1
|
Kedara Shivasharma T, Mendhe AC, Sahu R, Sankapal BR. "Unveiling marigold assembled micro flowers of tungsten oxide towards solid-state flexible pouch and coin cell supercapacitors". J Colloid Interface Sci 2024; 676:739-754. [PMID: 39059280 DOI: 10.1016/j.jcis.2024.07.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Marigold analogues micro flowers of tungsten oxide (WO3) have been grown in thin film form through simple and cost-effective solution chemistry approach on stainless steel substrate. Aqueous precursor involving WO4-2 ions agglomerated as self-sacrificing template growing initially into the nano-petal, followed by self-assembly; leading to marigold analogues micro flower surface architecture. This enthralling morphology motivated us not only to fabricate supercapacitive electrode but also to design complete solid-state supercapacitor devices in dual configurations: flexible pouch cell and coin cell. Interestingly, both devices even in symmetric configuration yields remarkable potential window of 1.82 V when sandwiched by gel inclusive of Li+ ions dispersed in non-conducting polyvinyl alcohol matrix. Solid-state flexible pouch cell and coin cell delivered specific capacitances of 103.98 ± 3.59 and 30.09 ± 1.03 F/g respectively at a scan rate of 5 mV/s. Assembled electrode, coin-cell and flexible pouch-cells have been well assessed in-depth through specific capacitances using cyclic voltammetry and galvanostatic charge discharge, diffusive and capacitive contributions, mechanical bending tests, electrochemical active surface area, and electrochemical impedance analysis. Practical applicability has been demonstrated for designed flexible pouch cell to run small fan and light emitting diode panel whereas coin cell to run light emitting diode panel.
Collapse
Affiliation(s)
- T Kedara Shivasharma
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440 010, M.S., India
| | - Avinash C Mendhe
- Department of Electronics Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin, Republic of Korea
| | - Rajulal Sahu
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440 010, M.S., India
| | - Babasaheb R Sankapal
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440 010, M.S., India.
| |
Collapse
|
2
|
Al-Sodies S, Asiri AM, Alam MM, Alamry KA, Hussein MA, Rahman MM. Sensitive Cr 3+ sensor based on novel poly(luminol- co-1,8-diaminonaphthalene)/CeO 2/MWCNTs nanocomposites. RSC Adv 2024; 14:5797-5811. [PMID: 38362067 PMCID: PMC10865463 DOI: 10.1039/d4ra00542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
In this study, poly(luminol-co-1,8-diaminonaphthalene) (PLim-DAN) was synthesized and subsequently modified with MWCNTs and CeO2 NPs. The synthesized nanocomposites were analyzed using IR, SEM, TEM, and XRD. Furthermore, a comprehensive set of thermal behavior measurements were taken using TGA/DTG analysis. Next, the electroactivity of the developed nanocomposites was tested as an electrochemical sensor to measure the concentration of Cr3+ ions in phosphate buffers. The GCE adapted with the PLim-DAN/CeO2/CNTs-10% nanocomposite (NC) exhibited the highest current response among the other compositions and copolymers. The fabricated nanocomposite sensor showed high sensitivity, with a value of 19.78 μA μM-1 cm-2, and a low detection limit of 4.80 ± 0.24 pM. The analytical performance was evaluated by plotting a current calibration curve versus the concentration of Cr3+ ions. It was found to be linear (R2 = 0.9908) over the range of 0.1 nM to 0.1 mM, identified as the linear dynamic range (LDR). This electrochemical sensor demonstrated that it could be a useful tool for environmental monitoring by accurately detecting and measuring carcinogenic Cr3+ ions in real-world samples.
Collapse
Affiliation(s)
- Salsabeel Al-Sodies
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 30002 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - M M Alam
- Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST) Shariatpur 8024 Bangladesh
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
3
|
Khedulkar AP, Pandit B, Dang VD, Doong RA. Agricultural waste to real worth biochar as a sustainable material for supercapacitor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161441. [PMID: 36638993 DOI: 10.1016/j.scitotenv.2023.161441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Biochar made from agricultural waste is gaining more attention in energy field due to its sustainability, low cost, apart from having high supercapacitance performance. Also, it has a wide range of environmental applications, including wastewater treatment, upgrading soil fertility, contaminant immobilization, and in situ carbon sequestration. The existing thermo-chemical methodologies for converting agricultural waste into a sustainable material i.e. biochar and the role of activation agents in enhancing the performance of these materials were critically analyzed and discussed. An overview of recent trends in agricultural waste-derived biochar for supercapacitor electrodes is highlighted in this review that emphasizes green circular economy for encouraging net-zero utility of agriculture waste biomass. The roles of various newly prepared "green" electrolytes in reducing the negative consequences of supercapacitor is also reviewed. The trashing of agricultural waste and the depletion of energy supplies has become a global concern, hurting the world's ecosystem and economy through pollution and a fuel crisis and hence the concept of a green circular economic model is also highlighted.
Collapse
Affiliation(s)
- Akhil Pradiprao Khedulkar
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30 013, Taiwan
| | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés, 28911 Madrid, Spain
| | - Van Dien Dang
- Faculty of Biology - Environment, Ho Chi Minh City University of Food Industry, Ho Chi Minh 700000, Viet Nam
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
4
|
Jain A, Manippady SR, Tang R, Nishihara H, Sobczak K, Matejka V, Michalska M. Vanadium oxide nanorods as an electrode material for solid state supercapacitor. Sci Rep 2022; 12:21024. [PMID: 36470983 PMCID: PMC9723181 DOI: 10.1038/s41598-022-25707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
The electrochemical properties of metal oxides are very attractive and fascinating in general, making them a potential candidate for supercapacitor application. Vanadium oxide is of particular interest because it possesses a variety of valence states and is also cost effective with low toxicity and a wide voltage window. In the present study, vanadium oxide nanorods were synthesized using a modified sol-gel technique at low temperature. Surface morphology and crystallinity studies were carried out by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. To the best of our knowledge, the as-prepared nanorods were tested with magnesium ion based polymer gel electrolyte for the first time. The prepared supercapacitor cell exhibits high capacitance values of the order of ~ 141.8 F g-1 with power density of ~ 2.3 kW kg-1 and energy density of ~ 19.1 Wh kg-1. The cells show excellent rate capability and good cycling stability.
Collapse
Affiliation(s)
- Amrita Jain
- grid.413454.30000 0001 1958 0162Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Sai Rashmi Manippady
- grid.413454.30000 0001 1958 0162Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Rui Tang
- grid.69566.3a0000 0001 2248 6943Advanced Institute for Materials Research (AIMR-WPI), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
| | - Hirotomo Nishihara
- grid.69566.3a0000 0001 2248 6943Advanced Institute for Materials Research (AIMR-WPI), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan ,grid.69566.3a0000 0001 2248 6943Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
| | - Kamil Sobczak
- grid.12847.380000 0004 1937 1290Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Vlastimil Matejka
- grid.440850.d0000 0000 9643 2828Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Monika Michalska
- grid.440850.d0000 0000 9643 2828Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
5
|
Chiffon-like tulle-covered nanosheet core-shell structure of NiOOH@nickel-iron bimetallic sulfides to enhance the supercapacitor performances. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Rani P, Alegaonkar AP, Biswas R, Jewariya Y, Kanta Haldar K, Alegaonkar PS. Reduced graphene oxide doped tellurium nanotubes for high performance supercapacitor. Front Chem 2022; 10:1027554. [PMID: 36329860 PMCID: PMC9623563 DOI: 10.3389/fchem.2022.1027554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Supercapacitors have been achieving great interest in energy storage systems for the past couple of decades. Such devices with superior performance, mainly, depending on the material architecture of the electrodes. We report on the preparation of Tellurium nanotubes (Te-tubes diameter ∼100 nm and length ∼700 nm), with variable doping of conducting network reduced graphene oxide (rGO) to fabricate high-performance electrode characteristics of rGO @ Te. The prepared material was characterized using XRD, FTIR, FESEM, and Raman spectroscopy techniques, including Brunauer-Emmett-Teller, Barrett-Joyner-Halenda measurements. FTIR study revealed that 15% rGO @ Te has a wide C-O vibration band at ∼ 1,100–1,300 cm−1, over other compositions. FESEM study shows the Te-tubes dispersion in rGO layers. The EDX study revealed that 15% of the composition has an optimistic concentration of C and O elements. In other compositions, either at lower/higher rGO concentration, an uneven count of C and O is observed. These support efficient charge dynamics to achieve superior ultra-capacitor characteristics, thereby achieving specific capacitance Csp 170 + F/g @ 10 mV/s in a symmetric configuration. The reported values are thirty times higher than pristine Te-tubes (∼5 F/g). This finding suggests that rGO @ Te is a promising candidate for supercapacitor.
Collapse
Affiliation(s)
- Pinki Rani
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Rathindranath Biswas
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Yogesh Jewariya
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Krishna Kanta Haldar
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Prashant S. Alegaonkar
- Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, India
- *Correspondence: Prashant S. Alegaonkar,
| |
Collapse
|
7
|
Seo J, Han G, Kim H, Lee D. Solid state thin electrolyte to overcome transparency-capacity dilemma of transparent supercapacitor. Sci Rep 2022; 12:15923. [PMID: 36151249 PMCID: PMC9508085 DOI: 10.1038/s41598-022-19933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
For portable and transparent electronic applications, transparent supercapacitor (T-SC) is developed to act as an energy storing device. Because electric and optical characteristics of the supercapacitor are strongly dependent on its thickness, all solid state T-SC was developed based on sensitively controllable fabrication process. We were able to attain an optimum thickness for the T-SC such that it exhibited an excellent transparency as well as capacity. Thus, the transparency-capacity dilemma, that is, the thickness of a T-SC increases with respect to its capacity while it is inversely proportional to its transparency, was solved through our proposed T-SC structure. Consequently, more than 60% transparency and 80% capacitance retention of 1500 charge/discharge cycles were achieved. The overcoming of transparency-capacity dilemma can enhance the T-SC applicability as a core energy storage device.
Collapse
Affiliation(s)
- Jongseon Seo
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Geonhui Han
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Hyejin Kim
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Daeseok Lee
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
8
|
Pandit B, Agarwal A, Patel P, Sankapal BR. The electrochemical kinetics of cerium selenide nano-pebbles: the design of a device-grade symmetric configured wide-potential flexible solid-state supercapacitor. NANOSCALE ADVANCES 2021; 3:1057-1066. [PMID: 36133291 PMCID: PMC9417937 DOI: 10.1039/d0na00893a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/20/2020] [Indexed: 06/14/2023]
Abstract
Next-generation portable flexible electronic appliances require liquid-free energy storage supercapacitor devices to eliminate leakage and to support mechanical bending that is compatible with roll-to-roll technologies. Hence, a state-of-the-art process is presented to design a solid-state, wide-potential and flexible supercapacitor through the use of nano-pebbles of cerium selenide via a simple successive ionic layer adsorption and reaction (SILAR) method that could allow an industry scalable route. We strongly believe that this is the first approach amongst physical and chemical routes not only for synthesizing cerium selenide in thin-film form but also using it for device-grade supercapacitor applications. The designed solid-state symmetric supercapacitor assembled from cerium selenide electrodes sandwiched by PVA-LiClO4 gel electrolyte attains a wide potential window of 1.8 V with capacitance of 48.8 F g-1 at 2 mV s-1 and reveals excellent power density of 4.89 kW kg-1 at an energy density of 11.63 W h kg-1. The formed device is capable of 87% capacitive retention even at a mechanical bending angle of 175°. Lighting up a strip of 21 parallel connected red LEDs clearly demonstrates the practical use of the designed symmetric solid-state supercapacitor, aiming towards the commercialization of the product in the future.
Collapse
Affiliation(s)
- Bidhan Pandit
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India +91 712 2223230 +91 712 2801170
- Institut Charles Gerhardt Montpellier (ICGM), Université de Montpellier, CNRS Place Eugène Bataillon Montpellier 34095, Cedex 5 France
| | - Akanksha Agarwal
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India +91 712 2223230 +91 712 2801170
| | - Priyanka Patel
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India +91 712 2223230 +91 712 2801170
| | - Babasaheb R Sankapal
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 Maharashtra India +91 712 2223230 +91 712 2801170
| |
Collapse
|
9
|
Arunpandiyan S, Raja A, Vinoth S, Pandikumar A, Arivarasan A. Hierarchical porous CeO 2 micro rice-supported Ni foam binder-free electrode and its enhanced pseudocapacitor performance by a redox additive electrolyte. NEW J CHEM 2021. [DOI: 10.1039/d1nj01877a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hierarchical porous CeO2 micro rice/NF binder free electrode was fabricated via a facile hydrothermal method and the electrochemical performances were enhanced by the addition of 0.2 M K4[Fe(CN)6] redox additive in a 3 M KOH electrolyte.
Collapse
Affiliation(s)
- S. Arunpandiyan
- Multifunctional Materials Laboratory
- Department of Physics
- International Research Centre
- Kalasalingam Academy of Research and Education
- Krishnankoil-626126
| | - A. Raja
- Department of Chemistry
- College of Natural Sciences
- Yeungnam University
- Gyeongsan
- Gyeongbuk 38541
| | - S. Vinoth
- Electro Organic and Materials Electrochemistry Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - A. Pandikumar
- Electro Organic and Materials Electrochemistry Division
- CSIR-Central Electrochemical Research Institute
- Karaikudi
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - A. Arivarasan
- Multifunctional Materials Laboratory
- Department of Physics
- International Research Centre
- Kalasalingam Academy of Research and Education
- Krishnankoil-626126
| |
Collapse
|
10
|
Energy storage properties of hydrothermally processed, nanostructured, porous CeO2 nanoparticles. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Pandit B, Pande SA, Sankapal BR. Facile SILAR Processed Bi
2
S
3
:PbS Solid Solution on MWCNTs for High‐performance Electrochemical Supercapacitor. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bidhan Pandit
- Nano Materials and Device Laboratory, Department of PhysicsVisvesvaraya National Institute of Technology South Ambazari Road Nagpur ‐440010 Maharashtra India
| | - Shilpa A. Pande
- Department of Applied Physics, Laxminarayan Institute of TechnologyR T M Nagpur University Nagpur 440033 Maharashtra India
| | - Babasaheb R. Sankapal
- Nano Materials and Device Laboratory, Department of PhysicsVisvesvaraya National Institute of Technology South Ambazari Road Nagpur ‐440010 Maharashtra India
| |
Collapse
|