complexation, on the effective charge of the antibiotic fragment responsible for physiological activity and luminescent ability.
Collapse
Affiliation(s)
- Olga Tchaikovskaya
- Quantum Electronics Laboratory, Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620146 Yekaterinburg, Russia
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Elena Bocharnikova
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Olga Bazyl
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Vlada Chaidonova
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
- Hygienic and Epidemiological Center in Republic of Khakassia, 655017 Abakan, Russia
| | - George Mayer
- Laboratory of Photophysics and Photochemistry of Molecules, Faculty of Physics, Tomsk State University, 634050 Tomsk, Russia
| | - Paul Avramov
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Elamin MB, Ali SMA, Essousi H, Chrouda A, Alhaidari LM, Jaffrezic-Renault N, Barhoumi H. An Electrochemical Sensor for Sulfadiazine Determination Based on a Copper Nanoparticles/Molecularly Imprinted Overoxidized Polypyrrole Composite. SENSORS (BASEL, SWITZERLAND) 2023; 23:1270. [PMID: 36772311 PMCID: PMC9919664 DOI: 10.3390/s23031270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
To protect consumers from risks related to overexposure to sulfadiazine, total residues of this antibacterial agent in animal-origin foodstuffs not exceed international regulations. To this end, a new electrochemical sensor based on a molecularly imprinted polymer nanocomposite using overoxidized polypyrrole and copper nanoparticles for the detection of sulfadiazine is elaborated. After optimization of the preparation of the electrochemical sensors, their differential pulse voltammetric signal exhibits an excellent stability and reproducibility at 1.05 V, with a large linear range between 10-9 and 10-5 mol L-1 and a low detection limit of 3.1 × 10-10 mol L-1. The produced sulfadiazine sensor was successfully tested in real milk samples. The combination of the properties of the electrical conduction of copper nanoparticles with the properties of the preconcentration of the molecularly imprinted overoxidized polypyrrole allows for the highly sensitive detection of sulfadiazine, even in real milk samples. This strategy is new and leads to the lowest detection limit yet achieved, compared to those of the previously published sulfadiazine electrochemical sensors.
Collapse
Affiliation(s)
- Manahil Babiker Elamin
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | | | - Houda Essousi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
| | - Amani Chrouda
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Laila M. Alhaidari
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | | | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
| |
Collapse
|
6
|
Ben Halima H, Baraket A, Vinas C, Zine N, Bausells J, Jaffrezic-Renault N, Teixidor F, Errachid A. Selective Antibody-Free Sensing Membranes for Picogram Tetracycline Detection. BIOSENSORS 2022; 13:71. [PMID: 36671906 PMCID: PMC9855611 DOI: 10.3390/bios13010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 06/12/2023]
Abstract
As an antibody-free sensing membrane for the detection of the antibiotic tetracycline (TC), a liquid PVC membrane doped with the ion-pair tetracycline/θ-shaped anion [3,3'-Co(1,2-C2B9H11)2]- ([o-COSAN]-) was formulated and deposited on a SWCNT modified gold microelectrode. The chosen transduction technique was electrochemical impedance spectroscopy (EIS). The PVC membrane was composed of: the tetracycline/[o-COSAN]- ion-pair, a plasticizer. A detection limit of 0.3 pg/L was obtained with this membrane, using bis(2-ethylhexyl) sebacate as a plasticizer. The sensitivity of detection of tetracycline was five times higher than that of oxytetracycline and of terramycin, and 22 times higher than that of demeclocycline. A shelf-life of the prepared sensor was more than six months and was used for detection in spiked honey samples. These results open the way to having continuous monitoring sensors with a high detection capacity, are easy to clean, avoid the use of antibodies, and produce a direct measurement.
Collapse
Affiliation(s)
- Hamdi Ben Halima
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| | - Abdoullatif Baraket
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| | - Clara Vinas
- Inorganic Materials Laboratory, Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Nadia Zine
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| | - Joan Bausells
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Nicole Jaffrezic-Renault
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| | - Francesc Teixidor
- Inorganic Materials Laboratory, Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Abdelhamid Errachid
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| |
Collapse
|
7
|
Yarkaeva Y, Maistrenko V, Dymova D, Zagitova L, Nazyrov M. Polyaniline and poly(2-methoxyaniline) based molecular imprinted polymer sensors for amoxicillin voltammetric determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Veloz Martínez I, Ek JI, Ahn EC, Sustaita AO. Molecularly imprinted polymers via reversible addition-fragmentation chain-transfer synthesis in sensing and environmental applications. RSC Adv 2022; 12:9186-9201. [PMID: 35424874 PMCID: PMC8985154 DOI: 10.1039/d2ra00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Molecularly imprinted polymers (MIP) have shown their potential as artificial and selective receptors for environmental monitoring. These materials can be tailor-made to achieve a specific binding event with a template through a chosen mechanism. They are capable of emulating the recognition capacity of biological receptors with superior stability and versatility of integration in sensing platforms. Commonly, these polymers are produced by traditional free radical bulk polymerization (FRP) which may not be the most suitable for enhancing the intended properties due to the poor imprinting performance. To improve the imprinting technique and the polymer capabilities, controlled/living radical polymerization (CRP) has been used to overcome the main drawbacks of FRP. Combining CRP techniques such as RAFT (reversible addition-fragmentation chain transfer) with MIP has achieved higher selectivity, sensitivity, and sorption capacity of these polymers when implemented as the transductor element in sensors. The present work focuses on RAFT-MIP design and synthesis strategies to enhance the binding affinities and their implementation in environmental contaminant sensing applications.
Collapse
Affiliation(s)
- Irvin Veloz Martínez
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Jackeline Iturbe Ek
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Ethan C Ahn
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio San Antonio TX 78249 USA
| | - Alan O Sustaita
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| |
Collapse
|
9
|
Morphological, Opto-Electrochemical, and Sensing Proprieties of a Mixed Isopolymolybdate [Eu(dmso)8][Eu(η2-NO3)2(dmso)4(α-Mo8O26)0.5][Mo6O19] for Sulfaguanidine Detection. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Dardeer HM, Toghan A, Zaki MEA, Elamary RB. Design, Synthesis and Evaluation of Novel Antimicrobial Polymers Based on the Inclusion of Polyethylene Glycol/TiO 2 Nanocomposites in Cyclodextrin as Drug Carriers for Sulfaguanidine. Polymers (Basel) 2022; 14:polym14020227. [PMID: 35054634 PMCID: PMC8780372 DOI: 10.3390/polym14020227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Polymers and their composites have recently attracted attention in both pharmaceutical and biomedical applications. Polyethylene glycol (PEG) is a versatile polymer extensively used in medicine. Herein, three novel PEG-based polymers that are pseudopolyrotaxane (PEG/α-CD) (1), titania–nanocomposite (PEG/TiO2NPs) (2), and pseudopolyrotaxane–titania–nanocomposite (PEG/α-CD/TiO2NPs) (3), were synthesized and characterized. The chemical structure, surface morphology, and optical properties of the newly materials were examined by FT-IR, 1H-NMR, SEM, and UV–Vis., respectively. The prepared polymers were used as drug carriers of sulfaguanidine as PEG/α-CD/Drug (4), PEG/TiO2NPs/Drug (5), and PEG/α-CD/TiO2NPs/Drug (6). The influence of these drug-carrying formulations on the physical and chemical characteristics of sulfaguanidine including pharmacokinetic response, solubility, and tissue penetration was explored. Evaluation of the antibacterial and antibiofilm effect of sulfaguanidine was tested before and after loading onto the prepared polymers against some Gram-negative and positive bacteria (E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus (MRSA)), as well. The results of this work turned out to be very promising as they confirmed that loading sulfaguanidine to the newly designed polymers not only showed superior antibacterial and antibiofilm efficacy compared to the pure drug, but also modified the properties of the sulfaguanidine drug itself.
Collapse
Affiliation(s)
- Hemat M. Dardeer
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Arafat Toghan
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
- Correspondence: or
| | - Magdi E. A. Zaki
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Rokaia B. Elamary
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| |
Collapse
|
11
|
Wójcik S, Ciepiela F, Baś B, Jakubowska M. Deep learning assisted distinguishing of honey seasonal changes using quadruple voltammetric electrodes. Talanta 2022; 241:123213. [PMID: 35030502 DOI: 10.1016/j.talanta.2022.123213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
The work presents innovative quadruple disk iridium, platinum, and iridium-platinum voltammetric electrodes with a special design, dedicated to the testing of samples with a complex organic composition. Noble metal wires are tightened in one silver rod, and therefore each of them acts as a single sensor. It was demonstrated that the signals of the iridium-platinum sensor combine the electrode responses constructed from one metal, which increases the possibilities and range of applications of this sensor, and it can be used as an electronic tongue. These single and combined noble metal electrodes were successfully verified to profile the seasonal variability of honey collected from an apiary in Małopolska (voivodeship in Poland). Data obtained by the differential pulse voltammetry, according to the principles of green chemistry, without using any reagents, were interpreted by principal component analysis, preceded by the optimized variable selection procedure. The best results in distinguishing 12 honeys were obtained using a multimetallic electrode. The classification model calculated using deep convolutional neural networks indicated the proper belonging of honeys to the groups with 100% accuracy for the training and validation set. The proposed solution proved that noble metals quadruple disk electrodes are a promising tool supporting voltammetric profiling of samples and this strategy, considering deep learning, can be developed to a large extent.
Collapse
Affiliation(s)
- Szymon Wójcik
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30-059 Kraków, Al. Mickiewicza 30, Poland.
| | - Filip Ciepiela
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30-059 Kraków, Al. Mickiewicza 30, Poland.
| | - Bogusław Baś
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30-059 Kraków, Al. Mickiewicza 30, Poland.
| | - Małgorzata Jakubowska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, 30-059 Kraków, Al. Mickiewicza 30, Poland.
| |
Collapse
|
12
|
Di Giulio T, Mazzotta E, Malitesta C. Molecularly Imprinted Polyscopoletin for the Electrochemical Detection of the Chronic Disease Marker Lysozyme. BIOSENSORS 2020; 11:3. [PMID: 33374794 PMCID: PMC7823763 DOI: 10.3390/bios11010003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Herein we report the electropolymerization of a scopoletin based molecularly imprinted polymer (MIP) for the detection of lysozyme (Lyz), an enzymatic marker of several diseases in mammalian species. Two different approaches have been used for the imprinting of lysozyme based, respectively, on the use of a monomer-template mixture and on the covalent immobilization of the enzyme prior to polymer synthesis. In the latter case, a multi-step protocol has been exploited with preliminary functionalization of gold electrode with amino groups, via 4-aminothiophenol, followed by reaction with glutaraldehyde, to provide a suitable linker for lysozyme. Each step of surface electrode modification has been followed by cyclic voltammetry and electrochemical impedance spectroscopy, which has been also employed to test the electrochemical responses of the developed MIP. The sensors show good selectivity to Lyz and detect the enzyme at concentrations up to 292 mg/L (20 μM), but with different performances, depending on the used imprinting approach. An imprinting factor equal to 7.1 and 2.5 and a limit of detection of 0.9 mg/L (62 nM) and 2.1 mg/L (141 nM) have been estimated for MIPs prepared with and without enzyme immobilization, respectively. Competitive rebinding experiment results show that this sensing material is selective for Lyz determination. Tests were performed using synthetic saliva to evaluate the potential application of the sensors in real matrices for clinical purposes.
Collapse
Affiliation(s)
| | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologie e Ambientali, Università del Salento, 73100 Lecce, Italy; (T.D.G.); (C.M.)
| | | |
Collapse
|
13
|
Benachio I, Lobato A, Gonçalves LM. Employing molecularly imprinted polymers in the development of electroanalytical methodologies for antibiotic determination. J Mol Recognit 2020; 34:e2878. [PMID: 33022110 DOI: 10.1002/jmr.2878] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
Antibiotics, although being amazing compounds, need to be monitored in the environment and foodstuff. This is primarily to prevent the development of antibiotic resistance that may make them ineffective. Unsurprisingly, advances in analyticalsciences that can improve their determination are appreciated. Electrochemical techniques are known for their simplicity, sensitivity, portability and low-cost; however, they are often not selective enough without recurring to a discriminating element like an antibody. Molecular imprinting technology aims to create artificial tissues mimicking antibodies named molecularly imprinted polymers (MIPs), these retain the advantages of selectivity but without the typical disadvantages of biological material, like limited shelf-life and high cost. This manuscript aims to review all analytical methodologies for antibiotics, using MIPs, where the detection technique is electrochemical, like differential pulse voltammetry (DPV), square-wave voltammetry (SWV) or electrochemical impedance spectroscopy (EIS). MIPs developed by electropolymerization (e-MIPs) were applied in about 60 publications and patents found in the bibliographic search, while MIPs developed by other polymerization techniques, like temperature assisted ("bulk") or photopolymerization, were limited to around 40. Published works covered the electroanalysis of a wide range of different antibiotics (β-lactams, tetracyclines, quinolones, macrolides, aminoglycosides, among other), in a wide range of matrices (food, environmental and biological).
Collapse
Affiliation(s)
- Ingrid Benachio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alnilan Lobato
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Luís Moreira Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
14
|
El Alami El Hassani N, Bouchikhi B, El Bari N. Recent development of an electrochemical imprinted sensor for the detection of trace-level of unmetabolized aflatoxin B2 in dairy milk. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Xie X, Huang S, Zheng J, Ouyang G. Trends in sensitive detection and rapid removal of sulfonamides: A review. J Sep Sci 2020; 43:1634-1652. [PMID: 32043724 DOI: 10.1002/jssc.201901341] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
16
|
Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-38101-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Najlaoui D, Echabaane M, Ben Khélifa A, Rouis A, Ben Ouada H. Photoelectrochemical impedance spectroscopy sensor for cloxacillin based on tetrabutylammonium octamolybdate. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04440-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Wei M, Geng X, Liu Y, Long H, Du J. A novel electrochemical sensor based on electropolymerized molecularly imprinted polymer for determination of luteolin. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Diouf A, Bouchikhi B, El Bari N. A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1196-1209. [DOI: 10.1016/j.msec.2019.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 11/30/2022]
|
20
|
El Alami El Hassani N, Baraket A, Boudjaoui S, Taveira Tenório Neto E, Bausells J, El Bari N, Bouchikhi B, Elaissari A, Errachid A, Zine N. Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical Bio-MEMS. Biosens Bioelectron 2019; 130:330-337. [DOI: 10.1016/j.bios.2018.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023]
|
21
|
Essousi H, Barhoumi H, Jaffrezic‐Renault N. Molecularly Imprinted Electrochemical Sensor Based on Modified Reduced Graphene Oxide‐gold Nanoparticles‐polyaniline Nanocomposites Matrix for Dapsone Determination. ELECTROANAL 2019. [DOI: 10.1002/elan.201800818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Houda Essousi
- University of MonastirFaculty of Sciences of MonastirLaboratory of Advanced Materials and Interfaces Monastir Tunisia
| | - Houcine Barhoumi
- University of MonastirFaculty of Sciences of MonastirLaboratory of Advanced Materials and Interfaces Monastir Tunisia
| | | |
Collapse
|
22
|
Florea A, Feier B, Cristea C. In situ analysis based on molecularly imprinted polymer electrochemical sensors. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|